參考文獻 |
Anderson, J. L., 2001: An ensemble adjustment Kalman filter for data assimilation. Mon. Wea. Rev., 129, 2884–2903, https://doi.org/10.1175/1520-0493(2001)129<2884:AEAKFF>2.0.CO;2.
Annan, J. D., Lunt, D. J., Hargreaves, J. C., & Valdes, P. J. (2005). Parameter estimation in an atmospheric GCM using the Ensemble Kalman Filter. Nonlin. Processes Geophys., 12(3), 363-371. https://doi.org/10.5194/npg-12-363-2005
Atkinson, R. W., Kang, S., Anderson, H. R., Mills, I. C., & Walton, H. A. (2014). Epidemiological time series studies of PM2.5 and daily mortality and hospital admissions: a systematic review and meta-analysis. Thorax, 69(7), 660-665. https://doi.org/10.1136/thoraxjnl-2013-204492
Baek, S.-J., Hunt, B. R., Kalnay, E., Ott, E., & Szunyogh, I. (2006). Local ensemble Kalman filtering in the presence of model bias. Tellus A: Dynamic Meteorology and Oceanography, 58(3), 293-306. https://doi.org/10.1111/j.1600-0870.2006.00178.x
Banks, R. F., & Baldasano, J. M. (2016). Impact of WRF model PBL schemes on air quality simulations over Catalonia, Spain. Sci Total Environ, 572, 98-113. https://doi.org/10.1016/j.scitotenv.2016.07.167
Belmonte Rivas, M., & Stoffelen, A. (2019). Characterizing ERA-Interim and ERA5 surface wind biases using ASCAT. Ocean Science, 15(3), 831-852. https://doi.org/10.5194/os-15-831-2019
Bishop, C. H., B. J. Etherton, and S. J. Majumdar, 2001: Adaptive sampling with the ensemble transform Kalman filter Part I: Theoretical aspects. Mon. Wea. Rev., 129, 420–436, https://doi.org/10.1175/1520-0493(2001)129<0420:ASWTET>2.0.CO;2.
Chen, X., Zhao, K., Sun, J., Zhou, B., & Lee, W.-C. (2016). Assimilating surface observations
39
in a four-dimensional variational Doppler radar data assimilation system to improve the analysis and forecast of a squall line case. Advances in Atmospheric Sciences, 33(10), 1106-1119. https://doi.org/10.1007/s00376-016-5290-0
Cheng, F.-Y., Chin, S.-C., & Liu, T.-H. (2012). The role of boundary layer schemes in meteorological and air quality simulations of the Taiwan area. Atmospheric Environment, 54, 714-727. https://doi.org/10.1016/j.atmosenv.2012.01.029
Cheng, F.-Y., Feng, C.-Y., Yang, Z.-M., Hsu, C.-H., Chan, K.-W., Lee, C.-Y., & Chang, S.-C. (2021). Evaluation of real-time PM2.5 forecasts with the WRF-CMAQ modeling system and weather-pattern-dependent bias-adjusted PM2.5 forecasts in Taiwan. Atmospheric Environment, 244. https://doi.org/10.1016/j.atmosenv.2020.117909
Chou, M. D., Lee, K. T., Tsay, S. C., & Fu, Q. (1999). Parameterization for cloud longwave scattering for use in atmospheric models. In (Vol. 12, pp. 159-169).
Chung, Y. S., & Kim, H. S. (2008). Observations of massive air-pollution transport and associated air quality in the Yellow Sea region. Air Quality, Atmosphere & Health, 1(2), 69-79. https://doi.org/10.1007/s11869-008-0014-y
Cohen, A. E., Cavallo, S. M., Coniglio, M. C., & Brooks, H. E. (2015). A Review of Planetary Boundary Layer Parameterization Schemes and Their Sensitivity in Simulating Southeastern U.S. Cold Season Severe Weather Environments. Weather and Forecasting, 30(3), 591-612. https://doi.org/10.1175/waf-d-14-00105.1
Degelia, S. K., Wang, X., & Stensrud, D. J. (2019). An Evaluation of the Impact of Assimilating AERI Retrievals, Kinematic Profilers, Rawinsondes, and Surface Observations on a Forecast of a Nocturnal Convection Initiation Event during the PECAN Field Campaign. Monthly Weather Review, 147(8), 2739-2764. https://doi.org/10.1175/MWR-D-18-0423.1
Desroziers, G., L. Berre, B. Chapnik, and P. Poli, 2005: Diagnosis of observation, background
40
and analysis-error statistics in observation space. Q. J. R. Meteorol. Soc., 131, 3385–3396, https://doi.org/10.1256/qj.05.108.
