博碩士論文 109626602 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:24 、訪客IP:3.15.221.138
姓名 羅古納(Satriana Roguna)  查詢紙本館藏   畢業系所 水文與海洋科學研究所
論文名稱 台灣週邊颱風壓力場和風場的現實參數化(REP)模型的一種方法
(An Approach to Realistic Parameterization (REP) Model of Pressure and Wind Fields of Typhoon Around Taiwan)
相關論文
★ 雙向流固耦合移動邊界法發展及其於山崩海嘯之研究★ 三維真實地形數值模擬之海嘯上溯研究
★ 發展風暴潮影響強度分析法以重建1845雲林口湖風暴朝事件★ 發展適用於印度洋之氣旋風暴潮預報模式
★ 2006年屏東外海地震引發海嘯的數值模擬探討★ 馬尼拉海溝地震引發海嘯的潛勢分析
★ 三維海嘯湧潮對近岸結構物之影響★ 海嘯逆推方法之研發及其於2006 年屏東地震之應用
★ 以三維賓漢流數值模式模擬海嘯沖刷坑之發展★ 以三維數值模擬探討海嘯湧潮與結構物之交互作用
★ 三維雙黏性流模式於高濃度泥沙流及泥沙底床沖刷之發展及應用★ 海岸樹林及消波結構物對海嘯能量消散之模擬
★ 重建台灣九棚海嘯石之古海嘯事件及孤立波與水下圓板交互作用之模擬★ 裙礁流場之數值分析與消能特性之探討
★ 風暴潮速算系統之建立及1845年雲林口湖事件之還原與研究★ 台灣海嘯速算系統建置暨1867年 基隆海嘯事件之還原與分析
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2026-1-30以後開放)
摘要(中) 傳統的Holland模型將颱風或颶風視為對稱或準對稱的渦流進行模擬,這種假設非常適用於深海區域或地形平緩的區域所觀測到的結果。然而,中央山脈的存在會導致在模擬過程中Holland模型產生極大的誤差。在本文中,我們的目標是在熱帶氣旋只知道路徑和強度的情況下,創建一個新的風暴潮計算天氣模型,並使該模型能夠呈現地形的阻塞效應。由於風速遠大於颱風的移動速度,流場很快就從過渡階段轉變為準穩態。因此,天氣場主要受風暴強度和地形控制,受風暴軌跡影響較小。本文提出了一種新的統計方法,用於根據颱風的位置和強度產生真實的天氣場。我們的目標不是使用傳統的參數模型來表示颱風的風場和壓力場的結構,而是透過使用歷史颱風的10 公尺風場和海平面壓力來開發現實參數化(REP)模型,提供更現實的颱風模型,以及在地形影響不可忽視時生成更好的風暴潮。我們採用了歐洲中期天氣預報中心(ECMWF)的ERA-5再分析數據,共有1981年至2021年的3200個數據。ERA-5再分析數據已經通過台灣交通部中央氣象署(CWA)的地面觀測驗證,包括壓力和風速計數據。
使用 COMCOT-SS 模型模擬風暴潮。結果也與 CWA 的潮汐計數據進行了比較。可以看到非常好的對比結果。驗證後,以ERA-5數據為資料庫,透過提供颱風的位置和強度來產生天氣場。
摘要(英) In conventional Holland-type parametric models, a typhoon or hurricane is modeled as a symmetric or quasi-symmetric vortex. These symmetric assumptions fit the observation well in deep-ocean areas or areas with flat topography. The presence of Central Mountain Range (CMR), however, will cause these models to produce significant errors. In this paper, we aim to create a new weather model for storm surge calculation while only the track and intensity are known for a tropical cyclone, and this model shall be able to present the terrain blockage effect. Because the wind velocity is much faster than the moving speed of the typhoon, the flow field soon transfers from a transition stage into a quasi-steady state. As a result, the weather field is primarily controlled by storm intensity and topography and has less effect from the storm trajectory. This paper presents a new statistical method for generating a realistic weather field based on the location and intensity of the typhoon. Instead of using conventional parametric models to represent the structure of wind and pressure fields of a typhoon, we aim to develop a Realistic Parameterization (REP) Model by employing a 10-m wind field and sea-level pressure from historical typhoons to provide more realistic typhoon model and to generate better storm surges when the influence of topography is non-negligible. We adopted the ERA-5 reanalysis data from the European Centre for Medium-Range Weather Forecasts (ECMWF) with a total of 3200 data from 1981 to 2021. ERA-5 reanalysis data were validated against ground observation from the Central Weather Administration (CWA) in Taiwan, including pressure and wind speed gauge data. The storm surge was simulated using the COMCOT-SS model. The results were compared with the tidal gauge data from CWA as well. Excellent comparison results can be seen. After the validation, the ERA-5 data were used as the database to generate the weather field by providing the location and intensity of the typhoon.
