博碩士論文 109624608 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:45 、訪客IP:3.145.71.243
姓名 阮金鴻(Nguyen Kim Hung)  查詢紙本館藏   畢業系所 應用地質研究所
論文名稱
(The impact of climate conditions and pumping strategies on the groundwater system in the Mekong Delta, Vietnam)
相關論文
★ 延散效應對水岩交互作用反應波前的影響★ 序率譜方法制定異質性含水層水井捕集區
★ 跨孔式注氣試驗方法推估異質性非飽和層土壤氣體流動參數★ 現地跨孔式抽水試驗推估異質性含水層水文地質特性
★ iTOUGH2應用於實驗室尺度非飽和土壤參數之推估★ HYDRUS-1D模式應用於入滲試驗推估非飽和土壤特性參數
★ 沿海含水層異質性對海淡水交界面影響之不確定性分析★ 非拘限砂質海岸含水層中潮汐和沙灘坡度水文動力條件影響苯傳輸
★ 利用MODFLOW配合SUB套件推估雲林地區垂向平均長期地層下陷趨勢★ 高雄平原地區抽水引致汙染潛勢評估
★ 利用自然電位法監測淺層土壤入滲歷程★ 利用LiDAR點雲及影像資料決定露頭節理結合面之研究
★ 臺灣西部沿海海水入侵與地下水排出模擬分析★ 三氯乙烯地下水污染場址整治後期傳輸行為分析¬-應用開源FreeFEM++有限元素模式架構
★ 都會地區滯洪池增設礫石樁之入滲效益模擬與分析★ 利用數值模擬探討二氧化碳於異向性及異質性鹽水層之遷移行為
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 湄公河三角洲(Vietnamese Mekong Delta: VMD)為南越主要經濟中心之一,約有1800萬居住人口,對於該地區相關民生、農業以及工業活動而言,地下水資源為關鍵水源來源。由於數十年來對於地下水資源超限利用緣故,造成地下水位快速下降,進而產生地下水鹽化等問題,不僅限制了地下水的可用性,對於居住人民生活亦產生負面影響。因此有必要了解該區地下水文循環機制,並預估地下水位及鹽度變化,以提供管理權責單位制訂相關措施。過去已有許多研究針對此議題進行相關研究,然而前人研究多將VMD劃分成小區塊進行研究,而非就整體VMD進行探討。地下水為集水區尺度系統,局部區域系統之活動對於周邊系統會產生連動之影響,因此對於整體地下水系統模式之建立,對於預測預測地下水資源及相關評估共作是必要的。本研究利用USGS-SEAWAT模組進行模式建立,該模組結合MODFLOW以及MT3D,以模擬不同密度條件下地下水流及溶質傳輸行為。該模式進行相關檢定及驗證程序,包含邊界條件之修正以及地層材料參數率定,使之模擬能重現真實地下水反應。模式參數修正後能準確模擬地下水位,其RMSE < 1 m 且NSE > 0.95。此外模式能模擬2000年至2021年地下水鹽度變化,其模擬結果RMSE < 3 g/l且 NSE > 0.85在接受範圍。驗證模式後,本研究就此模型進行不同情境下之地下水位及鹽度之預測,其情境包含於本世紀終海平面上升約0.77 m,於2030年最大地下水補注體積達56 萬 m3/day ,並以每年0.5%速率降低至2100年。結果顯示7個含水層之地下水位持續降低,且深層含水層有較顯著之下降,截至2100年,推估Holocene含水層最低地下水位下降至-17m,Pleistocene含水層為-30m,Pliocene含水層為-38m,Miocene含水層為-47m。而地下水鹽度與地下水位相反,推估地下水鹽度持續升高,對於淺層含水層而言更是顯著,在深層含水層鹽度為中等程度增加。再進一步分析,Holocene、Pleistocene以及 Pliocene含水層鹽化增加面積分別為939 km2、5632 km2以及992 km2。於本模型推估中值得注意的是,Miocene含水層相較於鹽化,該含水層去鹽化程度較高,其結果顯示至2100年有43 km2鹽水可能轉換為淡水,推估地下水位及鹽度結果進一步呼應該區域對於有效利用地下水資源之迫切性。本研究成功模擬VMD地區7個含水層地下水位及鹽度變化,及結果有助於相關管理權責單位制訂有效管理計畫及策略方針。
摘要(英) The Vietnamese Mekong Delta (VMD) is one of the largest economic centers in southern Vietnam, home to approximately 18 million inhabitants. Moreover, groundwater is a crucial water resource for domestic, agricultural, and industrial uses in the VMD. For decades, due to over-extraction and urbanization, groundwater levels have been depleting rapidly and being salted, restricting groundwater usability and negatively impacting human lives. Therefore, it is necessary to understand the hydrological mechanisms and forecast groundwater levels as well as groundwater salinity in the VMD, supporting groundwater resource management. Several studies have been conducted to understand the mechanism as well as forecast groundwater reserves and quality in the VMD. However, most of them consider particular areas rather than the entire VMD. Since groundwater is a basin-wide system, where activities in a local area affect the surrounding area, it is necessary to develop a complete basin groundwater model in order to forecast groundwater resources and relevant issues for the entire VMD basin. This study adopted the USGS-SEAWAT, which is the coupled version of MODFLOW and MT3D, to simulate groundwater flow and solute transport in variable-density conditions. The model was developed and calibrated by modifying boundary condition values and physical properties of materials such that it could reproduce groundwater responses. The model can accurately simulate groundwater levels after calibration (RMSE < 1 m, NSE > 0.95). Additionally, the model shows that it can simulate groundwater salinity from 2000 to 2021 with acceptable statistical parameters (RMSE < 3 g/l, NSE > 0.85). After demonstrating its ability to reproduce the past, the model was applied to forecast groundwater levels and salinity by using reasonable scenarios. The scenarios applied in this study include the