參考文獻 |
Abdi, H., & Williams, L. J. (2010). Principal component analysis. In Wiley Interdisciplinary Reviews: Computational Statistics (Vol. 2, Issue 4, pp. 433–459). https://doi.org/10.1002/wics.101
Afzali, A., Rashid, M., Afzali, M., & Younesi, V. (2017). Prediction of air pollutants concentrations from multiple sources using AERMOD coupled with WRF prognostic model. Journal of Cleaner Production, 166, 1216–1225. https://doi.org/10.1016/j.jclepro.2017.07.196
Apte, J. S., Brauer, M., Cohen, A. J., Ezzati, M., & Pope, C. A. (2018). Ambient PM2.5 Reduces Global and Regional Life Expectancy. Environmental Science and Technology Letters, 5(9), 546–551. https://doi.org/10.1021/acs.estlett.8b00360
Bi, C., Chen, Y., Zhao, Z., Li, Q., Zhou, Q., Ye, Z., & Ge, X. (2020). Characteristics, sources and health risks of toxic species (PCDD/Fs, PAHs and heavy metals) in PM2.5 during fall and winter in an industrial area. Chemosphere, 238. https://doi.org/10.1016/j.chemosphere.2019.124620
Cambra-López, M., Aarnink, A. J. A., Zhao, Y., Calvet, S., & Torres, A. G. (2010). Airborne particulate matter from livestock production systems: A review of an air pollution problem. In Environmental Pollution (Vol. 158, Issue 1, pp. 1–17). https://doi.org/10.1016/j.envpol.2009.07.011
Cambra-López, M., Hermosilla, T., Lai, H. T. L., Aarnink, A. J. A., & Ogink, N. W. M. (n.d.). PARTICULATE MATTER EMITTED FROM POULTRY AND PIG HOUSES: SOURCE IDENTIFICATION AND QUANTIFICATION. Transactions of the ASABE, 54(2), 629–642.
Cambra-López, M., Torres, A. G., Aarnink, A. J. A., & Ogink, N. W. M. (2011). Source analysis of fine and coarse particulate matter from livestock houses. Atmospheric Environment, 45(3), 694–707. https://doi.org/10.1016/j.atmosenv.2010.10.018
Castell, N., Mantilla, E., Salvador, R., Stein, A. F., & Millán, M. (2010). Photochemical model evaluation of the surface ozone impact of a power plant in a heavily industrialized area of southwestern Spain. Journal of Environmental Management, 91(3), 662–676. https://doi.org/10.1016/j.jenvman.2009.09.030
Chang, F. J., Chang, L. C., Kang, C. C., Wang, Y. S., & Huang, A. (2020). Explore spatio-temporal PM2.5 features in northern Taiwan using machine learning techniques. Science of the Total Environment, 736. https://doi.org/10.1016/j.scitotenv.2020.139656
Chen, R., Hu, B., Liu, Y., Xu, J., Yang, G., Xu, D., & Chen, C. (2016). Beyond PM2.5: The role of ultrafine particles on adverse health effects of air pollution. Biochimica et Biophysica Acta - General Subjects, 1860(12), 2844–2855. https://doi.org/10.1016/j.bbagen.2016.03.019
Cheng, F. Y., & Hsu, C. H. (2019). Long-term variations in PM2.5 concentrations under changing meteorological conditions in Taiwan. Scientific Reports, 9(1). https://doi.org/10.1038/s41598-019-43104-x
Choi, J., Oh, J. Y., Lee, Y. S., Min, K. H., Hur, G. Y., Lee, S. Y., Kang, K. H., & Shim, J. J. (2018a). Harmful impact of air pollution on severe acute exacerbation of chronic obstructive pulmonary disease: Particulate matter is hazardous. International Journal of COPD, 13, 1053–1059. https://doi.org/10.2147/COPD.S156617
Choi, J., Oh, J. Y., Lee, Y. S., Min, K. H., Hur, G. Y., Lee, S. Y., Kang, K. H., & Shim, J. J. (2018b). Harmful impact of air pollution on severe acute exacerbation of chronic obstructive pulmonary disease: Particulate matter is hazardous. International Journal of COPD, 13, 1053–1059. https://doi.org/10.2147/COPD.S156617
Corani, G., & Scanagatta, M. (2016). Air pollution prediction via multi-label classification. Environmental Modelling and Software, 80, 259–264. https://doi.org/10.1016/j.envsoft.2016.02.030
Doreswamy, Harishkumar, K. S., Km, Y., & Gad, I. (2020). Forecasting Air Pollution Particulate Matter (PM2.5) Using Machine Learning Regression Models. Procedia Computer Science, 171, 2057–2066. https://doi.org/10.1016/j.procs.2020.04.221
Fang, S.-H., & Chen, H.-W. (1996). Atmospheric Enuironmnt (Vol. 30, Issue 5).
