博碩士論文 109683004 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:7 、訪客IP:18.220.241.63
姓名 黃俊雁(Chun-Yen Huang)  查詢紙本館藏   畢業系所 太空科學與工程學系
論文名稱 赤道區電漿不規則體與瑞利-泰勒不穩定— 衛星觀測以及模式模擬
(Equatorial Plasma Bubbles and Rayleigh-Taylor Instability—Satellite Observations and Model Simulations)
相關論文
★ 台灣地區1996年散塊E層之變化★ 2000年4月6日磁暴研究
★ 利用GPS觀測與IRI 模擬研究1997及2000年台灣經度赤道異常峰之變化★ 台灣地區1996及2000年電離層散狀F層與全球定位系統相位擾亂之比較
★ 電離層地震前兆之研究★ 電離層波動垂直能量傳播之研究
★ 南美洲磁赤道地區散狀F層於太陽活動極大期之研究★ 台灣地區中界層於第22-23太陽週期間之特性研究
★ 利用全球定位系統觀測電離層地震前兆★ 臺灣地區電離層季節異常與太陽活動之相關性研究
★ 台灣地區地震與閃電之研究★ 台灣地區地震前之電離層電子濃度異常
★ 磁暴時低緯度電離層變化★ 電離層赤道異常與赤道電噴流
★ 日出前及日落後電離層高度變化之研究★ 電離層探測儀與全球定位系統聯合觀測電離層F層電漿密度不規則體
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 電離層赤道電漿泡(Equatorial Plasma Bubbles,EPBs),亦被稱為電漿不規則體(Plasma irregularity),經常導致夜間的電離層閃爍效應,其對衛星通信和導航系統有著顯著影響。預測電漿泡之發生對於提高基於衛星定位技術的可靠性至關重要。EPBs的發生主要歸因於瑞利-泰勒(Rayleigh-Taylor,R-T)不穩定性,其中電離層F層底部的垂直電漿密度梯度與向上的電漿漂移相結合,為電離層不穩定性的增長提供了有利條件。線性的R-T不穩定性增長率足以用來代表EPBs形成的電離層條件。因此,本論文主要研究三個部分:(1)探討衛星觀測到的EPBs發生概率全球分布以及季節變化;(2)建立新的R-T不穩定性增長率公式;(3)嘗試連結EPBs發生率與R-T增長率之間的關聯性。
在簡要介紹地球電離層和EPBs以及美國海洋暨大氣總署(NOAA)之自洽耦合大氣與電離層電漿層電動力學模式(WAM-IPE)後,詳細探討與比較了1999—2004年間低傾斜衛星ROCSAT-1、2020年的FORMOSAT-7/COSMIC-2(F7/C2)以及2006—2010年間高傾斜衛星DEMETER觀測到的EPBs經度和季節變化。本論文指出發生在南大西洋區域的非物理異常特徵是由於傳統電漿不規則體自動檢測的公式所導致。使用對數尺度來計算密度擾動,尤其是在環境密度非常低之情況,會導致電漿不規則體的誤判。因此,進一步應用了非線性和非平穩之時頻數據分析方法,即希爾伯特黃轉換(Hilbert-Huang Transform, HHT),來研究電漿不規則體的分佈以及變化。一般來說,希爾伯特黃轉換之瞬時總振幅與F7/C2觀測到的S4閃爍研究一致,這表明希爾伯特黃瞬時總振幅可以作為研究電離層電漿不規則體的良好參考。
基於磁力線積分理論推導出一項全新的R-T不穩定性增長率的表達式。該表達式旨在直接應用於結合了磁通量管結構和修改後的頂點座標系(Modified Apex Coordinates)的電離層模式,其包括磁力線積分電導率和電流的參數,並考慮準偶極坐標系(Quasi-Dipole Coordinates)和基於該坐標系修改後的電動力學方程式。詳細介紹新表達式的發展過程,並對R-T不穩定性增長率的日變化、經度變化和季節變化進行綜合分析,並且檢查了增長率與日落前反轉增強(pre-reversal enhancement,PRE)垂直漂移和太陽活動的依賴性。結果表明,當赤道電離層中存在強烈的PRE時,R-T增長率顯著地發生在當地時間18:00至22:00之間。除此之外,R-T增長率隨著太陽活動強度的增加而增加,且與日落交際線和地磁場線之間的角度有很強之相關性。這些結果與衛星觀測之電漿不規則體發生率的經度與季節變化一致,其表明新開發的R-T增長率在預測EPB的出現方面極具潛力。
根據前人之研究指出,EPB發生率和R-T不穩定增長率分別和PRE垂直漂移在太陽活動極大期間有著接近線性的關係。基於此關係嘗試利用2000年至2002年ROCSAT-1的觀測數據和WAM-IPE的模擬結果,建立EPB發生率與R-T增長率之間的關聯性。HHT瞬時總振幅和σ指數被做為閾值來識別大型EPB的發生。結果顯示,當增長率達到10-4時,發生大規模EPB事件的機率約為55%。然而,由於當前使用的WAM-IPE版本並無法完美地模擬實際電離層結構,在增長率和S4閃爍的比較中存在差異。這表明預測EPB發生仍然具有挑戰性,需要進一步研究。
摘要(英) Equatorial plasma bubbles (EPBs), also known as plasma irregularities, often result in nighttime scintillations, which significantly impact satellite communication and navigation systems. Understanding and predicting EPB occurrences is crucial for improving the performance and reliability of satellite-based technologies. The occurrence of EPBs is mainly attributed to the Rayleigh-Taylor (R-T) instability, where a strong vertical plasma density gradient at the bottom of the F region and an upward plasma drift combine to produce favorable conditions for plasma instability growth. A linear R-T instability growth rate can be used to represent the ionospheric conditions for EPB formation. Therefore, this dissertation focuses on three parts: (1) satellite observed EPB occurrence probability; (2) newly established R-T instability growth rate; (3) the connection between EPB occurrence rate and R-T instability growth rate.