following: the sea level would rise to around 0.77 m by the end of this century, and the groundwater recharge volume could reach a maximum of 0.56 million m3/day in 2030 before decreasing by 0.5% annually until 2100. The result shows that the groundwater levels for 7 aquifers will continue to decrease, with deeper aquifers having a more significant decline. By 2100, the lowest groundwater levels could drop to -17 m in the Holocene aquifer, roughly -30 m in Pleistocene aquifers, -38 m in Pliocene aquifers, and -47 m in the Miocene aquifer. In contrast to groundwater levels, groundwater salinity is predicted to increase significantly in shallow aquifers. Meanwhile, deep aquifers would only see a modest groundwater salinity increase. In detail, in the Holocene, Pleistocene, and Pliocene aquifers, it is anticipated that the saline area would grow by 939 km2, 5632 km2, and 992 km2, respectively. Noticeably, the Miocene aquifer is predicted to experience more desalination than salinization, resulting in 43 km2 of saline water potentially changing to freshwater by 2100. The forecasted groundwater levels and salinity results further emphasize the necessity of efficiently managing groundwater resources. Finally, this study successfully forecasts the groundwater levels and salinity of 7 aquifers for the Vietnamese Mekong Delta, which may support policymakers in developing effective plans and strategies for managing groundwater resources in the VMD.
關鍵字(中) ★ 湄公河三角洲
★ 地下水位
★ 鹽度
★ 推估模型
★ SEAWAT
關鍵字(英) ★ Vietnamese Mekong Delta
★ forecast
★ groundwater level
★ salinity
論文目次 TABLE OF CONTENTS
摘要 i
ABSTRACT ii
ACKNOWLEDGMENTS iv
TABLE OF CONTENTS v
LIST OF FIGURES viii
LIST OF TABLES xi
LIST OF ABBREVIATIONS xii
LIST OF NOTATIONS xiii
CHAPTER 1. INTRODUCTION 1
1.1. Literature review 1
1.1.1. Groundwater resources under climate change and human activities 1
1.1.2. Forecasting groundwater quantity and quality 2
1.1.3. Groundwater resources in the Vietnamese Mekong Delta 3
1.2. Motivations and objectives 4
1.2.1. Motivations 4
1.2.2. Objectives 4
1.3. Thesis structure 5
CHAPTER 2. MATERIALS AND METHODOLOGY 7
2.1. Study area 7
2.1.1. Elevation 8
2.1.2. Climate 8
2.1.3. Hydrological characteristics 10
2.1.4. Hydrogeological characteristics 11
2.2. Observation data 16
2.2.1. Surface water 16
2.2.2. Precipitation and evaporation 17
2.2.3. Groundwater level and salinity 18
2.3. Numerical modeling of groundwater flow and solute transport 25
2.3.1. Groundwater flow equation 26
2.3.2. Solute transport equation 27
2.3.3. Variable-density groundwater flow 28
2.3.4. Calibration and evaluation model performance 30
CHAPTER 3. DEVELOPMENT OF GROUNDWATER MODEL 33
3.1. Conceptual model 33
3.1.1. Modeling area 33
3.1.2. Modeling layers, spatial and temporal discretization 34
3.1.3. Boundary conditions and parameters for flow model 35
3.1.3.1. Boundary conditions 35
3.1.3.2. Parameters for groundwater flow model 39
3.1.4. Boundary conditions and parameters for salinity model 41
3.1.4.1. Boundary conditions 41
3.1.4.2. Parameters for groundwater salinity model 42
3.2. Future scenarios 43
CHAPTER 4: RESULTS AND DISCUSSION 45
4.1. Groundwater flow 45
4.1.1. Calibration and validation results 45
4.1.2. Groundwater levels forecasting 46
4.2. Groundwater salinity 61
4.2.1. Validation groundwater salinity model 61
4.2.2. Groundwater salinity predicting 63
CHAPTER 5: CONCLUSIONS AND SUGGESTIONS 72
5.1. Conclusions 72
5.2. Suggestions 73
REFERENCES 74
Appendix 82
參考文獻 Acharyya, A. Groundwater, Climate Change and Sustainable Well Being of the Poor: Policy Options for South Asia, China and Africa. Procedia - Social and Behavioral Sciences, 2014, 157, 226-235. https://doi.org/10.1016/j.sbspro.2014.11.025.