Fu, H., Zhang, M., Li, W., Chen, J., Wang, L., Quan, X., & Wang, W. (2012). Morphology, composition and mixing state of individual carbonaceous aerosol in urban Shanghai. Atmospheric Chemistry and Physics, 12(2), 693–707. https://doi.org/10.5194/acp-12-693-2012
Hochreiter, S., & Schmidhuber, J. (1997). Long Short-Term Memory. Neural Computation, 9(8), 1735–1780. https://doi.org/10.1162/neco.1997.9.8.1735
Hsu, C. H., & Cheng, F. Y. (2016). Classification of weather patterns to study the influence of meteorological characteristics on PM2.5 concentrations in Yunlin County, Taiwan. Atmospheric Environment, 144, 397–408. https://doi.org/10.1016/j.atmosenv.2016.09.001
Jasim, O. Z., Hamed, N. H., & Abid, M. A. (2020). Urban Air Quality Assessment Using Integrated Artificial Intelligence Algorithms and Geographic Information System Modeling in a Highly Congested Area, Iraq. Journal of Southwest Jiaotong University, 55(1). https://doi.org/10.35741/issn.0258-2724.55.1.16
Jia, M., Cheng, X., Zhao, T., Yin, C., Zhang, X., Wu, X., Wang, L., & Zhang, R. (2019). Regional air quality forecast using a machine learning method and the WRF model over the yangtze river delta, east China. Aerosol and Air Quality Research, 19(7), 1602–1613. https://doi.org/10.4209/aaqr.2019.05.0275
Jiang, B., Xia, D., & Zhang, X. (2018). A multicomponent kinetic model established for investigation on atmospheric new particle formation mechanism in H2SO4-HNO3-NH3-VOC system. Science of the Total Environment, 616–617, 1414–1422. https://doi.org/10.1016/j.scitotenv.2017.10.174
Joharestani, M. Z., Cao, C., Ni, X., Bashir, B., & Talebiesfandarani, S. (2019). PM2.5 prediction based on random forest, XGBoost, and deep learning using multisource remote sensing data. Atmosphere, 10(7). https://doi.org/10.3390/atmos10070373
Lauret, P., Heymes, F., Aprin, L., & Johannet, A. (2016). Atmospheric dispersion modeling using Artificial Neural Network based cellular automata. Environmental Modelling and Software, 85, 56–69. https://doi.org/10.1016/j.envsoft.2016.08.001
Lee, M., Lin, L., Chen, C. Y., Tsao, Y., Yao, T. H., Fei, M. H., & Fang, S. H. (2020). Forecasting Air Quality in Taiwan by Using Machine Learning. Scientific Reports, 10(1). https://doi.org/10.1038/s41598-020-61151-7
Li, N., Chen, J. P., Tsai, I. C., He, Q., Chi, S. Y., Lin, Y. C., & Fu, T. M. (2016). Potential impacts of electric vehicles on air quality in Taiwan. Science of the Total Environment, 566–567, 919–928. https://doi.org/10.1016/j.scitotenv.2016.05.105
Liang, Y. C., Maimury, Y., Chen, A. H. L., & Juarez, J. R. C. (2020). Machine learning-based prediction of air quality. Applied Sciences (Switzerland), 10(24), 1–17. https://doi.org/10.3390/app10249151
Lim, S. S., Vos, T., Flaxman, A. D., Danaei, G., Shibuya, K., Adair-Rohani, H., Amann, M., Anderson, H. R., Andrews, K. G., Aryee, M., Atkinson, C., Bacchus, L. J., Bahalim, A. N., Balakrishnan, K., Balmes, J., Barker-Collo, S., Baxter, A., Bell, M. L., Blore, J. D., … Ezzati, M. (2012). A comparative risk assessment of burden of disease and injury attributable to 67 risk factors and risk factor clusters in 21 regions, 1990-2010: A systematic analysis for the Global Burden of Disease Study 2010. The Lancet, 380(9859), 2224–2260. https://doi.org/10.1016/S0140-6736(12)61766-8
Lin, C. Y., Lee, Y. H., Kuo, C. Y., Chen, W. C., Sheng, Y. F., & Su, C. J. (2018). Impact of river-dust events on air quality of western Taiwan during winter monsoon: Observed evidence and model simulation. Atmospheric Environment, 192, 160–172. https://doi.org/10.1016/j.atmosenv.2018.08.048