After generally introducing the Earth’s ionosphere and EPBs as well as the self-consistent model coupled Whole Atmosphere Model and Ionosphere Plasmasphere Electrodynamics Model (WAM-IPE), longitudinal and seasonal variation observed by low-inclination satellites ROCSAT-1 during 1999–2004 and FORMOSAT-7/COSMIC-2 (F7/C2) in 2020, as well as a high-inclination satellite, DEMETER, during 2006–2010 are investigated in detail. The nonphysical anomalous feature in south American sector is caused by the limitations of traditional plasma irregularity auto-detections. Calculating perturbations using a logarithmic scale for density would lead to the misidentification of plasma irregularities, particularly when the ambient density is very low. Therefore, the Hilbert-Huang transform (HHT) is further applied to study the morphology of plasma irregularity. In general, the HHT instantaneous total amplitude of irregularity agrees well with previous studies and S4 scintillation observed by F7/C2, indicating that the instantaneous total amplitude can be a good reference for studying ionospheric plasma irregularities.
On the other hand, a new expression for the R-T instability growth rate, based on field-line integrated theory, is established. This expression is designed to be directly applicable in ionospheric models that utilize the magnetic flux tube structure with Modified Apex Coordinates. The growth rates of R-T instability are calculated using a self-consistent model: the coupled Whole Atmosphere Model and Ionosphere Plasmasphere Electrodynamics Model (WAM-IPE). The calculation incorporates parameters such as field-line integrated conductivities and currents, taking into account Quasi-Dipole Coordinates and the modified electrodynamics equations. This chapter provides a detailed development of the new equation and a comprehensive analysis of the diurnal, longitudinal, and seasonal variations of the R-T instability growth rate. It also examines the dependencies of growth rates on pre-reversal enhancement (PRE) vertical drifts and solar activity. The results indicate that significant R-T growth rates occur between 18:00 and 22:00 local time when strong PRE is present in the equatorial ionosphere. Additionally, the simulated R-T growth rate increases with higher levels of solar activity and shows strong correlations with the angle between the sunset terminator and the geomagnetic field line. These results are consistent with plasma irregularity occurrence rates observed by various satellites, suggesting that the newly developed R-T growth rate calculation has great potential for predicting the occurrence of EPBs.
The relationship between the EPB occurrence rate and the R-T growth rate using ROCSAT-1 observations and WAM-IPE simulations within the time range of 1900~2200 LT during the high solar activity period of 2000~2002 is further investigated. The HHT instantaneous total amplitude and the σ index are used as thresholds to identify large plasma irregularities. The result shows that when the growth rate reaches 10-4 the probability of a deep EPB event occurring is approximately 55%. However, since the current free-run WAM-IPE cannot perfectly simulate the actual ionospheric structure, there are discrepancies in the comparison of the growth rate and S4 scintillation. This indicates that predicting EPB occurrence remains challenging and should be further considered.
