參考文獻 |
REFERENCES
Aharonov, E., & Scholz, C. H. (2018). A physics‐based rock friction constitutive model:
Steady state friction. Journal of Geophysical Research: Solid Earth, 123(2), 1591-
1614.
An, M., Zhang, F., Zhang, L., & Fang, Y. (2018). Effects of Normal Stress and Clay
Content on the Frictional Properties of Reservoir Rocks under Fully Saturated
Conditions. GeoShanghai International Conference, Springer, Singapore, 220-231.
Bordoni, M., Valentino, R., Meisina, C., Bittelli, M., & Chersich, S. (2018). A simplified
approach to assess the soil saturation degree and stability of a representative slope
affected by shallow landslides in Oltrepò Pavese (Italy). Geosciences, 8(12), 472.
Cellek, S. (2020). Effect of the Slope Angle and Its Classification on Landslide. Natural
Hazards and Earth System Sciences Discussions, 1-23.
Chen, Y. Z. (2018). Frictional and kinematical characteristics of the Hungtsaiping
landslide, Master thesis, National Central University, Taiwan.
Deng, Y., Yan, S., Scaringi, G., Liu, W., & He, S. (2020). An empirical power
oscillation‐based friction model and its implications for coherent landslide
mobility. Geophysical Research Letters, 47(11), e2020GL087581.
Dieterich, J. H. (1979). Modeling of rock friction: 2. Simulation of preseismic slip.
Journal of Geophysical Research: Solid Earth, 84(B5), 2169-2175.
Dieterich, J. H. (1981). Constitutive properties of faults with simulated gouge.
Mechanical Behavior of Crustal Rocks, 24, 103-120.
Ferri, F., Di Toro, G., Hirose, T., Han, R., Noda, H., Shimamoto, T., Quaresimin, M., &
De Rossi, N. (2011). Low‐to high‐velocity frictional properties of the clay‐rich
gouges from the slipping zone of the 1963 Vaiont slide, northern Italy. Journal of
Geophysical Research: Solid Earth, 116, B09208.
Hirose, T., & Shimamoto, T. (2005). Growth of molten zone as a mechanism of slip
weakening of simulated faults in gabbro during frictional melting. Journal of
Geophysical Research: Solid Earth, 110, B05202.
Hungr, O., Leroueil, S., & Picarelli, L. (2014). The Varnes classification of landslide
types, an update. Landslides, 11(2), 167-194.
Iverson, R. M. (2000). Landslide triggering by rain infiltration. Water Resources
Research, 36(7), 1897-1910.
Iverson, R. M. (2005). Regulation of landslide motion by dilatancy and pore pressure
feedback. Journal of Geophysical Research: Earth Surface, 110, F000268.
Jibson, R. W. (1993). Predicting earthquake-induced landslide displacements using
Newmark′s sliding block analysis. Transportation Research Record, 1411, 9-17.
Kuo, L. W., Wu, W. J., Kuo, C. W., Smith, S. A., Lin, W. T., Wu, W. H., & Huang, Y.
H. (2021). Frictional strength and fluidization of water-saturated kaolinite gouges
at seismic slip velocities. Journal of Structural Geology, 150, 104419.
Lee, Y. W. (2017). Relationship of frictional characteristics of kaolin clay in different
slip rates and drainage conditions, Master thesis, National Central University,
Taiwan.37
Mergili, M., Marchesini, I., Rossi, M., Guzzetti, F., & Fellin, W. (2014). Spatially
distributed three-dimensional slope stability modelling in a raster GIS.
Geomorphology, 206, 178-195.
Mizoguchi, K., Hirose, T., Shimamoto, T., & Fukuyama, E. (2007). Reconstruction of
seismic faulting by high‐velocity friction experiments: An example of the 1995
Kobe earthquake. Geophysical Research Letters, 34, L01308.
Newmark, N. M. (1965). Effects of earthquakes on dams and embankments.
Geotechnique, 15(2), 139-160.
Pham, Q. V. (2019). Velocity-dependent frictional properties of kaolinite clay under
different drainage conditions with temperature measurement, Master thesis,
National Central University, Taiwan.
Rice, J. R., & Ruina, A. L. (1983). Stability of steady frictional slipping. Journal of
Applied Mechanics, 50(2), 343-349.
Ruina, A. (1983). Slip instability and state variable friction models. Journal of
Geophysical Research: Solid Earth, 88(B12), 10359-10370.
Saroli, M., Albano, M., Atzori, S., Moro, M., Tolomei, C., Bignami, C., & Stramondo,
S. (2021). Analysis of a large seismically induced mass movement after the
December 2018 Etna volcano (southern Italy) seismic swarm. Remote Sensing of
Environment, 263, 112524.
Schulz, W. H., McKenna, J. P., Kibler, J. D., & Biavati, G. (2009). Relations between
hydrology and velocity of a continuously moving landslide—evidence of porepressure feedback regulating landslide motion?. Landslides, 6(3), 181-190.
Shimamoto, T. (1994). A new rotary-shear high-speed frictional testing machine: its
basic design and scope of research. Journal Tectonic Research Group of Japan, 39,
65-78.
Skempton, A. (1964). Long-term stability of clay slopes. Geotechnique, 14(2), 77-102.
Terzaghi, K. (1950). Mechanism of landslides (Berkey volume). Geological Society of
America, New York, 83-124.
Togo, T., Shimamoto, T., Ma, S.L., & Hirose, T., (2011). High-velocity friction of faults:
A review and implication for landslide studies. The Next Generation of 106
Research on Earthquake-induced Landslides: An International Conference in
Commemoration of 10th Anniversary of the Chi-Chi Earthquake, 205-216.
Togo, T., Shimamoto, T., Dong, J. J., Lee, C. T., & Yang, C. M. (2014). Triggering and
runaway processes of catastrophic Tsaoling landslide induced by the 1999 Taiwan
Chi‐Chi earthquake, as revealed by high‐velocity friction experiments.
Geophysical Research Letters, 41(6), 1907-1915.
Tran, N. T. (2021). The relationship of kaolinite friction characteristics and temperature
changing in submerged conditions, Master thesis, National Central University,
Taiwan.
Varnes, D. J. (1978). Slope movement types and processes. In: Schuster, R. L., Krizek
R. J., Eds., Landslides — Analysis and control: National Research Council,
Washington, D. C., Transportation Research Board, Special Report, 176, 11–33.38
Yang, C. M., Yu, W. L., Dong, J. J., Kuo, C. Y., Shimamoto, T., Lee, C. T., Togo, T.,
& Miyamoto, Y. (2014). Initiation, movement, and run-out of the giant Tsaoling
landslide — what can we learn from a simple rigid block model and a velocity–
displacement dependent friction model?. Engineering Geology, 182, 158-181.
Yiğit, A. (2020). Prediction of amount of earthquake-induced slope displacement by
using Newmark method. Engineering Geology, 264, 105385.
Zhang, Y., Meng, X., Jordan, C., Novellino, A., Dijkstra, T., & Chen, G. (2018).
Investigating slow-moving landslides in the Zhouqu region of China using InSAR
time series. Landslides, 15(7), 1299-1315.
Zhao, N., Hu, B., Yi, Q., Yao, W., & Ma, C. (2017). The coupling effect of rainfall and
reservoir water level decline on the Baijiabao landslide in the Three Gorges
Reservoir Area, China. Geofluids, 2017(12), 3724867. |