Liu, J., Chen, Y., Chao, S., Cao, H., Zhang, A., & Yang, Y. (2018). Emission control priority of PM2.5-bound heavy metals in different seasons: A comprehensive analysis from health risk perspective. Science of the Total Environment, 644, 20–30. https://doi.org/10.1016/j.scitotenv.2018.06.226
Lu, Q., Zheng, J., Ye, S., Shen, X., Yuan, Z., & Yin, S. (2013). Emission trends and source characteristics of SO2, NOx, PM10 and VOCs in the Pearl River Delta region from 2000 to 2009. Atmospheric Environment, 76, 11–20. https://doi.org/10.1016/j.atmosenv.2012.10.062
Lu, Z., Deng, S., Liu, X., Huang, L., Zhang, R., Song, H., & Li, G. (n.d.). Morphology and composition of particles emitted from conventional and alternative fuel vehicles. https://doi.org/10.1007/s11356-020-11671-6/Published
Ma, J., Yu, Z., Qu, Y., Xu, J., & Cao, Y. (2020). Application of the xgboost machine learning method in pm2.5 prediction: A case study of shanghai. Aerosol and Air Quality Research, 20(1), 128–138. https://doi.org/10.4209/aaqr.2019.08.0408
Masood, A., & Ahmad, K. (2020). A model for particulate matter (PM2.5) prediction for Delhi based on machine learning approaches. Procedia Computer Science, 167, 2101–2110. https://doi.org/10.1016/j.procs.2020.03.258
Olcese, L. E., Palancar, G. G., & Toselli, B. M. (2015). A method to estimate missing AERONET AOD values based on artificial neural networks. Atmospheric Environment, 113, 140–150. https://doi.org/10.1016/j.atmosenv.2015.05.009
Olfert, J., & Rogak, S. (2019). Universal relations between soot effective density and primary particle size for common combustion sources. In Aerosol Science and Technology (Vol. 53, Issue 5, pp. 485–492). Taylor and Francis Inc. https://doi.org/10.1080/02786826.2019.1577949
Pisoni, E., Albrecht, D., Mara, T. A., Rosati, R., Tarantola, S., & Thunis, P. (2018). Application of uncertainty and sensitivity analysis to the air quality SHERPA modelling tool. Atmospheric Environment, 183, 84–93. https://doi.org/10.1016/j.atmosenv.2018.04.006
Quan, J., Tie, X., Zhang, Q., Liu, Q., Li, X., Gao, Y., & Zhao, D. (2014). Characteristics of heavy aerosol pollution during the 2012-2013 winter in Beijing, China. Atmospheric Environment, 88, 83–89. https://doi.org/10.1016/j.atmosenv.2014.01.058
Ritz, B., Liew, Z., Yan, Q., Cuia, X., Virk, J., Ketzel, M., & Raaschou-Nielsen, O. (2018). Air pollution and autism in Denmark. Environmental Epidemiology, 2(4), e028. https://doi.org/10.1097/ee9.0000000000000028
Rodriguez, M. G., Heredia Rivera, B., Rodriguez Heredia, M., Rodriguez Heredia, B., & Gonzalez Segovia, R. (2019a). A study of dust airborne particles collected by vehicular traffic from the atmosphere of southern megalopolis Mexico City. Environmental Systems Research, 8(1). https://doi.org/10.1186/s40068-019-0143-3
Rodriguez, M. G., Heredia Rivera, B., Rodriguez Heredia, M., Rodriguez Heredia, B., & Gonzalez Segovia, R. (2019b). A study of dust airborne particles collected by vehicular traffic from the atmosphere of southern megalopolis Mexico City. Environmental Systems Research, 8(1). https://doi.org/10.1186/s40068-019-0143-3
Rönkkö, T., & Timonen, H. (2019). Overview of Sources and Characteristics of Nanoparticles in Urban Traffic-Influenced Areas. Journal of Alzheimer’s Disease, 72(1), 15–28. https://doi.org/10.3233/JAD-190170
Saravanan, R., & Sujatha, P. (2018). A State of Art Techniques on Machine Learning Algorithms: A Perspective of Supervised Learning Approaches in Data Classification. https://doi.org/10.1109/ICCONS.2018.8663155