關鍵字(中) ★ 電離層
★ 赤道區電漿泡
★ 衛星觀測
★ 模式模擬
關鍵字(英) ★ Ionosphere
★ Equatorial Plasma Bubble
★ Satellite Observations
★ Model Simulations
論文目次 中文摘要
Abstract
Acknowledgment
Table of Contents
List of Figures
Chapter 1. Introduction 1
1.1 Motivation and Objective 1
1.2 The Earth’s Ionosphere 3
1.3 The Pre-reversal Enhancement 9
1.4 Ionospheric Conductivities 15
1.5 The Equatorial Plasma Bubbles/Irregularities 22
1.6 Rayleigh-Taylor Instability 28
Chapter 2. WAMIPE Model 34
2.1 Whole Atmosphere Model (WAM) 34
2.2 Ionosphere Plasmasphere Electrodynamics (IPE) Model 36
2.3 Modified Apex Coordinates system 37
2.4 Modifications to Electrodynamics equations 42
Chapter 3. Observations of Equatorial Plasma Irregularities 46
3.1 Distinct irregularity structure detected by different satellites 46
3.2 Instrument and data analysis 47
3.3 Global distribution and seasonal variation 56
3.4 Investigation of the applicability of σ index 61
3.5 Summary of satellite observations 69
Chapter 4. New Expression for Linear Rayleigh-Taylor Instability 70
4.1 Equation development 70
4.2 Further Investigation of Assumption 78
4.3 Simulation Results 82
4.4 Discussion 89
4.5 Summary of model simulations 96
4.6 The impact of neutral wind on the R-T growth rate 98
Chapter 5. Correlation Analysis of EPB Occurrence Rate and R-T Growth Rate 106
5.1 Background and motivation 106
5.2 Statistical Results and Future Work 110
5.3 Summary 117
Chapter 6. Conclusion 118
參考文獻 Abdu, M. A., Bittencourt, J. A., and Batista, I. S. (1981). Magnetic declination control of the equatorial F region dynamo electric field development and spread F, J. Geophys. Res., 86, 11,443–11,446
Akmaev, R. A. and Juang, H. M. H. (2008). Using enthalpy as a prognostic variable in atmospheric modelling with variable composition. Quarterly Journal of the Royal Meteorological Society, 134(637), 2193–2197. https://doi.org/10.1002/qj.345
Akmaev, R. A. (2011). Whole atmosphere modeling: Connecting terrestrial and space weather. Reviews of Geophysics, 49(4), RG4004. https://doi.org/10.1029/2011RG000364
Aol, S., Buchert, S., & Jurua, E.: Traits of sub-kilometre F-region irregularities as seen with the Swarm satellites (2020). Ann. Geophys., 38, 243–261, https://doi.org/10.5194/angeo-38-243-2020.
Basu, S., MacKenzie, E., & Basu, S., (1988). Ionospheric constraints on VHF/UHF communication links during solar maximum and minimum periods. Radio Science, 23, 363-378, https://doi.org/10.1029/RS023i003p00363.
Basu, S., Kudeki, E., Basu, S., Valladares, C. E., Weber, E. J., Zengingonul, H. P., Bhattacharyya, S., Sheehan, R., Meriwether, J. W., Biondi, M. A., Kuenzler, H., & Espinoza, J. (1996). Scintillations, plasma drifts, and neutral winds in the equatorial ionosphere after sunset. Journal of Geophysical Research, 101(A12), 26,795–26,809. https://doi.org/10.1029/96JA00760
Batista, I., Abdu, M., & Bittencourt, J. (1986). Equatorial F region vertical plasma drifts: Seasonal and longitudinal asymmetries in the American sector. Journal of Geophysical Research, 91(A11), 12055–12064. https://doi.org/10.1029/JA091iA11p12055
Bittencourt, J. A., Abdu, M. A. (1981). Theoretical Comparison between Apparent and Real Vertical Ionization Drift Velocities in the Equatorial F-Region. Journal of Geophysical Research, v. 86, n. A4, p. 2451-55, 10.1029/JA086iA04p02451.
Booker, H. G., and H. W. Wells (1938), Sowltering of radio waves by the F region ionosphere, J. Geophys. Res., 43, 249-256.
Buchert, S., Zangerl, F., Sust, M., Andre, M., Eriksson, A., Wahlund, J.-E., and Opgenoorth, H. (2015). SWARM observations of equatorial electron densities and topside GPS track losses, Geophys. Res. Lett., 42, 2088–2092, https://doi.org/10.1002/2015GL063121, 2015.
Burke, W. J., Gentile, L. C., Huang, C. Y., Valladares, C. E., & Su, S. Y. (2004). Longitudinal variability of equatorial plasma bubbles observed by DMSP and ROCSAT-1, J. Geophys. Res., 109, A12301, https://doi.org/10.1029/2004JA010583.
Campbell, W., Introduction to geomagnetic fields, Cambridge University Press, 1997
Carter, B. A., Retterer, J. M., Yizengaw, E., Groves, K., Caton, R., McNamara, L., et al. (2014a). Geomagnetic control of equatorial plasma bubble activity modeled by the TIEGCM with Kp. Geophysical Research Letters, 41(15), 5331–5339. https://doi.org/10.1002/2014GL060953
Carter, B. A., E. Yizengaw, J. M. Retterer, M. Francis, M. Terkildsen, R. Marshall, R. Norman, and K. Zhang (2014b), An analysis of the quiet time day-to-day variability in the formation of postsunset equatorial plasma bubbles in the Southeast Asian region, J. Geophys. Res. Space Physics, 119, 3206–3223, doi:10.1002/2013JA019570
Chang, Loren C., Chiu, P. Y., Salinas, C. C. J. H., Chen, S. P., Duann, Y., Liu, J. Y., Lin, C. H., & Y. Y. Sun, (2018). On the Relationship Between E Region Scintillation and ENSO Observed by FORMOSAT-3/COSMIC. Journal of Geophysical Research: Space Physics, 123, 1-10, https://doi.org/10.1029/2018JA025299.
