參考文獻 |
Abdu, M. A., Bittencourt, J. A., and Batista, I. S. (1981). Magnetic declination control of the equatorial F region dynamo electric field development and spread F, J. Geophys. Res., 86, 11,443–11,446
Akmaev, R. A. and Juang, H. M. H. (2008). Using enthalpy as a prognostic variable in atmospheric modelling with variable composition. Quarterly Journal of the Royal Meteorological Society, 134(637), 2193–2197. https://doi.org/10.1002/qj.345
Akmaev, R. A. (2011). Whole atmosphere modeling: Connecting terrestrial and space weather. Reviews of Geophysics, 49(4), RG4004. https://doi.org/10.1029/2011RG000364
Aol, S., Buchert, S., & Jurua, E.: Traits of sub-kilometre F-region irregularities as seen with the Swarm satellites (2020). Ann. Geophys., 38, 243–261, https://doi.org/10.5194/angeo-38-243-2020.
Basu, S., MacKenzie, E., & Basu, S., (1988). Ionospheric constraints on VHF/UHF communication links during solar maximum and minimum periods. Radio Science, 23, 363-378, https://doi.org/10.1029/RS023i003p00363.
Basu, S., Kudeki, E., Basu, S., Valladares, C. E., Weber, E. J., Zengingonul, H. P., Bhattacharyya, S., Sheehan, R., Meriwether, J. W., Biondi, M. A., Kuenzler, H., & Espinoza, J. (1996). Scintillations, plasma drifts, and neutral winds in the equatorial ionosphere after sunset. Journal of Geophysical Research, 101(A12), 26,795–26,809. https://doi.org/10.1029/96JA00760
Batista, I., Abdu, M., & Bittencourt, J. (1986). Equatorial F region vertical plasma drifts: Seasonal and longitudinal asymmetries in the American sector. Journal of Geophysical Research, 91(A11), 12055–12064. https://doi.org/10.1029/JA091iA11p12055
Bittencourt, J. A., Abdu, M. A. (1981). Theoretical Comparison between Apparent and Real Vertical Ionization Drift Velocities in the Equatorial F-Region. Journal of Geophysical Research, v. 86, n. A4, p. 2451-55, 10.1029/JA086iA04p02451.
Booker, H. G., and H. W. Wells (1938), Sowltering of radio waves by the F region ionosphere, J. Geophys. Res., 43, 249-256.
Buchert, S., Zangerl, F., Sust, M., Andre, M., Eriksson, A., Wahlund, J.-E., and Opgenoorth, H. (2015). SWARM observations of equatorial electron densities and topside GPS track losses, Geophys. Res. Lett., 42, 2088–2092, https://doi.org/10.1002/2015GL063121, 2015.
Burke, W. J., Gentile, L. C., Huang, C. Y., Valladares, C. E., & Su, S. Y. (2004). Longitudinal variability of equatorial plasma bubbles observed by DMSP and ROCSAT-1, J. Geophys. Res., 109, A12301, https://doi.org/10.1029/2004JA010583.
Campbell, W., Introduction to geomagnetic fields, Cambridge University Press, 1997
Carter, B. A., Retterer, J. M., Yizengaw, E., Groves, K., Caton, R., McNamara, L., et al. (2014a). Geomagnetic control of equatorial plasma bubble activity modeled by the TIEGCM with Kp. Geophysical Research Letters, 41(15), 5331–5339. https://doi.org/10.1002/2014GL060953
Carter, B. A., E. Yizengaw, J. M. Retterer, M. Francis, M. Terkildsen, R. Marshall, R. Norman, and K. Zhang (2014b), An analysis of the quiet time day-to-day variability in the formation of postsunset equatorial plasma bubbles in the Southeast Asian region, J. Geophys. Res. Space Physics, 119, 3206–3223, doi:10.1002/2013JA019570
Chang, Loren C., Chiu, P. Y., Salinas, C. C. J. H., Chen, S. P., Duann, Y., Liu, J. Y., Lin, C. H., & Y. Y. Sun, (2018). On the Relationship Between E Region Scintillation and ENSO Observed by FORMOSAT-3/COSMIC. Journal of Geophysical Research: Space Physics, 123, 1-10, https://doi.org/10.1029/2018JA025299.
Chen S. P., Bilitza, D., Liu, J. Y., Caton, R., Chang, L.C., & Yeh, W. H. (2017). An empirical model of L-band scintillation S4 index constructed by using FORMOSAT-3/COSMIC data. Adv. Space Res., 60 (5) (2017), pp. 1015-1028, https://doi.org/10.1016/j.asr.2017.05.031.