關鍵字(中) ★ COMCOT風暴潮模式、壓力、現實、風暴潮、風速 關鍵字(英) ★ COMCOT Storm Surge Model, pressure, realistic, storm surge, wind speed
論文目次 CHINESE ABSTRACT v
ABSTRACT vi
ACKNOWLEDGEMENTS vii
TABLE OF CONTENTS viii
LIST OF FIGURES xi
LIST OF TABLES xxiii
CHAPTER 1 INTRODUCTION 1
1.1 Background and Motivation 1
1.2 Literature Review 6
1.2.1 Introduction of Typhoons in Taiwan 6
1.2.2 Typhoons in Taiwan over the Central Mountain Range (CMR) 7
1.2.3 Introduction of Storm Surge 9
1.2.4 International Remarkable TC-Induced Storm Surge Events over World’s Basins 10
1.2.5 Storm Surge Studies in Taiwan 23
1.2.6 Numerical Storm Surge Models 27
1.2.7 Meteorological Forces 30
1.2.8 Topography Effects 32
1.2.9 Topography Locking 33
1.2.10 Limitation of Parametric TC Models 34
CHAPTER 2 METHODOLOGY 36
2.1 Introduction to Numerical Models 36
2.2 Governing Equations 38
2.2.1 Nonlinear Shallow Water Wave Equation 40
2.2.2 Linear Shallow Water Wave Equation 44
2.2.3 Finite Difference Dispersion of Linear Shallow Water Wave Equation 46
2.2.4 Central Difference Dispersion of Nonlinear Shallow Water Wave Equation 50
2.3 Moving Boundary Scheme 55
2.4 Multi-Grid Nesting System 57
2.5 Computational Domain for the COMCOT-SS simulation 60
2.6 Meteorological Field Models 66
2.6.1 ECMWF-ERA5 as the Database for the Realistic Parameterization (REP) Model 66
2.6.2 Conventional Parametric Models as Comparison to REP Model 68
2.6.3 Realistic Parameterization (REP) Model 78
CHAPTER 3 CASE STUDIES AND MODEL VALIDATION 92
3.1 Case Studies 92
3.1.1 Typhoon Dujuan (2015) 92
3.1.2 Typhoon Megi (2016) 118
3.1.3 Typhoon Nepartak (2016) 136
3.1.4 Typhoon Soulik (2013) 156
CHAPTER 4 RESULTS AND DISCUSSIONS 175
4.1 REP Model and Comparisons with ECMWF-ERA5, CWA, Holland (1980) and Holland (2010) Model for Historical Typhoons 175
4.1.1 Typhoon Dujuan (2015) 175
4.1.2 Typhoon Megi (2016) 198
4.1.3 Typhoon Nepartak (2016) 220
4.1.4 Typhoon Soulik (2013) 242
4.2 Realistic Parameterization (REP) Model in 2023 Typhoon Cases and its comparison to the ECMWF-ERA5 and the Observations 266
4.2.1 Typhoon Haikui (2023) 266
4.2.2 Typhoon Saola (2023) 274
4.2.3 REP Model in the Merger of Typhoon Haikui and Typhoon Saola 283
CHAPTER 5 CONCLUSION AND FUTURE WORK 287
5.1 CONCLUDING REMARK 287
5.2 SUGGESTING WORK 289
BIBLIOGRAPHY 290
APPENDIX A – STATISTICAL ANALYSIS 309
APPENDIX B – HOLLAND (1980) SCENARIOS RESULTS 310
APPENDIX C – RECORD OF ORAL DEFENSE AND RESPONSE TO REVIEW COMMENTS 314
參考文獻 Aggarwal, M. (2004). Storm Surge Analysis Using Numerical and Statistical Techniques and Comparison with Nws Model Slosh [Master Thesis, Texas A&M University].
Ali, A. (1979). Storm Surges in the Bay of Bengal and Some Related Problems [Doctoral dissertation, University of Reading].
Andrée, E., Su, J., Larsen, M. A. D., Madsen, K. S., & Drews, M. (2021). Simulating Major Storm Surge Events in a Complex Coastal Region. Ocean Modellin, 162, 101802. https://doi.org/10.1016/j.ocemod.2021.101802
Arafiles, C., & Alcances Jr, C. (1978). Storm Surge Potentials of Selected Philippine Coastal Basins. Philippine Atmospheric, Geophysical and Astronomical Services Administration (PAGASA). Retrieved 10 November 2023, from https://www.pagasa.dost.gov.ph/learnings/research-and-development
Arafiles, C. P., Amadore, L. A., Doctor, C. S., & Davis, C. L. (1984). Vulnerability of the Philippines to Storm Surges. In Proceedings. The Second Symposium on Tropical Cyclones in the South China Sea and Western North Pacific Ocean, Quezon City, Philippines, 142-151
Bankoff, G. (2003). Cultures of Disaster: Society and Natural Hazards in the Philippines. Psychology Press. https://doi.org/https://doi.org/10.4324/9780203221891
Bauer, B. O., & Greenwood, B. (1988). Surf-Zone Similarity. Geographical review, 137-147. https://doi.org/10.2307/214172
Bell, R. G., Goring, D., & de Lange, W. P. (2000). Sea-Level Change and Storm Surges in the Context of Climate Change. Transactions of the Institution of Professional Engineers New Zealand: General Section, 27(1), 1-10.
Benavente, J., Del Río, L., Gracia, F. J., & Martínez-del-Pozo, J. A. (2006). Coastal Flooding Hazard Related to Storms and Coastal Evolution in Valdelagrana Spit (Cadiz Bay Natural Park, Sw Spain). Continental Shelf Research, 26(9), 1061-1076. https://doi.org/10.1016/j.csr.2005.12.015
Bertin, X. (2016). Storm Surges and Coastal Flooding: Status and Challenges. La Houille Blanche (2), 64-70. https://doi.org/10.1051/lhb/2016020
Bertin, X., Li, K., Roland, A., Zhang, Y. J., Breilh, J. F., & Chaumillon, E. (2014). A Modeling-Based Analysis of the Flooding Associated with Xynthia, Central Bay of Biscay. Coastal Engineering, 94, 80-89. https://doi.org/10.1016/j.coastaleng.2014.08.013
Bloemendaal, N., Haigh, I. D., De Moel, H., Muis, S., Haarsma, R. J., & Aerts, J. C. J. H. (2020). Generation of a Global Synthetic Tropical Cyclone Hazard Dataset Using Storm. Scientific data, 7(1), 40. https://doi.org/10.1038/s41597-020-0381-2
Bloemendaal, N., Muis, S., Haarsma, R. J., Verlaan, M., Apecechea, M. I., De Moel, H., Ward, P. J., & Aerts, J. C. J. H. (2019). Global Modeling of Tropical Cyclone Storm Surges Using High-Resolution Forecasts. Climate Dynamics, 52(7-8), 5031-5044. https://doi.org/10.1007/s00382-018-4430-x
Brand, S., & Blelloch, J. W. (1974). Changes in the Characteristics of Typhoons Crossing the Island of Taiwan. Monthly Weather Review, 102(10), 708-713. https://doi.org/10.1175/1520-0493(1974)102
Chang, C. H., Shih, H. J., Chen, W. B., Su, W. R., Lin, L. Y., Yu, Y. C., & Jang, J. H. (2018). Hazard Assessment of Typhoon-Driven Storm Waves in the Nearshore Waters of Taiwan. Water, 10(7), 926. https://doi.org/10.3390/w10070926
Chen, K., Chen, G., Rao, C., & Wang, Z. (2021). Relationship of Tropical Cyclone Size Change Rate with Size and Intensity over the Western North Pacific: 西北太平洋上热带气旋尺度变化率与其尺度和强度的关系. Atmospheric and Oceanic Science Letters, 14(3), 100040. https://doi.org/doi.org/10.1016/j.aosl.2021.100040
Chen, K., Chen, G., & Shi, D. (2022). Reexamination of the Relationship between Tropical Cyclone Size and Intensity over the Western North Pacific. Advances in Atmospheric Sciences, 39(11), 1956-1968. https://doi.org/10.1007/s00376-022-1450-6
Chen, Y.-L., & Li, J. (1995). Characteristics of Surface Airflow and Pressure Patterns over the Island of Taiwan During Tamex. Monthly Weather Review, 123(3), 695-716. https://doi.org/10.1175/1520-0493(1995)123
Chow, S.-h. (1971). A Study of the Wind Field in the Planetary Boundary Layer of a Moving Tropical Cyclone New York University].