Chen S. P., Bilitza, D., Liu, J. Y., Caton, R., Chang, L.C., & Yeh, W. H. (2017). An empirical model of L-band scintillation S4 index constructed by using FORMOSAT-3/COSMIC data. Adv. Space Res., 60 (5) (2017), pp. 1015-1028, https://doi.org/10.1016/j.asr.2017.05.031.
Chen, S. P., Lin, C. H., Rajesh, P. K., Liu, J. Y., Eastes, R., Chou, M. Y., & Choi, J. M. (2021). Near real-time global plasma irregularity monitoring by FORMOSAT-7/COSMIC-2. Journal of Geophysical Research: Space Physics, 126, e2020JA028339. https://doi. org/10.1029/2020JA028339
Devasia, C. V., Jyoti, N., Viswanathan, K. S., et al. (2002). On the plausible leakage of thermospheric meridional winds with equatorial spread F. J. Atmos. Sol. Terr. Phys. 64 (1), 1–12. doi:10.1016/S1364-6826(01)00089-X
Dubey, S., Wahi, R., Gwal., A.K. (2006). Ionospheric effects on GPS positioning. Adv. Space Res., 38 (11) (2006), pp. 2478-2484, 10.1016/j.asr.2005.07.030
Dungey, J. W. (1956). Convective diffusion in the equatorial F-region, J. Atmos. Terr. Phys, 9, 304– 310. https://doi.org/10.1016/0021-9169(56)90148-9
Eccles, J. V. (1998), Modeling investigation of the evening prereversal enhancement of the zonal electric field in the equatorial ionosphere, J. Geophys. Res., 103, 26,709–26,719
Elkins, T. J., & Papagiannis, M. D. (1969). Measurement and interpretation of power spectrums of ionospheric scintillation at a sub-auroral location. Journal of Geophysical Research, 74(16), 4105–4115. https://doi.org/10.1029/JA074i016p04105
Fang, T.-W., Akmaev, R., Fuller-Rowell, T., Wu, F., Maruyama, N., & Millward, G. (2013). Longitudinal and day-to-day variability in the ionosphere from lower atmosphere tidal forcing. Geophysical Research Letters, 40(11), 2523–2528. https://doi.org/10.1002/grl.50550
Fang, T.-W., Kubaryk, A., Goldstein, D., Li, Z., Fuller-Rowell, T., Millward, G., et al. (2022). Space weather environment during the SpaceX Starlink satellite loss in February 2022. Space Weather, 20, e2022SW003193. https://doi.org/10.1029/2022SW003193
Farley, D. T., B. B. Balsley, R. F. Woodman, and J. P. McClure (1970), Equatorial spread F: Impliowlions of VHF radar observations, J. Geophys. Res., 75, 7199-7216.
Farley, D. T., Bonelli, E., Fejer, B. G., and Larsen, M. F. (1986). The prereversal enhancement of the zonal electric field in the equatorial ionosphere. J. Geophys. Res. 91, 13,723.
Fejer, B. G., Scherliess, L., and de Paula, E. R. (1999). Effects of the vertical plasma drift velocity on the generation and evolution of equatorial spread F, J. Geophys. Res., 104, 19,859–19,869. https://doi.org/10.1029/1999JA900271
Fejer, B., Jensen, J., & Su, S.-Y. (2008). Quiet time equatorial F region vertical plasma drift model derived from ROCSAT-1 observations. Journal of Geophysical Research, 113(A5). https://doi.org/10.1029/2007JA012801
Fesen, C. G., Crowley, G., Roble, R. G., Richmond, A. D., and Fejer, B. G. (2000). Simulation of the pre-reversal enhancement in the low latitude vertical ion drifts, Geophys. Res. Lett.,27(13), 1851–1854.
Fuller-Rowell, T. J., Akmaev, R. A., Wu, F., Anghel, A., Maruyama, N., Anderson, D. N., Codrescu, M. V., Iredell, M., Moorthi, S., Juang, H. M., Hou, Y. T., & Millward, G. (2008). Impact of terrestrial weather on the upper atmosphere. Geophysical Research Letters, 35, L09808. https://doi.org/10.1029/2007GL032911
Fuller-Rowell, Wu, T., F., Akmaev, R., Fang, T.-W., and Araujo-Pradere, E. (2010), A whole atmosphere model simulation of the impactof a sudden stratospheric warming on thermosphere dynamics and electrodynamics,J. Geophys. Res.,115, A00G08, doi: 10.1029/2010JA015524
Gauss, C. F. (1838). Allgemeine Theorie des Erdmagnetismus: Resultate aus den Beobachtungen des magnetischen Vereins im Jahre. edited 460 by:Gauss, C. F. and Weber, W., 1–57, Weidmannsche Buchhandlung, Leipzig, 1839.