Evensen, G., 1994: Sequential data assimilation with a nonlinear quasi-geostrophic model using Monte Carlo methods to forecast error statistics. J. Geophys. Res., 99, https://doi.org/10.1029/94jc00572.
Fang, S.-H., & Chen, H.-W. (1996). Air quality and pollution control in Taiwan. Atmospheric Environment, 30(5), 735-741. https://doi.org/https://doi.org/10.1016/1352-2310(94)00214-2
Finn, T. S., Geppert, G., & Ament, F. (2020). Towards assimilation of wind profile observations in the atmospheric boundary layer with a sub-kilometre-scale ensemble data assimilation system. Tellus A: Dynamic Meteorology and Oceanography, 72(1), 1-14. https://doi.org/10.1080/16000870.2020.1764307
Geer, A. J., & Bauer, P. (2011). Observation errors in all-sky data assimilation. Quarterly Journal of the Royal Meteorological Society, 137(661), 2024-2037. https://doi.org/10.1002/qj.830
Guenther, A.B., Jiang, X., Heald, C.L., Sakulyanontvittaya, T., Duhl, T., Emmons, L.K., Wang, X., 2012. The model of emissions of gases and aerosols from nature version 2.1 (MEGAN2.1): an extended and updated framework for modeling biogenic emissions. Geosci. Model Dev. (GMD) 5, 1471–1492.
Ha, S., Liu, Z., Sun, W., Lee, Y., & Chang, L. (2020). Improving air quality forecasting with the assimilation of GOCI aerosol optical depth (AOD) retrievals during the KORUS-AQ period. Atmospheric Chemistry and Physics, 20(10), 6015-6036. https://doi.org/10.5194/acp-20-6015-2020
Hacker, J. P., & Chris, S. (2005). Ensemble Kalman Filter Assimilation of Fixed Screen-Height Observations in a Parameterized PBL. Monthly Weather Review, 133(11),
41
3260-3275. https://doi.org/https://doi.org/10.1175/MWR3022.1
Hong, S. Y., Noh, Y., & Dudhia, J. (2006). A new vertical diffusion package with an explicittreatment of entrainment processes. Mon. Weather Rev, 134, 2318-2341. https://doi.org/ https://doi.org/10.1175/MWR3199.1.
Hsu, C.-H., & Cheng, F.-Y. (2019). Synoptic Weather Patterns and Associated Air Pollution in Taiwan. Aerosol and Air Quality Research, 19(5), 1139-1151. https://doi.org/10.4209/aaqr.2018.09.0348
Hu, F., Nielsen-Gammon, J., & Zhang, F. (2010). Evaluation of Three Planetary Boundary Layer Schemes in the WRF Model. Journal of Applied Meteorology and Climatology - J APPL METEOROL CLIMATOL, 49. https://doi.org/10.1175/2010JAMC2432.1
Huang, G., Chen, L. J., Hwang, W. H., Tzeng, S., & Huang, H. C. (2018). Real-time PM2.5 mapping and anomaly detection from AirBoxes in Taiwan. Environmetrics, 29(8). https://doi.org/10.1002/env.2537
Hunt, B. R., E. J. Kostelich, and I. Szunyogh, (2007): Efficient data assimilation for spatiote-
mporal chaos: A local ensemble transform Kalman filter. Phys. D Nonlinear Phenom., 230, 112–126, https://doi.org/10.1016/j.physd.2006.11.008.
Janjić, T., and Coauthors, (2018): On the representation error in data assimilation. Q. J. R. Meteorol. Soc., 144, 1257–1278, https://doi.org/10.1002/qj.3130.
Kang, J.-S., Kalnay, E., Liu, J., Fung, I., Miyoshi, T., & Ide, K. (2011). “Variable localization” in an ensemble Kalman filter: Application to the carbon cycle data assimilation. Journal of Geophysical Research, 116(D9). https://doi.org/10.1029/2010jd014673
Li, M., Zhang, Q., Kurokawa, J.-I., Woo, J.-H., He, K., Lu, Z., Ohara, T., Song, Y., Streets, D.G., Carmichael, G.R., Cheng, Y., Hong, C., Huo, H., Jiang, X., Kang, S., Liu, F., Su, H., Zheng, B., 2017. MIX: a mosaic Asian anthropogenic emission inventory
42
under the international collaboration framework of the MICS-Asia and HTAP. Atmos. Chem. Phys. 17, 935–963.