Chu, K., Wang, S., & Pao, H. (1977). Surface Wind Fields and Moving Tracks of Typhoons When Encountering the Island of Taiwan. Preprints, 11th Tech. Conf. Hurricane and Tropical Meteorology, Miami Beach, FL, Amer. Meteor. Soc, 84-87.
Church, J. A., & White, N. J. (2011). Sea-Level Rise from the Late 19th to the Early 21st Century. Surveys in geophysics, 32, 585-602. https://doi.org/10.1007/s10712-011-9119-1
Dean, R. G., & Dalrymple, R. A. (1991). Water Wave Mechanics for Engineers and Scientists (Vol. 2). world scientific publishing company. https://doi.org/10.1142/9789812385512
Donovan, M., & Grossi, P. (1959). Super Typhoon Vera: 50-Year Retrospective. RMS Special Report.
Dube, S., Rao, A., Sinha, P., Murty, T., & Bahulayan, N. (1997). Storm Surge in the Bay of Bengal and Arabian Sea: The Problem and Its Prediction. Mausam, 48(2), 283-304. https://doi.org/10.54302/mausam.v48i2.4012
Elsner, J. B., & Liu, K.-b. (2003). Examining the Enso-Typhoon Hypothesis. Climate Research, 25(1), 43-54. https://doi.org/https://doi.org/10.3354/cr025043
Emanuel, K., & Rotunno, R. (2011). Self-Stratification of Tropical Cyclone Outflow. Part I: Implications for Storm Structure. Journal of the Atmospheric Sciences, 68(10), 2236-2249. https://doi.org/10.1175/jas-d-10-05024.1
Fang, P., Ye, G., & Yu, H. (2020). A Parametric Wind Field Model and Its Application in Simulating Historical Typhoons in the Western North Pacific Ocean. Journal of Wind Engineering and Industrial Aerodynamics, 199, 104131. https://doi.org/10.1016/j.jweia.2020.104131
Fang, X., Kuo, Y. H., & Wang, A. (2011). The Impacts of Taiwan Topography on the Predictability of Typhoon Morakot’s Record-Breaking Rainfall: A High-Resolution Ensemble Simulation. Weather and forecasting, 26(5), 613-633. https://doi.org/10.1175/waf-d-10-05020.1
Frank, N. L. (1971). The Deadliest Tropical Cyclone in History? Bulletin of the American Meteorological Society, 52(6), 438-444. https://doi.org/10.1175/1520-0477(1971)052
Gao, J. (2018). On the Surface Wind Stress for Storm Surge Modeling. The University of North Carolina at Chapel Hill]. https://doi.org/10.17615/zpeb-7k73
Gong, J., Jia, X., Zhuge, W., Guo, W., & Lee, D.-Y. (2020). Assessment of a Parametric Tropical Cyclone Model for Typhoon Wind Modeling in the Yellow Sea. Journal of Coastal Research, 99(SI), 67-73. https://doi.org/10.2112/si99-010.1
Grossman, M., & Zaiki, M. (2009). Reconstructing Typhoons in Japan in the 1880s from Documentary Records. Weather, 64(12), 315-322. https://doi.org/10.1002/wea.401
Haghroosta, T., & Ismail, W. R. (2013). Changes in Sea Surface Temperature and Precipitation Rate During Typhoons in the South China Sea. International Journal of Environmental Science and Development, 4(4), 390-392. https://doi.org/10.7763/ijesd.2013.v4.378
Hisaki, Y. (2016). Time Interpolation of Stationary and Propagating Surface Disturbances for Ocean Modeling. Earth and Space Science, 3(9), 346-361. https://doi.org/10.1002/2016ea000175
Hoeke, R. K., McInnes, K. L., & O’Grady, J. G. (2015). Wind and Wave Setup Contributions to Extreme Sea Levels at a Tropical High Island: A Stochastic Cyclone Simulation Study for Apia, Samoa. Journal of Marine Science and Engineering, 3(3), 1117-1135. https://doi.org/10.3390/jmse3031117
Holland, G. J. (1980). An Analytic Model of the Wind and Pressure Profiles in Hurricanes. Monthly Weather Review, 108(8), 1212-1218. https://doi.org/10.1175/1520-0493(1980)108
Holland, G. J. (2008). A Revised Hurricane Pressure–Wind Model. Monthly Weather Review, 136(9), 3432-3445. https://doi.org/10.1175/2008mwr2395.1
Holland, G. J., Belanger, J. I., & Fritz, A. (2010). A Revised Model for Radial Profiles of Hurricane Winds. Monthly Weather Review, 138(12), 4393-4401. https://doi.org//10.1175/2010mwr3317.1
Horton, B. P., Rahmstorf, S., Engelhart, S. E., & Kemp, A. C. (2014). Expert Assessment of Sea-Level Rise by Ad 2100 and Ad 2300. Quaternary Science Reviews, 84, 1-6. https://doi.org/10.1016/j.quascirev.2013.11.002
Houston, S. H., Shaffer, W. A., Powell, M. D., & Chen, J. (1999). Comparisons of Hrd and Slosh Surface Wind Fields in Hurricanes: Implications for Storm Surge Modeling. Weather and forecasting, 14(5), 671-686. https://doi.org/10.1175/1520-0434(1999)014
Howard, T., Pardaens, A., Bamber, J., Ridley, J., Spada, G., Hurkmans, R., Lowe, J., & Vaughan, D. (2014). Sources of 21st Century Regional Sea-Level Rise Along the Coast of Northwest Europe. Ocean Science, 10(3), 473-483. https://doi.org/10.5194/os-10-473-2014
Hsiao, L.-F., Chen, D.-S., Hong, J.-S., Yeh, T.-C., & Fong, C.-T. (2020). Improvement of the Numerical Tropical Cyclone Prediction System at the Central Weather Bureau of Taiwan: Twrf (Typhoon Wrf). Atmosphere, 11(6), 657. https://doi.org/10.3390/atmos11060657
Hsu, L.-H., Su, S.-H., Fovell, R. G., & Kuo, H.-C. (2018). On Typhoon Track Deflections near the East Coast of Taiwan. Monthly Weather Review, 146(5), 1495-1510. https://doi.org/10.1175/mwr-d-17-0208.1
Huang, K.-C., & Wu, C.-C. (2018). The Impact of Idealized Terrain on Upstream Tropical Cyclone Track. Journal of the Atmospheric Sciences, 75(11), 3887-3910. https://doi.org/10.1175/jas-d-18-0099.1
Huang, W.-P., Hsu, C.-A., Kung, C.-S., & Yim, J. Z. (2007). Numerical Studies on Typhoon Surges in the Northern Taiwan. Coastal Engineering, 54(12), 883-894. https://doi.org/10.1016/j.coastaleng.2007.05.015
Hubbert, G. D., & Mclnnes, K. L. (1999). A Storm Surge Inundation Model for Coastal Planning and Impact Studies. Journal of Coastal Research, 168-185. https://www.jstor.org/stable/4298925
Hung, C.-W., Shih, M.-F., & Lin, T.-Y. (2020). The Climatological Analysis of Typhoon Tracks, Steering Flow, and the Pacific Subtropical High in the Vicinity of Taiwan and the Western North Pacific. Atmosphere, 11(5), 543. https://doi.org/10.3390/atmos11050543
Jelesnianski, C. P. (1965). A Numerical Calculation of Storm Tides Induced by a Tropical Storm Impinging on a Continental Shelf. Monthly Weather Review, 93(6), 343-358. https://doi.org/10.1175/1520-0493(1993)093
Jelesnianski, C. P. (1973). A Preliminary View of Storm Surges before and after Storm Modifications (Vol. 3). Environmental Research Laboratories, Weather Modification Program Office.