Glassmeier, K. H., Tsurutani, B. T. (2014). Carl Friedrich Gauss-general theory of terrestrial magnetism - a revised translation of the Germantext, Hist. Geo.SpaceSci.,5:11–62,2014. https://doi.org/10.5194/hgss-5-11-2014
Gentile, L. C., Burke, W. J., & Rich, F. J. (2006). A global climatology for equatorial plasma bubbles in the topside ionosphere, Ann. Geophys., 24, 163–172, https://doi.org/10.5194/angeo-24-163-2006.
Haerendel, G. (1973). Theory of equatorial spread-F. Max Planck Institute for Extraterrestrial Physics.
Haerendel, G., and Eccles, J. V. (1992). The role of the equatorial electrojet in the evening ionosphere. J. Geophys. Res. 97, 1181–1192.
Haerendel, G., Eccles, J. V., & Cakir, S. (1992). Theory for modeling the equatorial evening ionosphere and the origin of the shear in the horizontal plasma flow.
Huang, N. E., Shen, Z., Long, S. R., Wu, M. C., Shih, H. H., Zheng, Q., Yen, N. C., Tung, C. C., & Liu, H. H., (1998). The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. Proc. R. Soc. Lond. 454A, 903–995. https://doi.org/10.1098/rspa.1998.0193.
Huang, C. S., Beaujardiere, O. de La, Roddy, P. A., Hunton, D. E., Liu, J. Y., & Chen, S. P. (2014). Occurrence probability and amplitude of equatorial ionospheric irregularities associated with plasma bubbles during low and moderate solar activities (2008–2012), J. Geophys. Res. Space Physics, 119, 1186–1199, https://doi.org/10.1002/2013JA019212
Huang, C. S., and Hairston, M. R. (2015). The postsunset vertical plasma drift and its effects on the generation of equatorial plasma bubbles observed by the C/NOFS satellite, J. Geophys. Res. Space Physics, 120, 2263–2275, doi:10.1002/2014JA020735.
Huang, C. Y., Liu, J. Y., Chang, F. Y., Lin, C. Y., Chao, C. K., Chang, L. C., Lin, C. Y. (2022). Instantaneous amplitude of low-latitude ionospheric irregularities probed by ROCSAT-1, DEMETER, and FORMOSAT-7/COSMIC-2. Adv Space Res. https://doi.org/10.1016/j.asr.2022.05.024
Huba, J. D., Hassam, A. B., Schwartz, I. B., and Keskinen, M. J. (1985) Ionospheric turbulence: Interchange instability and chaotic fluid behavior, Geophys. Res. Left., 12, 65
Huba, J. D. (2022). Generalized Rayleigh-Taylor instability: Ion inertia, acceleration forces, and E region drivers. Journal of Geophysical Research: Space Physics, 127, e2022JA030474. https://doi.org/10.1029/2022JA030474
Jayachandran, Balan, B. N., Rao, P. B., Sastri, J. H., and Bailey, G. J., HF Doppler and ionosonde observations on the onset conditions of equatorial spread F (1993). J. Geophys. Res., 98, 13741.
Jin. Y., Xiong, C., Clausen, L., Spicher, A., Kotova, D., Brask, S., et al. (2020). Ionospheric plasma irregularities based on in situ measurements from the Swarm satellites. Journal of Geophysical Research: Space Physics, 124, e2020JA028103. https://doi.org/10.1029/2020JA028103
Jyoti, N., Devasia, C. V., Sridharan, R., and Tiwari, D. (2004). Threshold height (h’F)c for the meridional wind to play a deterministic role in the bottom side equatorial spread F and its dependence on solar activity. Geophys. Res. Lett. 31, L12809. doi:10.1029/2004GL019455
Kelley, M. C., Haerendel, G., Kappler, H., Valenzuela, A., Balsley, B. B., Carter, D. A., et al. (1976). Evidence for a Rayleigh-Taylor type instability and upwelling of depleted density regions during equatorial spread F. Geophysical Research Letters, 3(8), 448–450. https://doi.org/10.1029/GL003i008p00448
Kelley, M. C., Swartz, W. E., Tayan Y., Torbert R. (1977). On the relationship between the plasma density profile measured in the equatorial E and F regions and simultaneous energetic particle and spread-F observations, J. Atm. ‧err. Phys.,39, 1263-1268
Kelley, M. C., Larsen, M. F., LaHoz, C. A., and McClure, J. P. (1981). Gravity wave initiation of equatorial spread F: A case study. J. Geophys. Res. 86, 9087.
Kelley M. C. (2009). The Earth’s ionosphere: electrodynamics and plasma physics, 2nd edn. Elsevier, New York
Kelley, M. C., Ilma, R. R., and Crowley, G. (2009). On the origin of pre-reversal enhancement of the zonal equatorial field. Ann. Geophys., in press.
Kil, H., & Heelis, R. A. (1998). Global distribution of density irregularities in the equatorial ionosphere. J. Geophys. Res. 103 (A1), 407–417. http://dx.doi.org/10.1029/ 97JA02698.