An, T. D., Tsujimura, M., Le Phu, V., Kawachi, A., & Ha, D. T. Chemical Characteristics of Surface Water and Groundwater in Coastal Watershed, Mekong Delta, Vietnam. Procedia Environmental Sciences, 2014, 20, 712-721. https://doi.org/10.1016/j.proenv.2014.03.085.
An, T. D., Tsujimura, M., Phu, V. L., Ha, D. T., & Hai, N. V. Isotopic and Hydrogeochemical Signatures in Evaluating Groundwater Quality in the Coastal Area of the Mekong Delta, Vietnam. Advances and Applications in Geospatial Technology and Earth Resources, Cham, 2018. https://doi.org/10.1007/978-3-319-68240-2_18.
Anderson, M. P., & Cherry, J. A. Using models to simulate the movement of contaminants through groundwater flow systems. C R C Critical Reviews in Environmental Control, 1979, 9, 97-156. https://doi.org/10.1080/10643387909381669.
Anderson, M. P., Woessner, W. W., & Hunt, R. J. Applied groundwater modeling: simulation of flow and advective transport, Academic press, 2015. https://doi.org/10.1016/C2009-0-21563-7
Arumugam, K., & Elangovan, K. Hydrochemical characteristics and groundwater quality assessment in Tirupur Region, Coimbatore District, Tamil Nadu, India. Environmental Geology, 2009, 58. https://doi.org/10.1007/s00254-008-1652-y.
Baghvand, A., Nasrabadi, T., Bidhendi, G. N., Vosoogh, A., Karbassi, A., & Mehrdadi, N. Groundwater quality degradation of an aquifer in Iran central desert. Desalination, 2010, 260, 264-275. https://doi.org/10.1016/j.desal.2010.02.038.
Barbieri, M., Barberio, M. D., Banzato, F., Billi, A., Boschetti, T., Franchini, S., Gori, F., & Petitta, M. Climate change and its effect on groundwater quality. Environmental geochemistry and health, 2021. https://doi.org/10.1007/s10653-021-01140-5.
Basavarajappa, H. T., & Manjunatha, M. C. Groundwater Quality Analysis in Precambrian Rocks of Chitradurga District, Karnataka, India Using Geo-informatics Technique. Aquatic Procedia, 2015, 4, 1354-1365. https://doi.org/10.1016/j.aqpro.2015.02.176.
Batu, V. Aquifer hydraulics: a comprehensive guide to hydrogeologic data analysis, John Wiley & Sons, 1998.
Biggs, D., Miller, F., Hoanh, C. T., & Molle, F. The delta machine: water management in the Vietnamese Mekong Delta in historical and contemporary perspectives. In Contested waterscapes in the Mekong Region (pp. 225-248), 2012, Routledge. https://doi.org/10.4324/9781849770866
Bui, D. D., Nguyen, N. C., Bui, N. T., Le, A. T., & Le, D. T. Climate change and groundwater resources in Mekong Delta, Vietnam. Journal of Groundwater Science and Engineering Vol, 2016, 4.
Calderhead, A. I., Therrien, R., Rivera, A., Martel, R., & Garfias, J. Simulating pumping-induced regional land subsidence with the use of InSAR and field data in the Toluca Valley, Mexico. Advances in Water Resources, 2011, 34, 83-97. https://doi.org/10.1016/j.advwatres.2010.09.017.
Calderón Palma, H., & Bentley, L. R. A regional-scale groundwater flow model for the Leon-Chinandega aquifer, Nicaragua. Hydrogeology journal, 2007, 15, 1457-1472. https://doi.org/10.1007/s10040-007-0197-6.
Cao, G., Zheng, C., Scanlon, B. R., Liu, J., & Li, W. Use of flow modeling to assess sustainability of groundwater resources in the North China Plain. Water Resources Research, 2013, 49, 159-175. https://doi.org/10.1029/2012WR011899.
Casasso, A., & Sethi, R. Modelling thermal recycling occurring in groundwater heat pumps (GWHPs). Renewable Energy, 2015, 77, 86-93. https://doi.org/10.1016/j.renene.2014.12.003.