Jelesnianski, C. P. (1992). Slosh: Sea, Lake, and Overland Surges from Hurricanes (Vol. 48). US Department of Commerce, National Oceanic and Atmospheric Administration, National Weather Service.
Jelesnianski, C. P., & Barrientos, C. S. (1975). A Preliminary View of Storm Surges before and after Storm Modifications for Alongshore-Moving Storms (Vol. 58). National Oceanic and Atmospheric Administration. https://repository.library.noaa.gov/view/noaa/13467
Jian, G.-J., & Wu, C.-C. (2008). A Numerical Study of the Track Deflection of Supertyphoon Haitang (2005) Prior to Its Landfall in Taiwan. Monthly Weather Review, 136(2), 598-615. https://doi.org/10.1175/2007mwr2134.1
Kang, S.-W., Jun, K.-C., Park, K.-S., & Han, S.-D. (2009). Storm Surge Hindcasting of Typhoon Maemi in Masan Bay, Korea. Marine Geodesy, 32(2), 218-232. https://doi.org/10.1080/01490410902869581
Kawai, H. (1999). Storm Surge in Ise and Mikawa Bay Caused by Typhoon. Proceeding of the 31st Joint Meeting of United States-Japan Panel on Wind and Seismic Effects, 1999, 13, 320-332.
Kawai, H., Hashimoto, N., & Yamashiro, M. (2012). Real-Time Probabilistic Prediction of Storm Water Level at Japanese Ports. International Journal of Offshore and Polar Engineering, 22(01).
Kennedy, A. B., Westerink, J. J., Smith, J. M., Hope, M. E., Hartman, M., Taflanidis, A. A., Tanaka, S., Westerink, H., Cheung, K. F., & Smith, T. (2012). Tropical Cyclone Inundation Potential on the Hawaiian Islands of Oahu and Kauai. Ocean Modelling, 52, 54-68. https://doi.org/10.1016/j.ocemod.2012.04.009
Kim, S.-H., Kang, H.-W., Moon, I.-J., Kang, S. K., & Chu, P.-S. (2022). Effects of the Reduced Air-Sea Drag Coefficient in High Winds on the Rapid Intensification of Tropical Cyclones and Bimodality of the Lifetime Maximum Intensity. Frontiers in Marine Science, 9, 1032888. https://doi.org/10.3389/fmars.2022.1032888
Kim, S. Y., Yasuda, T., & Mase, H. (2010). Wave Set-up in the Storm Surge Along Open Coasts During Typhoon Anita. Coastal Engineering, 57(7), 631-642. https://doi.org/10.1016/j.coastaleng.2010.02.004
Kim, Y.-J., Kim, T.-W., & Yoon, J.-S. (2020). Study on Storm Surge Using Parametric Model with Geographical Characteristics. Water, 12(8), 2251. https://doi.org/10.3390/w12082251
Ko, D. S., Chao, S.-Y., Wu, C.-C., Lin, I., & Jan, S. (2016). Impacts of Tides and Typhoon Fanapi (2010) on Seas around Taiwan. TAO: Terrestrial, Atmospheric and Oceanic Sciences, 27(2), 261-280. https://doi.org/10.3319/tao.2015.10.28.01(oc)
Krien, Y., Arnaud, G., Cécé, R., Ruf, C., Belmadani, A., Khan, J., Bernard, D., Islam, A. K. M. S., Durand, F., Testut, L., Palany, P., & Zahibo, N. (2018). Can We Improve Parametric Cyclonic Wind Fields Using Recent Satellite Remote Sensing Data? Remote Sensing, 10(12), 1963. https://doi.org/10.3390/rs10121963
Landsea, C. W. (2000). Climate Variability of Tropical Cyclones: Past, Present and Future. Storms, 1, 220-241.
Lee, B.-C., Huan, C.-C., Chuang, L. Z.-H., & Kao, C. C. (2008). Study on the Characteristics of Storm Surge over Taiwan Eastern Waters by Wavelet Transform. Proceedings of the Eighteenth (2008) International Offshore and Polar Engineering Conference, 753-758.