Chen, S. P., Lin, C. H., Rajesh, P. K., Liu, J. Y., Eastes, R., Chou, M. Y., & Choi, J. M. (2021). Near real-time global plasma irregularity monitoring by FORMOSAT-7/COSMIC-2. Journal of Geophysical Research: Space Physics, 126, e2020JA028339. https://doi. org/10.1029/2020JA028339
Devasia, C. V., Jyoti, N., Viswanathan, K. S., et al. (2002). On the plausible leakage of thermospheric meridional winds with equatorial spread F. J. Atmos. Sol. Terr. Phys. 64 (1), 1–12. doi:10.1016/S1364-6826(01)00089-X
Dubey, S., Wahi, R., Gwal., A.K. (2006). Ionospheric effects on GPS positioning. Adv. Space Res., 38 (11) (2006), pp. 2478-2484, 10.1016/j.asr.2005.07.030
Dungey, J. W. (1956). Convective diffusion in the equatorial F-region, J. Atmos. Terr. Phys, 9, 304– 310. https://doi.org/10.1016/0021-9169(56)90148-9
Eccles, J. V. (1998), Modeling investigation of the evening prereversal enhancement of the zonal electric field in the equatorial ionosphere, J. Geophys. Res., 103, 26,709–26,719
Elkins, T. J., & Papagiannis, M. D. (1969). Measurement and interpretation of power spectrums of ionospheric scintillation at a sub-auroral location. Journal of Geophysical Research, 74(16), 4105–4115. https://doi.org/10.1029/JA074i016p04105
Fang, T.-W., Akmaev, R., Fuller-Rowell, T., Wu, F., Maruyama, N., & Millward, G. (2013). Longitudinal and day-to-day variability in the ionosphere from lower atmosphere tidal forcing. Geophysical Research Letters, 40(11), 2523–2528. https://doi.org/10.1002/grl.50550
Fang, T.-W., Kubaryk, A., Goldstein, D., Li, Z., Fuller-Rowell, T., Millward, G., et al. (2022). Space weather environment during the SpaceX Starlink satellite loss in February 2022. Space Weather, 20, e2022SW003193. https://doi.org/10.1029/2022SW003193
Farley, D. T., B. B. Balsley, R. F. Woodman, and J. P. McClure (1970), Equatorial spread F: Impliowlions of VHF radar observations, J. Geophys. Res., 75, 7199-7216.
Farley, D. T., Bonelli, E., Fejer, B. G., and Larsen, M. F. (1986). The prereversal enhancement of the zonal electric field in the equatorial ionosphere. J. Geophys. Res. 91, 13,723.
Fejer, B. G., Scherliess, L., and de Paula, E. R. (1999). Effects of the vertical plasma drift velocity on the generation and evolution of equatorial spread F, J. Geophys. Res., 104, 19,859–19,869. https://doi.org/10.1029/1999JA900271
Fejer, B., Jensen, J., & Su, S.-Y. (2008). Quiet time equatorial F region vertical plasma drift model derived from ROCSAT-1 observations. Journal of Geophysical Research, 113(A5). https://doi.org/10.1029/2007JA012801
Fesen, C. G., Crowley, G., Roble, R. G., Richmond, A. D., and Fejer, B. G. (2000). Simulation of the pre-reversal enhancement in the low latitude vertical ion drifts, Geophys. Res. Lett.,27(13), 1851–1854.
Fuller-Rowell, T. J., Akmaev, R. A., Wu, F., Anghel, A., Maruyama, N., Anderson, D. N., Codrescu, M. V., Iredell, M., Moorthi, S., Juang, H. M., Hou, Y. T., & Millward, G. (2008). Impact of terrestrial weather on the upper atmosphere. Geophysical Research Letters, 35, L09808. https://doi.org/10.1029/2007GL032911
Fuller-Rowell, Wu, T., F., Akmaev, R., Fang, T.-W., and Araujo-Pradere, E. (2010), A whole atmosphere model simulation of the impactof a sudden stratospheric warming on thermosphere dynamics and electrodynamics,J. Geophys. Res.,115, A00G08, doi: 10.1029/2010JA015524
Gauss, C. F. (1838). Allgemeine Theorie des Erdmagnetismus: Resultate aus den Beobachtungen des magnetischen Vereins im Jahre. edited 460 by:Gauss, C. F. and Weber, W., 1–57, Weidmannsche Buchhandlung, Leipzig, 1839.
Glassmeier, K. H., Tsurutani, B. T. (2014). Carl Friedrich Gauss-general theory of terrestrial magnetism - a revised translation of the Germantext, Hist. Geo.SpaceSci.,5:11–62,2014. https://doi.org/10.5194/hgss-5-11-2014
Gentile, L. C., Burke, W. J., & Rich, F. J. (2006). A global climatology for equatorial plasma bubbles in the topside ionosphere, Ann. Geophys., 24, 163–172, https://doi.org/10.5194/angeo-24-163-2006.
Haerendel, G. (1973). Theory of equatorial spread-F. Max Planck Institute for Extraterrestrial Physics.