Casillas-Trasvina, A., Rogiers, B., Beerten, K., Wouters, L., & Walraevens, K. Characterizing groundwater heat transport in a complex lowland aquifer using paleo-temperature reconstruction, satellite data, temperature–depth profiles, and numerical models. Hydrol. Earth Syst. Sci., 2022, 26, 5577-5604. https://doi.org/10.5194/hess-26-5577-2022.
Che Nordin, N. F., Mohd, N. S., Koting, S., Ismail, Z., Sherif, M., & El-Shafie, A. Groundwater quality forecasting modelling using artificial intelligence: A review. Groundwater for Sustainable Development, 2021, 14, 100643. https://doi.org/10.1016/j.gsd.2021.100643.
Cobaner, M., Yurtal, R., Dogan, A., & Motz, L. H. Three dimensional simulation of seawater intrusion in coastal aquifers: A case study in the Goksu Deltaic Plain. Journal of Hydrology, 2012, 464-465, 262-280. https://doi.org/10.1016/j.jhydrol.2012.07.022.
Cox, R. A., Culkin, F., & Riley, J. P. The electrical conductivity/chlorinity relationship in natural sea water. Deep Sea Research and Oceanographic Abstracts, 1967, 14, 203-220. https://doi.org/10.1016/0011-7471(67)90006-X.
De Caro, M., Perico, R., Crosta, G. B., Frattini, P., & Volpi, G. A regional-scale conceptual and numerical groundwater flow model in fluvio-glacial sediments for the Milan Metropolitan area (Northern Italy). Journal of Hydrology: Regional Studies, 2020, 29, 100683. https://doi.org/10.1016/j.ejrh.2020.100683.
Diersch, H.-J. G. FEFLOW: finite element modeling of flow, mass and heat transport in porous and fractured media, Springer Berlin, Heidelberg, 2013. https://doi.org/10.1007/978-3-642-38739-5
Dragoni, W., & Sukhija, B. S. Climate change and groundwater: a short review. Geological Society, London, Special Publications, 2008, 288, 1-12. https://doi.org/doi:10.1144/SP288.1.
Ebraheem, A. M., Riad, S., Wycisk, P., & Sefelnasr, A. M. A local-scale groundwater flow model for groundwater resources management in Dakhla Oasis, SW Egypt. Hydrogeology journal, 2004, 12, 714-722. https://doi.org/10.1007/s10040-004-0359-8.
Ebrahimi, M., Kazemi, H., Ehtashemi, M., & Rockaway, T. D. Assessment of groundwater quantity and quality and saltwater intrusion in the Damghan basin, Iran. Geochemistry, 2016, 76, 227-241. https://doi.org/10.1016/j.chemer.2016.04.003.
Erban, L. E., Gorelick, S. M., Zebker, H. A., & Fendorf, S. Release of arsenic to deep groundwater in the Mekong Delta, Vietnam, linked to pumping-induced land subsidence. Proc Natl Acad Sci U S A, 2013, 110, 13751-13756. https://doi.org/10.1073/pnas.1300503110.
Fetter, C. W. Applied hydrogeology, Waveland Press, 2018.
Gautam, S. K., Maharana, C., Sharma, D., Singh, A. K., Tripathi, J. K., & Singh, S. K. Evaluation of groundwater quality in the Chotanagpur plateau region of the Subarnarekha river basin, Jharkhand State, India. Sustainability of Water Quality and Ecology, 2015, 6, 57-74. https://doi.org/10.1016/j.swaqe.2015.06.001.
Harbaugh, A. W. MODFLOW-2005, the US Geological Survey modular ground-water model: the ground-water flow process, US Department of the Interior, US Geological Survey Reston, VA, USA, 2005; Volume 6. https://doi.org/10.5066/F7RF5S7G
Hirabayashi, Y., Mahendran, R., Koirala, S., Konoshima, L., Yamazaki, D., Watanabe, S., Kim, H., & Kanae, S. Global flood risk under climate change. Nature Climate Change, 2013, 3, 816-821. https://doi.org/10.1038/nclimate1911.
Ho, H. D., Hua, M. Q., Nguyen, T. V., Nguyen, K. C., Aranyossy, J., & Louvat, D. Environmental isotope study related to the origin, salinization and movement of groundwater in the Mekong Delta (Viet Nam). In Isotope techniques in water resources development, 1992.
Hu, B., Zhou, J., Xu, S., Chen, Z., Wang, J., Wang, D., Wang, L., Guo, J., & Meng, W. Assessment of hazards and economic losses induced by land subsidence in Tianjin Binhai new area from 2011 to 2020 based on scenario analysis. Natural Hazards, 2013, 66, 873-886. https://doi.org/10.1007/s11069-012-0530-9.
