參考文獻 |
Faisal, A. A., & Abd Ali, Z. T. (2017). Using sewage sludge as a permeable reactive barrier for remediation of groundwater contaminated with lead and phenol. Separation Science and Technology, 52(4), 732-742.
Gavaskar, A. R., Gupta, N., Sass, B., Janosy, R., & OSullivan, D. (1998). Permeable barriers for groundwater remediation. Battelle Press, Columbus, Ohio.
Gillham, R. (1999). In situ remediation of VOC-contaminated groundwater using zero-valent iron: Long-term performance. Contaminated Site Remediation Conference "Challenges Posed by Urban & Industrial Contaminants" Organized by the Centre for Groundwater Studies.
Gu, B., Watson, D. B., Wu, L., Phillips, D. H., White, D. C., & Zhou, J. (2002). Microbiological characteristics in a zero-valent iron reactive barrier. Environmental monitoring and assessment, 77(3), 293-309.
Hunter, K. S., Wang, Y., & Van Cappellen, P. (1998). Kinetic modeling of microbially-driven redox chemistry of subsurface environments: coupling transport, microbial metabolism and geochemistry. Journal of Hydrology, 209(1-4), 53-80.
Kamolpornwijit, W., Liang, L., West, O., Moline, G., & Sullivan, A. (2003). Preferential flow path development and its influence on long-term PRB performance: column study. Journal of Contaminant Hydrology, 66(3-4), 161-178.
Lasaga, A. C. (1998). Kinetic Theory in the Earth Sciences. Princeton Series in Geochemistry. Princeton University Press, Princeton, New Jersey.
Li, L., & Benson, C. H. (2008). Evaluation of Two Strategies to Enhance the Long-Term Hydraulic Performance of Permeable Reactive Barriers, GeoCongress 2008: Geotechnics of Waste Management and Remediation, 587-594.
Li, L., & Benson, C. H. (2010). Evaluation of five strategies to limit the impact of fouling in permeable reactive barriers. Journal of Hazardous materials, 181(1-3), 170-180.
Li, L., Benson, C. H., & Lawson, E. M. (2005). Impact of mineral fouling on hydraulic behavior of permeable reactive barriers. Groundwater, 43(4), 582-596.
Li, L., Benson, C. H., & Lawson, E. M. (2006). Modeling porosity reductions caused by mineral fouling in continuous-wall permeable reactive barriers. Journal of Contaminant Hydrology, 83(1-2), 89-121.
Lichtner, P. C. (1996). Continuum formulation of multicomponent-multiphase reactive transport. Reviews in mineralogy, 34, 1-82.
Lin, H. C. J., Richards, D. R., Yeh, G. T., Cheng, J. R., & Cheng, H. P. (1997). FEMWATER: A Three-Dimensional Finite Element Computer Model for Simulating Density-Dependent Flow and Transport in Variably Saturated Media. Technical Report CHL-97-12. Waterways Experiment Station, U. S. Army Corps of Engineers, Vicksburg, MS 39180-6199.
Mayer, K. U., Blowes, D. W., & Frind, E. O. (2001). Reactive transport modeling of an in situ reactive barrier for the treatment of hexavalent chromium and trichloroethylene in groundwater. Water resources research, 37(12), 3091-3103.
Morrison, S. (2003). Performance evaluation of a permeable reactive barrier using reaction products as tracers. Environmental Science & Technology, 37(10), 2302-2309.
Naidu, R., Bekele, D. N., & Birke, V. (2014). Permeable reactive barriers: cost-effective and sustainable remediation of groundwater. Sustainable Groundwater Remediation, 1, 1-2.
O′Hannesin, S. F., & Gillham, R. W. (1998). Long‐term performance of an in situ "iron wall" for remediation of VOCs. Groundwater, 36(1), 164-170.
Obiri-Nyarko, F., Grajales-Mesa, S. J., & Malina, G. (2014). An overview of permeable reactive barriers for in situ sustainable groundwater remediation. Chemosphere, 111, 243-259.
Owczarek, J. A. (1964). Fundamental of Gas Dynamics. Scranton, PA: International Textbook Company.
Phillips, D. (2009). Permeable reactive barriers: A sustainable technology for cleaning contaminated groundwater in developing countries. Desalination, 248(1-3), 352-359.
Phillips, D. H., Gu, B., Watson, D. B., Roh, Y., Liang, L., & Lee, S. (2000). Performance evaluation of a zerovalent iron reactive barrier: mineralogical characteristics. Environmental Science & Technology, 34(19), 4169-4176.
Phillips, D. H., Watson, D. B., Roh, Y., & Gu, B. (2003). Mineralogical characteristics and transformations during long‐term operation of a zerovalent iron reactive barrier. Journal of Environmental Quality, 32(6), 2033-2045.
Philp, J. C., & Atlas, R. M. (2005). Bioremediation of contaminated soils and aquifers. Bioremediation: Applied Microbial Solutions for Real‐World Environmental Cleanup, 139-236.