Haerendel, G., and Eccles, J. V. (1992). The role of the equatorial electrojet in the evening ionosphere. J. Geophys. Res. 97, 1181–1192.
Haerendel, G., Eccles, J. V., & Cakir, S. (1992). Theory for modeling the equatorial evening ionosphere and the origin of the shear in the horizontal plasma flow.
Huang, N. E., Shen, Z., Long, S. R., Wu, M. C., Shih, H. H., Zheng, Q., Yen, N. C., Tung, C. C., & Liu, H. H., (1998). The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. Proc. R. Soc. Lond. 454A, 903–995. https://doi.org/10.1098/rspa.1998.0193.
Huang, C. S., Beaujardiere, O. de La, Roddy, P. A., Hunton, D. E., Liu, J. Y., & Chen, S. P. (2014). Occurrence probability and amplitude of equatorial ionospheric irregularities associated with plasma bubbles during low and moderate solar activities (2008–2012), J. Geophys. Res. Space Physics, 119, 1186–1199, https://doi.org/10.1002/2013JA019212
Huang, C. S., and Hairston, M. R. (2015). The postsunset vertical plasma drift and its effects on the generation of equatorial plasma bubbles observed by the C/NOFS satellite, J. Geophys. Res. Space Physics, 120, 2263–2275, doi:10.1002/2014JA020735.
Huang, C. Y., Liu, J. Y., Chang, F. Y., Lin, C. Y., Chao, C. K., Chang, L. C., Lin, C. Y. (2022). Instantaneous amplitude of low-latitude ionospheric irregularities probed by ROCSAT-1, DEMETER, and FORMOSAT-7/COSMIC-2. Adv Space Res. https://doi.org/10.1016/j.asr.2022.05.024
Huba, J. D., Hassam, A. B., Schwartz, I. B., and Keskinen, M. J. (1985) Ionospheric turbulence: Interchange instability and chaotic fluid behavior, Geophys. Res. Left., 12, 65
Huba, J. D. (2022). Generalized Rayleigh-Taylor instability: Ion inertia, acceleration forces, and E region drivers. Journal of Geophysical Research: Space Physics, 127, e2022JA030474. https://doi.org/10.1029/2022JA030474
Jayachandran, Balan, B. N., Rao, P. B., Sastri, J. H., and Bailey, G. J., HF Doppler and ionosonde observations on the onset conditions of equatorial spread F (1993). J. Geophys. Res., 98, 13741.
Jin. Y., Xiong, C., Clausen, L., Spicher, A., Kotova, D., Brask, S., et al. (2020). Ionospheric plasma irregularities based on in situ measurements from the Swarm satellites. Journal of Geophysical Research: Space Physics, 124, e2020JA028103. https://doi.org/10.1029/2020JA028103
Jyoti, N., Devasia, C. V., Sridharan, R., and Tiwari, D. (2004). Threshold height (h’F)c for the meridional wind to play a deterministic role in the bottom side equatorial spread F and its dependence on solar activity. Geophys. Res. Lett. 31, L12809. doi:10.1029/2004GL019455
Kelley, M. C., Haerendel, G., Kappler, H., Valenzuela, A., Balsley, B. B., Carter, D. A., et al. (1976). Evidence for a Rayleigh-Taylor type instability and upwelling of depleted density regions during equatorial spread F. Geophysical Research Letters, 3(8), 448–450. https://doi.org/10.1029/GL003i008p00448
Kelley, M. C., Swartz, W. E., Tayan Y., Torbert R. (1977). On the relationship between the plasma density profile measured in the equatorial E and F regions and simultaneous energetic particle and spread-F observations, J. Atm. ‧err. Phys.,39, 1263-1268
Kelley, M. C., Larsen, M. F., LaHoz, C. A., and McClure, J. P. (1981). Gravity wave initiation of equatorial spread F: A case study. J. Geophys. Res. 86, 9087.
Kelley M. C. (2009). The Earth’s ionosphere: electrodynamics and plasma physics, 2nd edn. Elsevier, New York
Kelley, M. C., Ilma, R. R., and Crowley, G. (2009). On the origin of pre-reversal enhancement of the zonal equatorial field. Ann. Geophys., in press.
Kil, H., & Heelis, R. A. (1998). Global distribution of density irregularities in the equatorial ionosphere. J. Geophys. Res. 103 (A1), 407–417. http://dx.doi.org/10.1029/ 97JA02698.
Kil, H., Paxton, L. J., & Oh, S. J. (2009). Global bubble distribution seen from ROCSAT-1 and its association with the evening prereversal enhancement, J. Geophys. Res., 114, A06307, https://doi.org/10.1029/2008JA013672.