Huang, Y., Miyauchi, K., Endo, G., Don, L. D., Manh, N. C., & Inoue, C. Arsenic contamination of groundwater and agricultural soil irrigated with the groundwater in Mekong Delta, Vietnam. Environmental Earth Sciences, 2016, 75, 757. https://doi.org/10.1007/s12665-016-5535-3.
Illman, W. A., Berg, S. J., & Yeh, T.-C. J. Comparison of Approaches for Predicting Solute Transport: Sandbox Experiments. Groundwater, 2012, 50, 421-431. https://doi.org/10.1111/j.1745-6584.2011.00859.x.
Iqbal, J., Gorai, A. K., Tirkey, P., & Pathak, G. Approaches to Groundwater Vulnerability to Pollution: A Literature Review. Asian Journal of Water, Environment and Pollution, 2012, 9, 105-115.
Jamshidzadeh, Z., & Mirbagheri, S. A. Evaluation of groundwater quantity and quality in the Kashan Basin, Central Iran. Desalination, 2011, 270, 23-30. https://doi.org/10.1016/j.desal.2010.10.067.
Jang, C.-S., Chen, S.-K., & Kuo, Y.-M. Establishing an irrigation management plan of sustainable groundwater based on spatial variability of water quality and quantity. Journal of Hydrology, 2012, 414-415, 201-210. https://doi.org/10.1016/j.jhydrol.2011.10.032.
Johnson, A. I. Specific yield: compilation of specific yields for various materials [Report](1662D). (Water Supply Paper, Issue. U. S. G. P. Office, 1967. http://pubs.er.usgs.gov/publication/wsp1662D
Johnston, R., & Kummu, M. Water Resource Models in the Mekong Basin: A Review. Water Resources Management, 2012, 26, 429-455. https://doi.org/10.1007/s11269-011-9925-8.
Khadri, S. F. R., & Pande, C. Ground water flow modeling for calibrating steady state using MODFLOW software: a case study of Mahesh River basin, India. Modeling Earth Systems and Environment, 2016, 2, 39. https://doi.org/10.1007/s40808-015-0049-7.
Kuenzer, C., Guo, H., Huth, J., Leinenkugel, P., Li, X., & Dech, S. Flood Mapping and Flood Dynamics of the Mekong Delta: ENVISAT-ASAR-WSM Based Time Series Analyses. Remote Sensing, 2013, 5, 687-715. https://doi.org/10.3390/rs5020687.
Kummu, M., de Moel, H., Porkka, M., Siebert, S., Varis, O., & Ward, P. J. Lost food, wasted resources: global food supply chain losses and their impacts on freshwater, cropland, and fertiliser use. Sci Total Environ, 2012, 438, 477-489. https://doi.org/10.1016/j.scitotenv.2012.08.092.
Langevin, C. D. SEAWAT: A Computer Program for Simulation of Variable-Density Groundwater Flow and Multi-Species Solute and Heat Transport [Report](2009-3047). (Fact Sheet, Issue. U. S. G. Survey, 2009. http://pubs.er.usgs.gov/publication/fs20093047
Lap Nguyen, V., Ta, T. K. O., & Tateishi, M. Late Holocene depositional environments and coastal evolution of the Mekong River Delta, Southern Vietnam. Journal of Asian Earth Sciences, 2000, 18, 427-439. https://doi.org/10.1016/S1367-9120(99)00076-0.
Le Duy, N., Dung, N. V., Heidbüchel, I., Meyer, H., Weiler, M., Merz, B., & Apel, H. Identification of groundwater mean transit times of precipitation and riverbank infiltration by two‐component lumped parameter models. Hydrological processes, 2019, 33, 3098-3118. https://doi.org/10.1002/hyp.13549.
Le Duy, N., Nguyen, T. V. K., Nguyen, D. V., Tran, A. T., Nguyen, H. T., Heidbüchel, I., Merz, B., & Apel, H. Groundwater dynamics in the Vietnamese Mekong Delta: Trends, memory effects, and response times. Journal of Hydrology: Regional Studies, 2021, 33, 100746. https://doi.org/10.1016/j.ejrh.2020.100746.
Le, T. V. H., Nguyen, H. N., Wolanski, E., Tran, T. C., & Haruyama, S. The combined impact on the flooding in Vietnam′s Mekong River delta of local man-made structures, sea level rise, and dams upstream in the river catchment. Estuarine, Coastal and Shelf Science, 2007, 71, 110-116. https://doi.org/10.1016/j.ecss.2006.08.021.