Kil, H., Paxton, L. J., & Oh, S. J. (2009). Global bubble distribution seen from ROCSAT-1 and its association with the evening prereversal enhancement, J. Geophys. Res., 114, A06307, https://doi.org/10.1029/2008JA013672.
Kil H, Oh, S. J. (2011). Dependence of the evening prereversal enhancement of the vertical plasma drift on geophysical parameters. J Geophys Res 116: A05311. https://doi.org/10.1029/2010JA016352
Kil, H., Lee, W. K., & Paxton, L. J. (2020). Origin and distribution of daytime electron density irregularities in the low-latitude F region. Journal of Geophysical Research: Space Physics, 125, e2020JA028343. https://doi.org/10.1029/2020JA028343.
Laundal, K. M., and Richmond A. D. (2016). Magnetic coordinate systems, Space Sci. Rev., 1–33, doi:10.1007/s11214-016-0275-y.
Lee, W. K., Kil, H., & Paxton, L. J. (2021). Global distribution of nighttime MSTIDs and its association with E region irregularities seen by CHAMP satellite. Journal of Geophysical Research: Space Physics, 126, e2020JA028836. https://doi.org/10.1029/2020JA028836.
Liu, J. Y., Rajesh, P. K., Lee, I. T., and Chow, T. C. (2011). Airglow observations over the equatorial ionization anomaly zone in Taiwan. Ann. Geophys. 29, 749–757. https://doi.org/10.5194/angeo- 29-749-2011.
Liu, J.Y., Chen, S.P., Yeh, W.H., Tsai, H.F., Rajesh, P.K., (2016). The worst-case GPS scintillations on the ground estimated by using radio occultation observations of FORMOSAT-3/COSMIC during 2007–2014. Surv. Geophys. 37, 791. http://dx.doi.org/10.1007/s10712-015- 9355-x.
Liu, J. Y., Sun, Y. Y., Chao, C. K., Chen, S. P., & Parrot, M. (2017). An observing system simulation experiment for FORMOSAT-5/AIP probing topside ionospheric plasma irregularities by using DEMETER/IAP. Terr. Atmos. Ocean. Sci., 28, 111-116, http://doi: 10.3319/TAO.2016.08.18.01(EOF5)
Liu, J. Y. and Wu, S. A, (2021). Global observations of ROTI by using ground-based GNSS receivers. Terr. Atmos. Ocean. Sci., 32, 519-530, doi: 10.3319/TAO.2021.07.26.03
Luhr, H., Xiong, C., Park, J., & Rauberg, J. (2014). Systematic study of intermediate-scale structures of equatorial plasma irregularities in the ionosphere based on CHAMP observations, Front. Phys., 2, 1–9, https://doi.org/10.3389/fphy.2014.00015.
Maruyama, T. (1988). A diagnostic model for equatorial spread F, 1, Model description and application to electric field and neutral wind effects. J. Geophys. Res. 93 (14), 14611. doi:10.1029/ja093ia12p14611
Maruyama, N., Sun, Y.?Y., Richards, P. G., Middlecoff, J., Fang, T.?W., Fuller?Rowell, T. J., et al. (2016). A new source of the midlatitude ionospheric peak density structure revealed by a new Ionosphere?Plasmasphere model. Geophysical Research Letters,43, 2429–2435. https://doi.org/10.1002/2015GL067312
Mendillo, M. and Baumgardner, J. (1982). Airglow characteristics of equatorial plasma depletions. J. Geophys. Res. 87, 7641–7652. https://doi. org/10.1029/JA087iA09p07641.
Mendillo, M., Lin, B., & Aarons, J. (2000). The application of GPS observations to equatorial aeronomy, Radio Sci., 35,885-904. https://doi.org/10.1029/1999RS002208.
McClure, J. P., Singh, S., Bamgboye, D. K., Johnson, F. S., & Kil, H. (1998). Occurrence of equatorial F region irregularities: evidence for tropospheric seeding. J. Geophys. Res. 103 (A12), 29119–29135. http://dx.doi.org/10.1029/98JA02749.
McCormack, J. P., Eckermann, S. D., Siskind, D. E., and McGee, T. J. (2006). CHEM2D-OPP: A new linearized gas-phase ozone photochemistry parameterization for high-altitude NWP and climate models, Atmos. Chem. Phys., 6, 4943–4972, https://doi.org/10.5194/acp-6-4943-2006
Mendillo, M., B. Lin, J. Aarons (2000), The application of GPS observations to equatorial aeronomy, Radio Sci., 35,885-904.
Obana, Y., Maruyama, N., Shinbori, A.,Hashimoto, K. K., Fedrizzi, M., Nose, M., et al. (2019). Response of theionosphere?plasmasphere coupling to the September 2017 storm: What erodesthe plasmasphere so severely? Space Weather, 17, 861–876. https://doi.org/10.1029/2019SW002168
Ossakow, S. L. (1981). Spread F theories—A review. Journal of Atmospheric and Terrestrial Physics, 43(5–6), 437–452. https://doi.org/10.1016/0021-9169(81)90107-0
Pedatella, N. M., Fang, T.-W., Jin, H., Sassi F., Schmidt, H., Chau, J. L., Siddiqui, T. A., and Goncharenko, L. (2016). Multimodel comparison ofthe ionosphere variability during the 2009 sudden stratosphere warming, J. Geophys. Res. Space Physics,121, 7204–7225, doi:10.1002/2016JA022859.