Lindskog, M., Salonen, K., Järvinen, H., & Michelson, D. B. (2004). Doppler radar wind data assimilation with HIRLAM 3DVAR. Mon. Wea. Rev., 132, 1081-1092. https://doi.org/ https://doi.org/10.1175/1520-0493(2004)132<1081:DRWDAW>2.0.CO;2.
Mahajan, S., Chen, L. J., & Tsai, T. C. (2018). Short-Term PM2.5 Forecasting Using Exponential Smoothing Method: A Comparative Analysis. Sensors (Basel), 18(10). https://doi.org/10.3390/s18103223
Minamide, M., & Zhang, F. (2017). Adaptive Observation Error Inflation for Assimilating All-Sky Satellite Radiance. Monthly Weather Review, 145(3), 1063-1081. https://doi.org/10.1175/mwr-d-16-0257.1
Miyoshi;, T., Yamane;, S., & Enomoto, T. (2007). Localizing the Error Covariance by Physical Distances
within a Local Ensemble Transform Kalman Filter (LETKF). Sola, 3, 89-92. https://doi.org/https://doi.org/10.2151/sola.2007-023
Mlawer, E. J., Taubman, S. J., Brown, P. D., Iacono, M. J., & Clough, S. A. (1997). Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave. Journal of Geophysical Research: Atmospheres, 102(D14), 16663-16682. https://doi.org/10.1029/97jd00237
Montmerle, T., & Faccani, C. (2009). Mesoscale assimilation of radial velocities from Doppler radars in a preoperational framework. Mon. Wea. Rev., 137, 1939-1953. https://doi.org/https://doi.org/10.1175/2008MWR2725.1.
Nielsen-Gammon, J. W., and Coauthors (2008): Multisensor estimation of mixing heights over a coastal city. J. Appl. Meteor.Climatol., 47, 27–43.
Ott E., B. R. Hunt, I. Szunyogh, A. V. Zimin, E. J. Kostelich, M. Corrazza, E. Kalnay, D. J.
43
Patil, and J. A. Yorke, 2004: A local ensemble Kalman filter for atmospheric data assimilation. Tellus, 56A, 415–428.
Parsons, D. B., Wang, X., & Chipilski, H. G. (2020). Impact of Assimilating PECAN Profilers on the Prediction of Bore-Driven Nocturnal Convection: A Multiscale Forecast Evaluation for the 6 July 2015 Case Study. Monthly Weather Review, 148(3), 1147-1175. https://doi.org/10.1175/mwr-d-19-0171.1
Patil, D. J., Hunt, B. R., Kalnay, E., Yorke, J. A., & Ott, E. (2001). Local Low Dimensionality of Atmospheric Dynamics. Physical Review Letters, 86(26), 5878-5881. https://doi.org/10.1103/PhysRevLett.86.5878
Pleim, J. E. (2007). A Combined Local and Nonlocal Closure Model for the Atmospheric Boundary Layer. Part I: Model Description and Testing. Journal of Applied Meteorology and Climatology, 46(9), 1383-1395. https://doi.org/10.1175/jam2539.1
Pu, Z., Zhang, H., & Anderson, J. (2013). Ensemble Kalman filter assimilation of near-surface observations over complex terrain: comparison with 3DVAR for short-range forecasts. Tellus A: Dynamic Meteorology and Oceanography, 65(1). https://doi.org/10.3402/tellusa.v65i0.19620
Serafin, S., Adler, B., Cuxart, J., De Wekker, S., Gohm, A., Grisogono, B., Kalthoff, N., Kirshbaum, D., Rotach, M., Schmidli, J., Stiperski, I., Večenaj, Ž., & Zardi, D. (2018). Exchange Processes in the Atmospheric Boundary Layer Over Mountainous Terrain. Atmosphere, 9(3). https://doi.org/10.3390/atmos9030102
Stull, R. B. (1988). An Introduction to Boundary Layer Meteorology. Kluwer Academic, 13, 666.
Stull, R. B. (1991). Static Stability—An Update. Bulletin of the American Meteorological Society, 72(10), 1521-1530. https://doi.org/https://doi.org/10.1175/1520-0477(1991)072<1521:SSU>2.0.CO;2
44
Tangborn, A., Demoz, B., Carroll, B. J., Santanello, J., & Anderson, J. L. (2021). Assimilation of lidar planetary boundary layer height observations. Atmospheric Measurement Techniques, 14(2), 1099-1110. https://doi.org/10.5194/amt-14-1099-2021
Tao, W.-K., Shie, C.-L., J.Simpson, S.Braun, Johnson, R. H., & Ciesielski, P. E. (2003). Convective Systems over the South China Sea: Cloud-Resolving Model Simulations. Journal of the Atmospheric Sciences, 60, 2929-2956. https://doi.org/https://doi.org/10.1175/1520-0469(2003)060<2929:CSOTSC>2.0.CO;2.