Shou, Y., Huang, Y., Zhu, X., Liu, C., Hu, Y., & Wang, H. (2019). A review of the possible associations between ambient PM2.5 exposures and the development of Alzheimer’s disease. Ecotoxicology and Environmental Safety, 174, 344–352. https://doi.org/10.1016/j.ecoenv.2019.02.086
Soh, P. W., Chang, J. W., & Huang, J. W. (2018). Adaptive Deep Learning-Based Air Quality Prediction Model Using the Most Relevant Spatial-Temporal Relations. IEEE Access, 6, 38186–38199. https://doi.org/10.1109/ACCESS.2018.2849820
Wang, S. H., Hung, R. Y., Lin, N. H., Gómez-Losada, Á., Pires, J. C. M., Shimada, K., Hatakeyama, S., & Takami, A. (2020). Estimation of background PM2.5 concentrations for an air-polluted environment. Atmospheric Research, 231. https://doi.org/10.1016/j.atmosres.2019.104636
Wang, Y. S., Chang, L. C., & Chang, F. J. (2021). Explore Regional PM2.5 Features and Compositions Causing Health Effects in Taiwan. Environmental Management, 67(1), 176–191. https://doi.org/10.1007/s00267-020-01391-5
Wang, Z., Lingzhi, Z., Zhang, Y., Zhou, Z., & Zhang, S. (2008). Morphology of single inhalable particle in the air polluted city of Shijiazhuang, China. In Journal of Environmental Sciences (Vol. 20).
Wei, X., Gao, B., Wang, P., Zhou, H., & Lu, J. (2015). Pollution characteristics and health risk assessment of heavy metals in street dusts from different functional areas in Beijing, China. Ecotoxicology and Environmental Safety, 112, 186–192. https://doi.org/10.1016/j.ecoenv.2014.11.005
Wilhelm, M., Ghosh, J. K., Su, J., Cockburn, M., Jerrett, M., & Ritz, B. (2012). Traffic-related air toxics and term low birth weight in Los Angeles County, California. Environmental Health Perspectives, 120(1), 132–138. https://doi.org/10.1289/ehp.1103408
Wong, P. Y., Lee, H. Y., Zeng, Y. T., Chern, Y. R., Chen, N. T., Candice Lung, S. C., Su, H. J., & Wu, C. da. (2021). Using a land use regression model with machine learning to estimate ground level PM2.5. Environmental Pollution, 277. https://doi.org/10.1016/j.envpol.2021.116846
World Health Organization. (2018). World Health Statistics 2018 : monitoring health for the SDGs : sustainable development goals.
Xing, Y. F., Xu, Y. H., Shi, M. H., & Lian, Y. X. (2016). The impact of PM2.5 on the human respiratory system. In Journal of Thoracic Disease (Vol. 8, Issue 1, pp. E69–E74). Pioneer Bioscience Publishing. https://doi.org/10.3978/j.issn.2072-1439.2016.01.19
Yang, Y., & Christakos, G. (2015). Spatiotemporal Characterization of Ambient PM2.5 Concentrations in Shandong Province (China). Environmental Science and Technology, 49(22), 13431–13438. https://doi.org/10.1021/acs.est.5b03614
Yu, X., Wong, M. S., Liu, C.-H., & Zhu, R. (2022). Synergistic data fusion of satellite observations and in-situ measurements for hourly PM2.5 estimation based on hierarchical geospatial long short-term memory. Atmospheric Environment, 286, 119257. https://doi.org/10.1016/j.atmosenv.2022.119257
Zhou, Y., Chang, F. J., Chang, L. C., Kao, I. F., & Wang, Y. S. (2019a). Explore a deep learning multi-output neural network for regional multi-step-ahead air quality forecasts. Journal of Cleaner Production, 209, 134–145. https://doi.org/10.1016/j.jclepro.2018.10.243
Zhou, Y., Chang, F. J., Chang, L. C., Kao, I. F., & Wang, Y. S. (2019b). Explore a deep learning multi-output neural network for regional multi-step-ahead air quality forecasts. Journal of Cleaner Production, 209, 134–145. https://doi.org/10.1016/j.jclepro.2018.10.243
|