Li, P., Wu, J., & Qian, H. Groundwater quality assessment based on rough sets attribute reduction and TOPSIS method in a semi-arid area, China. Environmental Monitoring and Assessment, 2012, 184, 4841-4854. https://doi.org/10.1007/s10661-011-2306-1.
Mahmoudpour, M., Khamehchiyan, M., Nikudel, M. R., & Ghassemi, M. R. Numerical simulation and prediction of regional land subsidence caused by groundwater exploitation in the southwest plain of Tehran, Iran. Engineering Geology, 2016, 201, 6-28. https://doi.org/10.1016/j.enggeo.2015.12.004.
Mamer, E. A., & Lowry, C. S. Locating and quantifying spatially distributed groundwater/surface water interactions using temperature signals with paired fiber-optic cables. Water Resources Research, 2013, 49, 7670-7680. https://doi.org/10.1002/2013WR014235.
Manivannan, V., & Elango, L. Assessment of interaction between the aquifers by geochemical signatures in an urbanised coastal region of India. Environmental Earth Sciences, 2021, 80, 218. https://doi.org/10.1007/s12665-021-09513-w.
Mills, R. Self-diffusion in normal and heavy water in the range 1-45.deg. The Journal of Physical Chemistry, 1973, 77, 685-688.
Minderhoud, P. S. J., Coumou, L., Erkens, G., Middelkoop, H., & Stouthamer, E. Mekong delta much lower than previously assumed in sea-level rise impact assessments. Nature Communications, 2019, 10, 3847. https://doi.org/10.1038/s41467-019-11602-1.
Minderhoud, P. S. J., Erkens, G., Pham, V. H., Bui, V. T., Erban, L., Kooi, H., & Stouthamer, E. Impacts of 25 years of groundwater extraction on subsidence in the Mekong delta, Vietnam. Environ Res Lett, 2017, 12, 064006. https://doi.org/10.1088/1748-9326/aa7146.
Motovilov, Y. G., Gottschalk, L., Engeland, K., & Rodhe, A. Validation of a distributed hydrological model against spatial observations. Agricultural and Forest Meteorology, 1999, 98-99, 257-277. https://doi.org/10.1016/S0168-1923(99)00102-1.
Moujabber, M. E., Samra, B. B., Darwish, T., & Atallah, T. Comparison of Different Indicators for Groundwater Contamination by Seawater Intrusion on the Lebanese Coast. Water Resources Management, 2006, 20, 161-180. https://doi.org/10.1007/s11269-006-7376-4.
Nguyen, H., Tran, V., Trinh, N., Pham, H., & Le, D. Research of geological structure and classification of NQ sediments in Vietnamese Mekong Delta. Division of Geology and Minerals of the South of Viet Nam, Ho Chi Minh City, Viet Nam, 2004.
Nourbakhsh, Z., Mehrdadi, N., Moharamnejad, N., Hassani, A. h., & Yousefi, H. Evaluating the suitability of different parameters for qualitative analysis of groundwater based on analytical hierarchy process. Desalination and Water Treatment, 2016, 57, 13175-13182. https://doi.org/10.1080/19443994.2015.1056837.
Panagopoulos, G. Application of MODFLOW for simulating groundwater flow in the Trifilia karst aquifer, Greece. Environmental Earth Sciences, 2012, 67, 1877-1889. https://doi.org/10.1007/s12665-012-1630-2.
Panday, S., Langevin, C. D., Niswonger, R. G., Ibaraki, M., & Hughes, J. D. MODFLOW–USG version 1: An unstructured grid version of MODFLOW for simulating groundwater flow and tightly coupled processes using a control volume finite-difference formulation [Report](6-A45). (Techniques and Methods, Issue. U. S. G. Survey, 2013. http://pubs.er.usgs.gov/publication/tm6A45
Raju, N. J. Hydrogeochemical parameters for assessment of groundwater quality in the upper Gunjanaeru River basin, Cuddapah District, Andhra Pradesh, South India. Environmental Geology, 2007, 52, 1067-1074. https://doi.org/10.1007/s00254-006-0546-0.
Raju, N. J., Patel, P., Gurung, D., Ram, P., Gossel, W., & Wycisk, P. Geochemical assessment of groundwater quality in the Dun valley of central Nepal using chemometric method and geochemical modeling. Groundwater for Sustainable Development, 2015, 1, 135-145. https://doi.org/10.1016/j.gsd.2016.02.002.
Ratnayaka, D. D., Brandt, M. J., & Johnson, K. M. CHAPTER 7 - Storage, Clarification and Chemical Treatment. In D. D. Ratnayaka, M. J. Brandt, & K. M. Johnson (Eds.), Water Supply (Sixth Edition) (pp. 267-314), 2009, Butterworth-Heinemann. https://doi.org/10.1016/B978-0-7506-6843-9.00015-9
Regnier, G., Salinas, P., Jacquemyn, C., & Jackson, M. D. Numerical simulation of aquifer thermal energy storage using surface-based geologic modelling and dynamic mesh optimisation. Hydrogeology journal, 2022, 30, 1179-1198. https://doi.org/10.1007/s10040-022-02481-w.