Liang, A., Oey, L., Huang, S., & Chou, S. (2017). Long‐Term Trends of Typhoon‐Induced Rainfall over Taiwan: In Situ Evidence of Poleward Shift of Typhoons in Western North Pacific in Recent Decades. Journal of Geophysical Research: Atmospheres, 122(5), 2750-2765. https://doi.org/10.1002/2017jd026446
Lin, C.-W., Wu, T.-R., Tsai, Y.-L., Chuang, S.-C., Chu, C.-H., & Terng, C.-T. (2023). Member Formation Methods Evaluation for a Storm Surge Ensemble Forecast System in Taiwan. Water, 15(10), 1826. https://doi.org/10.3390/w15101826
Lin, M.-Y., Sun, W.-Y., Chiou, M.-D., Chen, C.-Y., Cheng, H.-Y., & Chen, C.-H. (2018). Development and Evaluation of a Storm Surge Warning System in Taiwan. Ocean Dynamics, 68(8), 1025-1049. https://doi.org/10.1007/s10236-018-1179-z
Lin, Y.-H., Fang, M.-C., & Hwung, H.-H. (2010). Transport Reversal Due to Typhoon Krosa in the Taiwan Strait. The Open Ocean Engineering Journal, 3(1), 143-157. https://doi.org/10.2174/1874835x01003010143
Lin, Y.-H., Hwung, H.-H., Fang, M.-C., & Yang, R.-Y. (2010). The Numerical Simulation of Storm-Surge and Coastal Inundation of 2007 Typhoon Sepat. Coastal Engineering Proceedings, 1(32). https://doi.org/10.9753/icce.v32.currents.16
Lin, Y.-L., Witcraft, N. C., & Kuo, Y.-H. (2006). Dynamics of Track Deflection Associated with the Passage of Tropical Cyclones over a Mesoscale Mountain. Monthly Weather Review, 134(12), 3509-3538. https://doi.org/10.1175/mwr3263.1
Liu, F., & Wang, X. (1989). A Review of Storm-Surge Research in China. Natural Hazards, 2, 17-29. https://doi.org/10.1007/BF00124755
Liu, W.-C., & Huang, W.-C. (2019). Influences of Sea Level Rise on Tides and Storm Surges around the Taiwan Coast. Continental Shelf Research, 173, 56-72. https://doi.org/10.1016/j.csr.2018.12.009
Liu, W.-C., & Huang, W.-C. (2020). Investigating Typhoon-Induced Storm Surge and Waves in the Coast of Taiwan Using an Integrally-Coupled Tide-Surge-Wave Model. Ocean Engineering, 212, 107571. https://doi.org/10.1016/j.oceaneng.2020.107571
Ma, J. (2003). A Review of Preventing and Reducing the Storm Surge Disaster in Guangdong Province. Mar. Forecasts, 20(2), 34-40. https://doi.org/10.3969/j.issn.1003-0239.2003.02.006
Mai, C. V., Van Gelder, P., Vrijling, J., & Mai, T. C. (2008). Risk Analysis of Coastal Flood Defences: A Vietnam Case. In 4th International Symposium on Flood Defence: Managing Flood Risk, Reliability and Vulnerability. Toronto, May, 6-8
Mamnun, N., Bricheno, L. M., & Rashed-Un-Nabi, M. (2020). Forcing Ocean Model with Atmospheric Model Outputs to Simulate Storm Surge in the Bangladesh Coast. Tropical Cyclone Research and Review, 9(2), 117-134. https://doi.org/10.1016/j.tcrr.2020.04.002
Mas, E., Bricker, J., Kure, S., Adriano, B., Yi, C., Suppasri, A., & Koshimura, S. (2015). Field Survey Report and Satellite Image Interpretation of the 2013 Super Typhoon Haiyan in the Philippines. Natural Hazards and Earth System Sciences, 15(4), 805-816. https://doi.org/10.5194/nhess-15-805-2015
Merrifield, M., Becker, J., Ford, M., & Yao, Y. (2014). Observations and Estimates of Wave‐Driven Water Level Extremes at the Marshall Islands. Geophysical Research Letters, 41(20), 7245-7253. https://doi.org/10.1002/2014gl061005
Moon, I.-J., Oh, I., Murty, T., & Youn, Y.-H. (2003). Causes of the Unusual Coastal Flooding Generated by Typhoon Winnie on the West Coast of Korea. Natural Hazards, 29(3), 485-500. https://doi.org/10.1023/a:1024798718572
Needham, H. F., Keim, B. D., & Sathiaraj, D. (2015). A Review of Tropical Cyclone‐Generated Storm Surges: Global Data Sources, Observations, and Impacts. Reviews of Geophysics, 53(2), 545-591. https://doi.org/10.1002/2014rg000477
Nicholls, R. (2003). An Expert Assessment of Storm Surge “Hotspots”. Interim Report to Center for Hazards and Risk Research. In: Lamont-Doherty Observatory, Columbia University. Flood Hazard Research Centre, University of Middlesex, London.
Nicholls, R. J. (2006). Storm Surges in Coastal Areas. Natural Disaster Hotspots, Case Studies, The World Bank Hazard Management Unit, Disaster Risk Management Series, 6, 79-108.