Rathi, B. S., Kumar, P. S., & Show, P.-L. (2021). A review on effective removal of emerging contaminants from aquatic systems: current trends and scope for further research. Journal of Hazardous materials, 409, 124413.
Reardon, E. J. (2005). Zerovalent irons: Styles of corrosion and inorganic control on hydrogen pressure buildup. Environmental Science & Technology, 39(18), 7311-7317.
Richardson, J. P., & Nicklow, J. W. (2002). In situ permeable reactive barriers for groundwater contamination. Soil and Sediment Contamination, 11(2), 241-268.
Rodak, C., Silliman, S. E., & Bolster, D. (2014). Time‐dependent health risk from contaminated groundwater including use of reliability, resilience, and vulnerability as measures. JAWRA Journal of the American Water Resources Association, 50(1), 14-28.
Roehl, K. E., Meggyes, T., Simon, F., & Stewart, D. (2005). Long-term performance of permeable reactive barriers. Gulf Professional Publishing.
Saaltink, M. W., Carrera, J., & Ayora, C. (2001). On the behavior of approaches to simulate reactive transport. Journal of Contaminant Hydrology, 48(3-4), 213-235.
Sarr, D. (2001). Zero-Valent-Iron Permeable Reactive Barriers- How Long Will They Last?. Remediation, 11(2), 1-18.
Schipper, L. A., Robertson, W. D., Gold, A. J., Jaynes, D. B., & Cameron, S. C. (2010). Denitrifying bioreactors-An approach for reducing nitrate loads to receiving waters. Ecological engineering, 36(11), 1532-1543.
Statham, T. M., Mason, L. R., Mumford, K. A., & Stevens, G. W. (2015). The specific reactive surface area of granular zero-valent iron in metal contaminant removal: Column experiments and modelling. Water research, 77, 24-34.
Suhag, R. (2016). Overview of ground water in India. PRS Legislative Research, 9504, 12.
Thiruvenkatachari, R., Vigneswaran, S., & Naidu, R. (2008). Permeable reactive barrier for groundwater remediation. Journal of Industrial and Engineering Chemistry, 14(2), 145-156.
USEPA. (1999). Field applications of in situ remediation technologies: Permeable reactive barriers. U.S. Environmental Protection Agency, Office of Solid Waste and Emergency Response, Washington, DC.
Vardhan, K. H., Kumar, P. S., & Panda, R. C. (2019). A review on heavy metal pollution, toxicity and remedial measures: Current trends and future perspectives. Journal of Molecular Liquids, 290, 111197.
Vikesland, P. J., Klausen, J., Zimmermann, H., Roberts, A. L., & Ball, W. P. (2003). Longevity of granular iron in groundwater treatment processes: changes in solute transport properties over time. Journal of Contaminant Hydrology, 64(1-2), 3-33.
Warner, S. D., & Sorel, D. (2003). Ten years of permeable reactive barriers: Lessons learned and future expectations. In ACS Publications.
Wilkin, R. T., & Puls, R. W. (2003). Capstone report on the application, monitoring, and performance of permeable reactive barriers for groundwater remediation: Volume 1: Performance evaluations at two sites. EPA 600-R-03-045a vol. 1. U.S.
Environmental Protection Agency, Cincinnati, Ohio.
Wilkin, R. T., Puls, R. W., & Sewell, G. W. (2002). Long-term performance of permeable reactive barriers using zero-valent iron: An evaluation at two sites. EPA 600-S-02-001, Environmental Research Brief. United States Environmental
Protection Agency, Cincinnati, Ohio.
Wilkin, R. T., Su, C., Ford, R. G., & Paul, C. J. (2005). Chromium-removal processes during groundwater remediation by a zero-valent iron permeable reactive barrier. Environmental Science & Technology, 39(12), 4599-4605.
Yabusaki, S., Cantrell, K., Sass, B., & Steefel, C. (2001). Multicomponent reactive transport in an in situ zero-valent iron cell. Environmental Science & Technology, 35(7), 1493-1503.
Yang, H., Hu, R., Ruppert, H., & Noubactep, C. (2021). Modeling porosity loss in Fe0-based permeable reactive barriers with Faraday′s law. Scientific Reports, 11(1), 1-13.
Yeh, G. T., Chang, J. R., Gwo, J. P., Lin, H. C., & Richards, D. R. (1994b). 3DSALT: A three-dimensional finite element model of density-dependent flow and transport through saturated-unsaturated media. Instruction Report HL-94-1. Waterway Experiment Station, U.S. Army Corps of Engineers, Vicksburg, MS.
Yeh, G. T., Cheng, J. R., & Lin, H. C. (1994a). 3DFEMFAT: User′s Manual of a 3-Dimensional Finite Element Model of Density Dependent Flow and Transport through Saturated-Unsaturated Media. Technical Report submitted to WES, U.S. Corps of Engineers, Vicksburg, Mississippi. Department of Civil and Environmental Engineering, The Pennsylvania State University, University Park, PA 16802. |