Perkins, F. (1973), Spread F and ionospheric currents, J. Geophys. Res., 78, 218.
Pi, X., Mannucci, A. J., Lindqwister, U. J., and Ho, C. M., (1997). Monitoring of global ionospheric irregularities using the worldwide GPS network. Geophys. Res. Lett., 24, 2283-2286, doi: 10.1029/97gl02273.
Retterer, J. M. (2010). Forecasting low-latitude radio scintillation with 3-D ionospheric plume models: 1. Plume model. J. Geophys. Res., 115, A03306, https://doi.org/10.1029/2008JA013839.
Richards, P. G., Fennelly, J. A., & Torr, D. G. (1994). EUVAC: A solar EUV flux model for aeronomic calculations. Journal of Geophysica Research, 99(A5), 8981–8992. https://doi.org/10.1029/94JA00518
Richards, P. G., and Torr, D. G. (1996). The field line interhemispheric plasma model, in STEP: Handbook of Ionospheric Models, edited by R. W. Schunk, pp. 207–216, Utah State Univ, Logan
Richards, P. G., Bilitza, D., and Voglozin D. (2010). Ion density calculator (IDC): A new efficient model of ionospheric ion densities, Radio Sci., 45, RS5007, doi:10.1029/2009RS004332.
Richmond, A. D. and Roble, R. G., Electrodynamic effects of thermospheric winds from the NCAR thermospheric general circulation model (1987). J. Geophys. Res., 92, 12,365-12,376.
Richmond, A. D. (1995). Ionospheric electrodynamics using magnetic apex coordinates. Journal of Geomagnetism and Geoelectricity, 47(2), 191–212. https://doi.org/10.5636/jgg.47.191
Richmond, A. D., and Maute, A. (2013), Ionospheric electrodynamics modeling, in Modeling the Ionosphere-Thermosphere System, Geophys. Monogr. 201, edited by J. Huba, R. Schunk, and G. Khazanov, pp. 57–71, AGU, Washington, D. C., doi:10.1029/2012GM001331.
Richmond, A. D., Fang, T. W., & Maute, A. (2015). Electrodynamics of the equatorial evening ionosphere: 1. Importance of winds in different regions. Journal of Geophysical Research: Space Physics, 120(3), 2118–2132. https://doi.org/10.1002/2014JA020934
Richmond, A. D., and T. W. Fang (2015). Electrodynamics of the equatorial evening ionosphere: 2. Conductivity influences on convection, current, and electrodynamic energy flow, J. Geophys. Res. Space Physics, 120, 2133–2147, doi:10.1002/2014JA020935.
Rino, C. L., R. T. Tsunoda R. T., J. Petriceks, R. C. Livingston, M. C. Kelley, and K. D. Baker, (1981). Simultaneous rocket-borne beacon and in situ measurements of equatorial spread F—intermediate wavelength results. J. Geophys. Res. 86, 2411.
Rishbeth, H. (1971), Polarization fields produced by winds in the equatorial F-region, Planet. Space Sci., 19, 357–369
Sahai, Y., P. R. Fagundes, J. A. Bittencourt (1999), Solar cycle effects on large scale equatorial F-region plasma depletions. Adv. Space Res. 24, 1477-1480
Scherliess, L., & Fejer, B. G. (1999). Radar and satellite global equatorial F region vertical drift model. Journal of Geophysical Research, 104(A4), 6829–6842. https://doi.org/10.1029/1999JA900025
Shinagawa, H., Jin, H., Miyoshi, Y. et al. Daily and seasonal variations in the linear growth rate of the Rayleigh-Taylor instability in the ionosphere obtained with GAIA. Prog Earth Planet Sci 5, 16 (2018). https://doi.org/10.1186/s40645-018-0175-8
Shiokawa, K., Otsuka, Y., Lynn, K. J., et al. (2015). Airglow-imaging observation of plasma bubble disappearance at geomagnetically conjugate points. Earth Planet Sp. 67, 43. https://doi.org/10.1186/ s40623-015-0202-6.
Smith, J. M., Rodrigues, F. S., Fejer, B. G., and Milla, M. A. (2016). Coherent and incoherent scatter radar study of the climatology and day-to-day variability of mean F region vertical drifts and equatorial spread F, J. Geophys. Res. SpacePhysics,121, 1466–1482, doi:10.1002/2015JA021934.
Stolle, C., Luhr, H., Rother, M., & Balasis, G. (2006). Magnetic signatures of equatorial spread F as observed by the CHAMP satellite, J. Geophys. Res., 111, A02304, https://doi.org/10.1029/2005JA011184.