Nicholls, R. J., & Cazenave, A. (2010). Sea-Level Rise and Its Impact on Coastal Zones. science, 328(5985), 1517-1520. https://doi.org/10.1126/science.1185782
Nicholls, R. J., & Tol, R. S. (2006). Impacts and Responses to Sea-Level Rise: A Global Analysis of the Sres Scenarios over the Twenty-First Century. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 364(1841), 1073-1095. https://doi.org/10.1098/rsta.2006.1754
NOAA’s Atlantic Oceanographic & Meteorological Laboratory. (2023). Record Number of Tropical Storms in a Given Year by Basins. Retrieved Nov 9, 2023 from https://www.aoml.noaa.gov/hrd-faq/#record-storms-per-year-by-basin
Obeysekera, J., & Park, J. (2013). Scenario-Based Projection of Extreme Sea Levels. Journal of Coastal Research, 29(1), 1-7. https://doi.org/10.2112/jcoastres-d-12-00127.1
Pan, Z., & Liu, H. (2015). Numerical Study of Typhoon-Induced Storm Surge in the Yangtze Estuary of China Using a Coupled 3d Model. Procedia Engineering, 116, 849-854. https://doi.org/10.1016/j.proeng.2015.08.373
Pandey, R. S., & Liou, Y.-A. (2022). Typhoon Strength Rising in the Past Four Decades. Weather and Climate Extremes, 36, 100446. https://doi.org/10.1016/j.wace.2022.100446
Peng, M., Xie, L., & Pietrafesa, L. J. (2004). A Numerical Study of Storm Surge and Inundation in the Croatan–Albemarle–Pamlico Estuary System. Estuarine, Coastal and Shelf Science, 59(1), 121-137. https://doi.org/10.1016/j.ecss.2003.07.010
Peng, S., Li, Y., & Xie, L. (2013). Adjusting the Wind Stress Drag Coefficient in Storm Surge Forecasting Using an Adjoint Technique. Journal of Atmospheric and Oceanic Technology, 30(3), 590-608. https://doi.org/10.1175/jtech-d-12-00034.1
Pfeffer, W. T., Harper, J. T., & O′Neel, S. (2008). Kinematic Constraints on Glacier Contributions to 21st-Century Sea-Level Rise. science, 321(5894), 1340-1343. https://doi.org/10.1126/science.1159099
Powell, M. D., & Houston, S. H. (1998). Surface Wind Fields of 1995 Hurricanes Erin, Opal, Luis, Marilyn, and Roxanne at Landfall. Monthly Weather Review, 126(5), 1259-1273. https://doi.org/10.1175/1520-0493(1998)126<1259:SWFOHE>2.0.CO;2
Powell, M. D., Vickery, P. J., & Reinhold, T. A. (2003). Reduced Drag Coefficient for High Wind Speeds in Tropical Cyclones. Nature, 422(6929), 279-283. https://doi.org/10.1038/nature01481
Rahmstorf, S., Foster, G., & Cazenave, A. (2012). Comparing Climate Projections to Observations up to 2011. Environmental Research Letters, 7(4), 044035. https://doi.org/10.1088/1748-9326/7/4/044035
Salmun, H., & Molod, A. (2015). The Use of a Statistical Model of Storm Surge as a Bias Correction for Dynamical Surge Models and Its Applicability Along the Us East Coast. Journal of Marine Science and Engineering, 3(1), 73-86. https://doi.org/10.3390/jmse3010073
Shaji, C., Kar, S., & Vishal, T. (2014). Storm Surge Studies in the North Indian Ocean: A Review. Indian Journal of Geo-Marine Sciences, 43(2), 125-147. http://nopr.niscpr.res.in/handle/123456789/27267
Sheng, Y. P., Paramygin, V. A., Terng, C.-T., & Chi-Hao, C. (2016). Simulating Storm Surge and Inundation Along the Taiwan Coast During Typhoons Fanapi in 2010 and Soulik in 2013. TAO: Terrestrial, Atmospheric and Oceanic Sciences, 27(6), 965-979. https://doi.org/10.3319/tao.2016.06.13.01(oc)
Sheng, Y. P., Paramygin, V. A., Terng, C.-T., & Chu, C.-H. (2003). Forecasting of Storm Surge and Wave Along Taiwan Coast.
Sheng, Y. P., Paramygin, V. A., Terng, C.-T., & Chu, C.-H. (2018). Towards an Integrated Storm Surge and Wave Forecasting System for Taiwan Coast. Journal of Marine Science and Technology, 26(1), 12. https://doi.org/10.6119/JMST.2018.02_(1).0011
Shu, Y. (2015). Future Changes of the North West Pacific Typhoons: Using the High Resolution Gcm Ec-Earth.
Smith, D. (1989). Natural Disaster Reduction: How Meteorological and Hydrological Services Can Help. In WMO (No. 722). World Meteorological Organization.
Smith, R. B. (1979). The Influence of Mountains on the Atmosphere. In Advances in Geophysics (Vol. 21, pp. 87-230). Elsevier.
Soldini, L., Antuono, M., & Brocchini, M. (2013). Numerical Modeling of the Influence of the Beach Profile on Wave Run-Up. Journal of Waterway, Port, Coastal, and Ocean Engineering, 139(1), 61-71. https://doi.org/10.1061/(asce)ww.1943-5460.0000163
Song, J., Duan, Y., & Klotzbach, P. J. (2020). Revisiting the Relationship between Tropical Cyclone Size and Intensity over the Western North Pacific. Geophysical Research Letters, 47(13). https://doi.org/10.1029/2020gl088217
Soria, J. L. A., Switzer, A. D., Villanoy, C. L., Fritz, H. M., Bilgera, P. H. T., Cabrera, O. C., Siringan, F. P., Maria, Y. Y.-S., Ramos, R. D., & Fernandez, I. Q. (2016). Repeat Storm Surge Disasters of Typhoon Haiyan and Its 1897 Predecessor in the Philippines. Bulletin of the American Meteorological Society, 97(1), 31-48. https://doi.org/10.1175/bams-d-14-00245.1
Soriano, B. (1992). Tropical Cyclone Statistics in the Bicol Region. Ang Tagamasid, 20(4), 12-15.
Sun, W.-Y. (2016). The Vortex Moving toward Taiwan and the Influence of the Central Mountain Range. Geoscience Letters, 3(21), 1-19. https://doi.org/10.1186/s40562-016-0052-5
Tan, C., & Fang, W. (2018). Mapping the Wind Hazard of Global Tropical Cyclones with Parametric Wind Field Models by Considering the Effects of Local Factors. International Journal of Disaster Risk Science, 9, 86-99. https://doi.org/10.1007/s13753-018-0161-1
Tang, L., Zhan, J.-m., Chen, Y.-z., Li, Y.-s., & Nie, Y.-h. (2011). Typhoon Process and Its Impact on the Surface Circulation in the Northern South China Sea. Journal of Hydrodynamics, 23(1), 95-104. https://doi.org/10.1016/s1001-6058(10)60093-5
Tomkratoke, S., & Sirisup, S. (2020). Effects of Tropical Cyclone Paths and Shelf Bathymetry on Inducement of Severe Storm Surges in the Gulf of Thailand. Acta Oceanologica Sinica, 39(3), 90-102. https://doi.org/10.1007/s13131-020-1558-4
Tsai, Y.-L., Wu, T.-R., Terng, C.-T., & Cheung, M.-H. (2015). Simulation of Storm Surge by a Depth-Integrated Non-Hydrostatic Nested-Gird Model. EGU General Assembly Conference Abstracts, 6441.
Tsai, Y.-L. (2021). Development of Storm Surge, Tide, and Wind Wave Coupling Model and Application for Severe Typhoon Events in Northwestern Pacific Ocean (Doctoral dissertation). National Central University, Taoyuan, Taiwan.