Renaud, F. G., & Kuenzer, C. The Mekong Delta system: Interdisciplinary analyses of a river delta, Springer Science & Business Media, 2012.
Saba, N. u., Umar, R., & Ahmed, S. Assessment of groundwater quality of major industrial city of Central Ganga plain, Western Uttar Pradesh, India through mass transport modeling using chloride as contaminant. Groundwater for Sustainable Development, 2016, 2-3, 154-168. https://doi.org/10.1016/j.gsd.2016.08.002.
Sathe, S. S., & Mahanta, C. Groundwater flow and arsenic contamination transport modeling for a multi aquifer terrain: Assessment and mitigation strategies. Journal of Environmental Management, 2019, 231, 166-181. https://doi.org/10.1016/j.jenvman.2018.08.057.
Sawyer, A. H., Bayani Cardenas, M., & Buttles, J. Hyporheic temperature dynamics and heat exchange near channel-spanning logs. Water Resources Research, 2012, 48. https://doi.org/10.1029/2011WR011200.
Schulze-Makuch, D. Longitudinal dispersivity data and implications for scaling behavior. Groundwater, 2005, 43, 443-456. https://doi.org/10.1111/j.1745-6584.2005.0051.x.
Senthilkumar, M., & Elango, L. Three-dimensional mathematical model to simulate groundwater flow in the lower Palar River basin, southern India. Hydrogeology journal, 2004, 12, 197-208. https://doi.org/10.1007/s10040-003-0294-0.
Shah, T. The groundwater economy of South Asia: an assessment of size, significance and socio-ecological impacts. 2007.
Sherif, M., Mohamed, M., Kacimov, A., & Shetty, A. Assessment of groundwater quality in the northeastern coastal area of UAE as precursor for desalination. Desalination, 2011, 273, 436-446. https://doi.org/10.1016/j.desal.2011.01.069.
Sherif, M., Sefelnasr, A., & Javadi, A. Incorporating the concept of equivalent freshwater head in successive horizontal simulations of seawater intrusion in the Nile Delta aquifer, Egypt. Journal of Hydrology, 2012, 464-465, 186-198. https://doi.org/10.1016/j.jhydrol.2012.07.007.
Shinkai, Y., Van Truc, D., Sumi, D., Canh, D., & Kumagai, Y. Arsenic and other metal contamination of groundwater in the Mekong River Delta, Vietnam. Journal of Health Science, 2007, 53, 344-346. https://doi.org/10.1248/jhs.53.344.
Shrestha, S., Bach, T. V., & Pandey, V. P. Climate change impacts on groundwater resources in Mekong Delta under representative concentration pathways (RCPs) scenarios. Environmental science & policy, 2016, 61, 1-13. https://doi.org/10.1016/j.envsci.2016.03.010.
Singh, K. P., Gupta, S., & Rai, P. Investigating hydrochemistry of groundwater in Indo-Gangetic alluvial plain using multivariate chemometric approaches. Environmental Science and Pollution Research, 2014, 21, 6001-6015. https://doi.org/10.1007/s11356-014-2517-4.
Srinivasamoorthy, K., Gopinath, M., Chidambaram, S., Vasanthavigar, M., & Sarma, V. S. Hydrochemical characterization and quality appraisal of groundwater from Pungar sub basin, Tamilnadu, India. Journal of King Saud University - Science, 2014, 26, 37-52. https://doi.org/10.1016/j.jksus.2013.08.001.
Syvitski, J. P. M., Kettner, A. J., Overeem, I., Hutton, E. W. H., Hannon, M. T., Brakenridge, G. R., Day, J., Vörösmarty, C., Saito, Y., Giosan, L., & Nicholls, R. J. Sinking deltas due to human activities. Nature Geoscience, 2009, 2, 681-686. https://doi.org/10.1038/ngeo629.
Thuc, T., Van Thang, N., Huong, H. T. L., Van Khiem, M., Hien, N. X., & Phong, D. H. Climate change and sea level rise scenarios for Vietnam. Ministry of Natural resources and Environment. Hanoi, Vietnam, 2016.
Tirkey, P., Bhattacharya, T., Chakraborty, S., & Baraik, S. Assessment of groundwater quality and associated health risks: A case study of Ranchi city, Jharkhand, India. Groundwater for Sustainable Development, 2017, 5, 85-100. https://doi.org/10.1016/j.gsd.2017.05.002.