Su, S. Y., Liu, C. H., Ho, H. H., & Chao, C. K. (2006). Distribution characteristics of topside ionospheric density irregularities: Equatorial versus midlatitude regions. J. Geophys. Res., 111, A06305, https://doi.org/10.1029/2005JA011330.
Sultan, P. J. (1996). Linear theory and modeling of the Rayleigh-Taylor instability leading to the occurrence of equatorial spread F. Journal of Geophysical Research, 101(A12), 26875–26891. https://doi.org/10.1029/96ja00682
Sun Y. Y., Matsuo, T., Araujo-Pradere, E. A., & Liu, J. Y. (2013). Ground-based GPS observation of SED-associated irregularities over CONUS. J Geophys Res Space Phys 118(5):2478–2489. https://doi.org/10.1029/2012ja018103
Sun, Y. Y., Liu, J. Y., Chao, C. K., & Chen, C. H. (2015a). Intensity of low-latitude nighttime F-region ionospheric density irregularities observed by ROCSAT and ground-based GPS receivers in solar maximum. J. Atmos. Sol.-Terr. Phys., 123, 92-101, https://doi.org/10.1016/j.jastp.2014.12.013.
Sun, Y. Y., Matsuo, T., Maruyama, N., & Liu, J. Y. (2015b). Field?aligned neutral wind bias correction scheme for global ionospheric modeling at midlatitudes by assimilating FORMOSAT?3/COSMIC hmF2 data under geomagnetically quiet conditions. Journal of Geophysical Research: Space Physics,120, 3130–3149. https://doi.org/10.1002/2014JA020768
Tsunoda, R. T. (1985). Control of the seasonal and longitudinal occurrence of equatorial. scintillations by the longitudinal gradient in integrated E region Pedersen conductivity. Journal of Geophysical Research, 90(A1), 447–456. https://doi.org/10.1029/JA090iA01p00447
Tsunoda, R. T., Saito, S., & Nguyen, T. T. (2018). Post-sunset rise of equatorial F layer—Or upwelling growth. Progress in Earth and Planetary Science, 22, 5. https://doi-org.cuucar.idm.oclc.org/10.1186/s40645-018-0179-4
Uma, G., Liu, J. Y., Chen, S. P., Sun, Y. Y., Brahmanandam, P. S., & Lin, C. H. (2012). A comparison of the equatorial spread F derived by the International Reference Ionosphere and the S4 index observed by FORMOSAT-3/COSMIC during the solar minimum period of 2007-2009. Earth, Planets and Space, 64(6), 467-471. https://doi.org/10.5047/eps.2011.10.014.
Wang, N., Guo, L., Ding, Z. et al. (2019). Longitudinal differences in the statistical characteristics of ionospheric spread-F occurrences at midlatitude in Eastern Asia. Earth Planets Space 71, 47. https://doi.org/10.1186/s40623-019-1026-6
Wu, Q. (2015). Longitudinal and seasonal variation of the equatorial flux tube integrated Rayleigh-Taylor instability growth rate. Journal of Geophysical Research: Space Physics, 120(9), 7952–7957. https://doi.org/10.1002/2015JA021553
Wu, Q., (2017). Solar effect on the Rayleigh-Taylor instability growth rate as simulated by the NCAR TIEGCM. J. Atmos. Sol. Terr. Phys. 156, 97–102. https://doi.org/ 10.1016/j.jastp.2017.03.007
Xiong, C., Park, J., Luhr, H., Stolle, C., & Ma, S. Y. (2010). Comparing plasma bubble occurrence rates at CHAMP and GRACE altitudes during high and low solar activity. Annales Geophysicae, 28(9), 1647-1658. https://doi.org/10.5194/angeo-28-1647-2010
Yokoyama, T., Shinagawa, H., & Jin, H. (2014). Nonlinear growth, bifurcation, and pinching of equatorial plasma bubble simulated by three-dimensional high-resolution bubble model. J. Geophys. Res., 119, 10474-10482, https://doi.org/10.1002/2014JA020708.
Zalesak, S. T., and Ossakow, S. L. (1982). On the prospect for artificially inducing equatorial spread F, Memo. Rep. 4899, Nav. Res. Lab., Washington, D. C.
Zalesak, S. T., and Huba, J. D. (1991). Effect of meridional winds on the development of equatorial spread F. Eos Trans. AGU 72, 211.
Zargham, S., and Seyler, C. E. (1989). Collisional and inertial dynamics of the ionospheric interchange instability. Journal of Geophysical Research, 94(A7), 9009. https://doi.org/10.1029/ja094ia07p09009
Zhou, X., Yue, X., Liu, H.-L., Lu, X., Wu, H., Zhao, X., & He, J. (2021). A comparative study of ionospheric day-to-day variability over Wuhan based on ionosonde measurements and model simulations. Journal of Geophysical Research: Space Physics, 126, e2020JA028589. https://doi.org/10.1029/2020JA0285895
指導教授 劉正彥(Jann-Yenq Liu) 審核日期 2024-10-7
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明