Tsai, Y.-L., Wu, T.-R., Yen, E., Lin, C.-Y., & Lin, S. C. (2022). Parallel-Computing Two-Way Grid-Nested Storm Surge Model with a Moving Boundary Scheme and Case Study of the 2013 Super Typhoon Haiyan. Water, 14(4), 547. https://doi.org/10.3390/w14040547
Vafeidis, A. T., Nicholls, R. J., McFadden, L., Tol, R. S., Hinkel, J., Spencer, T., Grashoff, P. S., Boot, G., & Klein, R. J. (2008). A New Global Coastal Database for Impact and Vulnerability Analysis to Sea-Level Rise. Journal of Coastal Research, 24(4), 917-924. https://doi.org/10.2112/06-0725.1
Vetter, O., Becker, J. M., Merrifield, M. A., Pequignet, A. C., Aucan, J., Boc, S. J., & Pollock, C. E. (2010). Wave Setup over a Pacific Island Fringing Reef. Journal of Geophysical Research: Oceans, 115(C12). https://doi.org/10.1029/2010jc006455
Vickery, P. J., Wadhera, D., Powell, M. D., & Chen, Y. (2009). A Hurricane Boundary Layer and Wind Field Model for Use in Engineering Applications. Journal of Applied Meteorology and Climatology, 48(2), 381-405. https://doi.org/10.1175/2008JAMC1841.1
Vongvisessomjai, S. (2009). Tropical Cyclone Disasters in the Gulf of Thailand. Songklanakarin Journal of Science & Technology, 31(2), 213–227. https://doaj.org/article/b8160a371ce1481d9ecdc39f11dda675
Walsh, K. J., McInnes, K. L., & McBride, J. L. (2012). Climate Change Impacts on Tropical Cyclones and Extreme Sea Levels in the South Pacific—a Regional Assessment. Global and Planetary Change, 80, 149-164. https://doi.org/10.1016/j.gloplacha.2011.10.006
Wang, C. C., Chen, Y. H., Kuo, H. C., & Huang, S. Y. (2013). Sensitivity of Typhoon Track to Asymmetric Latent Heating/Rainfall Induced by Taiwan Topography: A Numerical Study of Typhoon Fanapi (2010). Journal of Geophysical Research: Atmospheres, 118(8), 3292-3308. https://doi.org/10.1002/jgrd.50351
Wang, L., Zhang, Z., Liang, B., Lee, D., & Luo, S. (2020). An Efficient Method for Simulating Typhoon Waves Based on a Modified Holland Vortex Model. Journal of Marine Science and Engineering, 8(3), 177. https://doi.org/10.3390/jmse8030177
Wang, S. T. (1980). Prediction of the Movement and Strength of Typhoons in Taiwan and Its Vicinity (in Chinese). Res. Rep, 108, 279-286.
Wang, S. T. (1989). Observational Analysis of the Orographically Induced Disturbances During Tamex. In Workshop on TAMEX Preliminary Scientific Results, Taipei, Taiwan (pp. 279-286): National Science Council.
Wang, Y.-H., Lee, I.-H., & Wang, D.-P. (2005). Typhoon Induced Extreme Coastal Surge: A Case Study at Northeast Taiwan in 1994. Journal of Coastal Research, 21(3), 548-552. https://doi.org/https://doi.org/10.2112/03-0026.1
Wei, C. C. (2015). Forecasting Surface Wind Speeds Over Offshore Islands near Taiwan During Tropical Cyclones: Comparisons of Data‐Driven Algorithms and Parametric Wind Representations. Journal of Geophysical Research: Atmospheres, 120(5), 1826-1847. https://doi.org/10.1002/2014jd022568
Wei, C.-C., Peng, P.-C., Tsai, C.-H., & Huang, C.-L. (2018). Regional Forecasting of Wind Speeds During Typhoon Landfall in Taiwan: A Case Study of Westward-Moving Typhoons. Atmosphere, 9(4), 141. https://doi.org/10.3390/atmos9040141
Weisberg, R. H., & Zheng, L. (2006). A Simulation of the Hurricane Charley Storm Surge and Its Breach of North Captiva Island. Florida Scientist, 152-165.
Wu, C.-C. (2013). Typhoon Morakot: Key Findings from the Journal Tao for Improving Prediction of Extreme Rains at Landfall. Bulletin of the American Meteorological Society, 94(2), 155-160. https://doi.org/10.1175/bams-d-11-00155.1
Wu, C.-C., & Kuo, Y.-H. (1999). Typhoons Affecting Taiwan: Current Understanding and Future Challenges. Bulletin of the American Meteorological Society, 80(1), 67-80. https://doi.org/10.1175/1520-0477(1999)080
Wu, C.-C., Li, T.-H., & Huang, Y.-H. (2015). Influence of Mesoscale Topography on Tropical Cyclone Tracks: Further Examination of the Channeling Effect. Journal of the Atmospheric Sciences, 72(8), 3032-3050. https://doi.org/10.1175/jas-d-14-0168.1
Wu, C.-C., Yen, T.-H., Kuo, Y.-H., & Wang, W. (2002). Rainfall Simulation Associated with Typhoon Herb (1996) near Taiwan. Part I: The Topographic Effect. Weather and forecasting, 17(5), 1001-1015. https://doi.org/10.1175/1520-0434(2003)017
Wu, L., Tian, W., Liu, Q., Cao, J., & Knaff, J. A. (2015). Implications of the Observed Relationship between Tropical Cyclone Size and Intensity over the Western North Pacific. Journal of Climate, 28(24), 9501-9506. https://doi.org/10.1175/jcli-d-15-0628.1
Wu, T.-R., Tsai, Y.-L., & Terng, C.-T. (2017). The Recent Development of Storm Surge Modeling in Taiwan. Procedia IUTAM, 25, 70-73. https://doi.org/10.1016/j.piutam.2017.09.011
Wu, Y.-C., Yang, M.-J., & Rogers, R. F. (2022). Examining Terrain Effects on the Evolution of Precipitation and Vorticity of Typhoon Fanapi (2010) after Departing the Central Mountain Range of Taiwan. Monthly Weather Review, 150(6), 1517-1540. https://doi.org/10.1175/mwr-d-21-0205.1
Xiao, Y.-F., Xiao, Y.-Q., & Duan, Z.-D. (2009). The Typhoon Wind Hazard Analysis in Hong Kong of China with the New Formula for Holland B Parameter and the Ce Wind Field Model. Proceeding of the Seventh Asia-Pacific Conference on Wind Engineering.