Terasaki, K., & Miyoshi, T. (2022). A 1024-Member NICAM-LETKF Experiment for the July 2020 Heavy Rainfall Event. Sola, 18A(Special_Edition), 8-14. https://doi.org/10.2151/sola.18A-002
Tewari, M., Chen, F., Wang, W., Dudhia, J., Lemone, M. A., Mitchell, K. E., Ek, M., Gayno, G., Wegiel, J. W., & Cuenca, R. (2004). Implementation and verification of the unified Noah land-surface model in the WRF model [presentation]. In 20th Conference on Weather Analysis and Forecasting/16th Conference on Numerical Weather Prediction. American Meteorological Society: Seattle, WA, US.
Tsai, I. C., Lee, C. Y., Lung, S. C., & Su, C. W. (2021). Characterization of the vehicle emissions in the Greater Taipei Area through vision-based traffic analysis system and its impacts on urban air quality. Sci Total Environ, 782, 146571. https://doi.org/10.1016/j.scitotenv.2021.146571
Wang, X., Degelia, S. K., & Stensrud, D. J. (2019). An Evaluation of the Impact of Assimilating AERI Retrievals, Kinematic Profilers, Rawinsondes, and Surface Observations on a Forecast of a Nocturnal Convection Initiation Event during the PECAN Field Campaign. Monthly Weather Review, 147(8), 2739-2764.
45
https://doi.org/10.1175/mwr-d-18-0423.1
Wick, G. A., Dunion, J. P., Black, P. G., Walker, J. R., Torn, R. D., Kren, A. C., Aksoy, A., Christophersen, H., Cucurull, L., Dahl, B., English, J. M., Friedman, K., Peevey, T. R., Sellwood, K., Sippel, J. A., Tallapragada, V., Taylor, J., Wang, H., Hood, R. E., & Hall, P. (2020). NOAA’s Sensing Hazards with Operational Unmanned Technology (SHOUT) Experiment Observations and Forecast Impacts. Bulletin of the American Meteorological Society, 101(7), E968-E987. https://doi.org/10.1175/bams-d-18-0257.1
Wu, C.-H., Tsai, I. C., Tsai, P.-C., & Tung, Y.-S. (2019). Large–scale seasonal control of air quality in Taiwan. Atmospheric Environment, 214. https://doi.org/10.1016/j.atmosenv.2019.116868
Xing, J., Zheng, S., Ding, D., Kelly, J. T., Wang, S., Li, S., Qin, T., Ma, M., Dong, Z., Jang, C., Zhu, Y., Zheng, H., Ren, L., Liu, T. Y., & Hao, J. (2020). Deep Learning for Prediction of the Air Quality Response to Emission Changes. Environ Sci Technol, 54(14), 8589-8600. https://doi.org/10.1021/acs.est.0c02923
Xing, Y. F., Xu, Y. H., Shi, M. H., & Lian, Y. X. (2016). The impact of PM2.5 on the human respiratory system. J Thorac Dis, 8(1), E69-74. https://doi.org/10.3978/j.issn.2072-1439.2016.01.19
Yang, S.-C., Cheng, F.-Y., Wang, L.-J., Wang, S.-H., & Hsu, C.-H. (2022). Impact of lidar data assimilation on planetary boundary layer wind and PM2.5 prediction in Taiwan. Atmospheric Environment, 277. https://doi.org/10.1016/j.atmosenv.2022.119064
Zhang, F., Weng, Y., Sippel, J. A., Meng, Z., & Bishop, C. H. (2009). Cloud-resolving hurricane initialization and prediction through assimilation of Doppler radar observations with an ensemble Kalman filter. Mon. Wea. Rev., 137, 2105-2125. https://doi.org/https://doi.org/10.1175/2009MWR2645.1.
46
周彥誠. (2021). 臺灣背風渦旋特性分析及其對空氣污染物傳輸過程影響 國立中央大學]. 桃園縣. https://hdl.handle.net/11296/68785g
林佳瑩. (2017). 台灣中部山區局部環流結構特性與其對空氣汙染物傳送過程的影響 國立中央大學]. 桃園縣. https://hdl.handle.net/11296/y5p3z5
陳誼. (2021). 整合無人機與光達觀測解析斗六地區空污事件之演變過程 國立中央大學]. 桃園縣. https://hdl.handle.net/11296/fan5v7 |