Tran, D. A., Tsujimura, M., Pham, H. V., Nguyen, T. V., Ho, L. H., Le Vo, P., Ha, K. Q., Dang, T. D., Van Binh, D., & Doan, Q.-V. Intensified salinity intrusion in coastal aquifers due to groundwater overextraction: a case study in the Mekong Delta, Vietnam. Environmental Science and Pollution Research, 2022, 29, 8996-9010. https://doi.org/10.1007/s11356-021-16282-3.
Tran, D. A., Tsujimura, M., Vo, L. P., Nguyen, V. T., Kambuku, D., & Dang, T. D. Hydrogeochemical characteristics of a multi-layered coastal aquifer system in the Mekong Delta, Vietnam. Environ Geochem Health, 2020, 42, 661-680. https://doi.org/10.1007/s10653-019-00400-9.
Trung, D., Hoa, N., & Hong, N. Forecast groundwater flow and saltwater intrusion for the South Vietnam in the period 2021 to 2026, (unpublished). NAWAPI, 2021.
Van Pham, H., & Lee, S.-I. Assessment of seawater intrusion potential from sea-level rise and groundwater extraction in a coastal aquifer. Desalination and Water Treatment, 2015, 53, 2324-2338. https://doi.org/10.1080/19443994.2014.971617.
Van Pham, H., Van Geer, F. C., Tran, V. B., Dubelaar, W., & Essink, G. H. O. Paleo-hydrogeological reconstruction of the fresh-saline groundwater distribution in the Vietnamese Mekong Delta since the late Pleistocene. Journal of Hydrology: Regional Studies, 2019, 23, 100594. https://doi.org/10.1016/j.ejrh.2019.100594.
Vörösmarty, C. J., Syvitski, J., Day, J., de Sherbinin, A., Giosan, L., & Paola, C. Battling to Save the World’s River Deltas. Bulletin of the Atomic Scientists, 2009, 65, 31-43. https://doi.org/10.2968/065002005.
Wagner, F., Tran, V. B., & Renaud, F. G. Groundwater Resources in the Mekong Delta: Availability, Utilization and Risks. In F. G. Renaud & C. Kuenzer (Eds.), The Mekong Delta System: Interdisciplinary Analyses of a River Delta (pp. 201-220), 2012, Springer Netherlands. https://doi.org/10.1007/978-94-007-3962-8_7
Wanda, E., Monjerezi, M., Mwatseteza, J. F., & Kazembe, L. N. Hydro-geochemical appraisal of groundwater quality from weathered basement aquifers in Northern Malawi. Physics and Chemistry of the Earth, Parts A/B/C, 2011, 36, 1197-1207. https://doi.org/10.1016/j.pce.2011.07.061.
Wilbers, G. J., Sebesvari, Z., & Renaud, F. G. Piped-Water Supplies in Rural Areas of the Mekong Delta, Vietnam: Water Quality and Household Perceptions. Water, 2014, 6, 2175-2194. https://doi.org/10.3390/w6082175.
Wondzell, S. M., LaNier, J., & Haggerty, R. Evaluation of alternative groundwater flow models for simulating hyporheic exchange in a small mountain stream. Journal of Hydrology, 2009, 364, 142-151. https://doi.org/10.1016/j.jhydrol.2008.10.011.
Wu, W.-Y., Lo, M.-H., Wada, Y., Famiglietti, J. S., Reager, J. T., Yeh, P. J. F., Ducharne, A., & Yang, Z.-L. Divergent effects of climate change on future groundwater availability in key mid-latitude aquifers. Nature Communications, 2020, 11, 3710. https://doi.org/10.1038/s41467-020-17581-y.
Xiao, H., Tang, Y., Li, H. M., Zhang, L., NGO-DUC, T., Chen, D. L., & Tang, Q. H. Saltwater intrusion into groundwater systems in the Mekong Delta and links to global change. Advances in Climate Change Research, 2021, 12, 342-352. https://doi.org/10.1016/j.accre.2021.04.005.
Ye, S., Luo, Y., Wu, J., Yan, X., Wang, H., Jiao, X., & Teatini, P. Three-dimensional numerical modeling of land subsidence in Shanghai, China. Hydrogeology journal, 2016, 24, 695-709. https://doi.org/10.1007/s10040-016-1382-2.
Zheng, C., Hill, M. C., Cao, G., & Ma, R. Mt3dms: Model Use, Calibration, and Validation. Transactions of the ASABE, 2012, 55, 1549-1559. https://doi.org/10.13031/2013.42263.
Zhou, Y., & Li, W. A review of regional groundwater flow modeling. Geoscience Frontiers, 2011, 2, 205-214. https://doi.org/10.1016/j.gsf.2011.03.003.
指導教授 倪春發(Chuen-Fa Ni) 審核日期 2023-1-17
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明