Xie, B., & Zhang, F. (2012). Impacts of Typhoon Track and Island Topography on the Heavy Rainfalls in Taiwan Associated with Morakot (2009). Monthly Weather Review, 140(10), 3379-3394. https://doi.org/10.1175/mwr-d-11-00240.1
Xie, L., Bao, S., Pietrafesa, L. J., Foley, K., & Fuentes, M. (2006). A Real-Time Hurricane Surface Wind Forecasting Model: Formulation and Verification. Monthly Weather Review, 134(5), 1355-1370. https://doi.org/10.1175/MWR3126.1
Xiong, J., Yu, F., Fu, C., Dong, J., & Liu, Q. (2022). Evaluation and Improvement of the Era5 Wind Field in Typhoon Storm Surge Simulations. Applied Ocean Research, 118, 103000. https://doi.org/10.1016/j.apor.2021.103000
Xu, J., Nie, Y., Ma, K., Shi, W., & Lv, X. (2021). Assimilation Research of Wind Stress Drag Coefficient Based on the Linear Expression. Journal of Marine Science and Engineering, 9(10), 1135. https://doi.org/10.3390/jmse9101135
Yan, D., & Zhang, T. (2022). Research Progress on Tropical Cyclone Parametric Wind Field Models and Their Application. Regional Studies in Marine Science, 51, 102207. https://doi.org/10.1016/j.rsma.2022.102207
Yang, J., Lin, C.-y., Liu, H., Li, L., Wu, T.-r., Wang, P., Li, B., & Liu, P. L.-F. (2021). Effects of Island Topography on Storm Surge in Taiwan Strait During Typhoon Maria. Journal of Waterway, Port, Coastal, and Ocean Engineering, 147(2), 04020057. https://doi.org/10.1061/(asce)ww.1943-5460.0000619
Yang, M. J., Wu, Y. C., & Liou, Y. C. (2018). The Study of Inland Eyewall Reformation of Typhoon Fanapi (2010) Using Numerical Experiments and Vorticity Budget Analysis. Journal of Geophysical Research: Atmospheres, 123(17), 9604-9623. https://doi.org/10.1029/2018jd028281
Yang, M. J., Zhang, D. L., Tang, X. D., & Zhang, Y. (2011). A Modeling Study of Typhoon Nari (2001) at Landfall: 2. Structural Changes and Terrain‐Induced Asymmetries. Journal of Geophysical Research: Atmospheres, 116(D9). https://doi.org/10.1029/2010JD015445
Yang, M.-J., Zhang, D.-L., & Huang, H.-L. (2008). A Modeling Study of Typhoon Nari (2001) at Landfall. Part I: Topographic Effects. Journal of the Atmospheric Sciences, 65(10), 3095-3115. https://doi.org/10.1175/2008jas2453.1
Yin, J., Schlesinger, M. E., & Stouffer, R. J. (2009). Model Projections of Rapid Sea-Level Rise on the Northeast Coast of the United States. Nature Geoscience, 2(4), 262-266. https://doi.org/10.1038/ngeo462
Young, I. R. (2017). A Review of Parametric Descriptions of Tropical Cyclone Wind-Wave Generation. Atmosphere, 8(10), 194. https://doi.org/10.3390/atmos8100194
Yu, C. K., & Tsai, C. L. (2017). Structural Changes of an Outer Tropical Cyclone Rain Band Encountering the Topography of Northern Taiwan. Quarterly Journal of the Royal Meteorological Society, 143(703), 1107-1122. https://doi.org/10.1002/qj.2994
Yu, H.-c., & Yu, C.-s. (2011). Development and Application of an Operational Tide and Storm Surge Prediction Model for the Seas around Taiwan. China Ocean Engineering, 25(4), 591-608. https://doi.org/10.1007/s13344-011-0048-z
Yu, H.-C., Zhang, Y. J., Jason, C., Terng, C., Sun, W., Ye, F., Wang, H. V., Wang, Z., & Huang, H. (2017). Simulating Multi-Scale Oceanic Processes around Taiwan on Unstructured Grids. Ocean Modelling, 119, 72-93. https://doi.org/10.1016/j.ocemod.2017.09.007
Yu, H.-S., & SONG, G.-S. (2000). Submarine Physiographic Features in Taiwan Region and Their Geological Significance. Journal of the geological society of China, 43(2), 267-286.
Yu, Y.-C., Chen, H., Shih, H.-J., Chang, C.-H., Hsiao, S.-C., Chen, W.-B., Chen, Y.-M., Su, W.-R., & Lin, L.-Y. (2019). Assessing the Potential Highest Storm Tide Hazard in Taiwan Based on 40-Year Historical Typhoon Surge Hindcasting. Atmosphere, 10(6), 346. https://doi.org/10.3390/atmos10060346
Zhang, J. (2009). A Vulnerability Assessment of Storm Surge in Guangdong Province, China. Human and Ecological Risk Assessment, 15(4), 671-688. https://doi.org/10.1080/10807030903050749
Zhang, L., Shang, S., Zhang, F., & Xie, Y. (2020). Tide-Surge-Wave Interaction in the Taiwan Strait During Typhoons Soudelor (2015) and Dujuan (2015). Applied Sciences, 10(20), 7382.
Zhang, W. Z., Hong, H. S., Shang, S. P., Yan, X. H., & Chai, F. (2009). Strong Southward Transport Events Due to Typhoons in the Taiwan Strait. Journal of Geophysical Research: Oceans, 114(C11). https://doi.org/10.1029/2009jc005372
Zhang, W.-Z., Hong, H.-S., Shang, S.-P., Chen, D.-W., & Chai, F. (2007). A Two-Way Nested Coupled Tide-Surge Model for the Taiwan Strait. Continental Shelf Research, 27(10-11), 1548-1567. https://doi.org/10.1016/j.csr.2007.01.018
Zhao, L., Lu, A., Zhu, L., Cao, S., & Ge, Y. (2013). Radial Pressure Profile of Typhoon Field near Ground Surface Observed by Distributed Meteorologic Stations. Journal of Wind Engineering and Industrial Aerodynamics, 122, 105-112. https://doi.org/10.1016/j.jweia.2013.07.009
Zheng, X., Mayerle, R., Wang, Y., & Zhang, H. (2018). Study of the Wind Drag Coefficient During the Storm Xaver in the German Bight Using Data Assimilation. Dynamics of Atmospheres and Oceans, 83, 64-74. https://doi.org/10.1016/j.dynatmoce.2018.06.001
指導教授 吳祚任(Tso-Ren Wu) 審核日期 2024-1-29
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明