Kil H, Oh, S. J. (2011). Dependence of the evening prereversal enhancement of the vertical plasma drift on geophysical parameters. J Geophys Res 116: A05311. https://doi.org/10.1029/2010JA016352
Kil, H., Lee, W. K., & Paxton, L. J. (2020). Origin and distribution of daytime electron density irregularities in the low-latitude F region. Journal of Geophysical Research: Space Physics, 125, e2020JA028343. https://doi.org/10.1029/2020JA028343.
Laundal, K. M., and Richmond A. D. (2016). Magnetic coordinate systems, Space Sci. Rev., 1–33, doi:10.1007/s11214-016-0275-y.
Lee, W. K., Kil, H., & Paxton, L. J. (2021). Global distribution of nighttime MSTIDs and its association with E region irregularities seen by CHAMP satellite. Journal of Geophysical Research: Space Physics, 126, e2020JA028836. https://doi.org/10.1029/2020JA028836.
Liu, J. Y., Rajesh, P. K., Lee, I. T., and Chow, T. C. (2011). Airglow observations over the equatorial ionization anomaly zone in Taiwan. Ann. Geophys. 29, 749–757. https://doi.org/10.5194/angeo- 29-749-2011.
Liu, J.Y., Chen, S.P., Yeh, W.H., Tsai, H.F., Rajesh, P.K., (2016). The worst-case GPS scintillations on the ground estimated by using radio occultation observations of FORMOSAT-3/COSMIC during 2007–2014. Surv. Geophys. 37, 791. http://dx.doi.org/10.1007/s10712-015- 9355-x.
Liu, J. Y., Sun, Y. Y., Chao, C. K., Chen, S. P., & Parrot, M. (2017). An observing system simulation experiment for FORMOSAT-5/AIP probing topside ionospheric plasma irregularities by using DEMETER/IAP. Terr. Atmos. Ocean. Sci., 28, 111-116, http://doi: 10.3319/TAO.2016.08.18.01(EOF5)
Liu, J. Y. and Wu, S. A, (2021). Global observations of ROTI by using ground-based GNSS receivers. Terr. Atmos. Ocean. Sci., 32, 519-530, doi: 10.3319/TAO.2021.07.26.03
Luhr, H., Xiong, C., Park, J., & Rauberg, J. (2014). Systematic study of intermediate-scale structures of equatorial plasma irregularities in the ionosphere based on CHAMP observations, Front. Phys., 2, 1–9, https://doi.org/10.3389/fphy.2014.00015.
Maruyama, T. (1988). A diagnostic model for equatorial spread F, 1, Model description and application to electric field and neutral wind effects. J. Geophys. Res. 93 (14), 14611. doi:10.1029/ja093ia12p14611
Maruyama, N., Sun, Y.?Y., Richards, P. G., Middlecoff, J., Fang, T.?W., Fuller?Rowell, T. J., et al. (2016). A new source of the midlatitude ionospheric peak density structure revealed by a new Ionosphere?Plasmasphere model. Geophysical Research Letters,43, 2429–2435. https://doi.org/10.1002/2015GL067312
Mendillo, M. and Baumgardner, J. (1982). Airglow characteristics of equatorial plasma depletions. J. Geophys. Res. 87, 7641–7652. https://doi. org/10.1029/JA087iA09p07641.
Mendillo, M., Lin, B., & Aarons, J. (2000). The application of GPS observations to equatorial aeronomy, Radio Sci., 35,885-904. https://doi.org/10.1029/1999RS002208.
McClure, J. P., Singh, S., Bamgboye, D. K., Johnson, F. S., & Kil, H. (1998). Occurrence of equatorial F region irregularities: evidence for tropospheric seeding. J. Geophys. Res. 103 (A12), 29119–29135. http://dx.doi.org/10.1029/98JA02749.
McCormack, J. P., Eckermann, S. D., Siskind, D. E., and McGee, T. J. (2006). CHEM2D-OPP: A new linearized gas-phase ozone photochemistry parameterization for high-altitude NWP and climate models, Atmos. Chem. Phys., 6, 4943–4972, https://doi.org/10.5194/acp-6-4943-2006
Mendillo, M., B. Lin, J. Aarons (2000), The application of GPS observations to equatorial aeronomy, Radio Sci., 35,885-904.
Obana, Y., Maruyama, N., Shinbori, A.,Hashimoto, K. K., Fedrizzi, M., Nose, M., et al. (2019). Response of theionosphere?plasmasphere coupling to the September 2017 storm: What erodesthe plasmasphere so severely? Space Weather, 17, 861–876. https://doi.org/10.1029/2019SW002168
Ossakow, S. L. (1981). Spread F theories—A review. Journal of Atmospheric and Terrestrial Physics, 43(5–6), 437–452. https://doi.org/10.1016/0021-9169(81)90107-0
Pedatella, N. M., Fang, T.-W., Jin, H., Sassi F., Schmidt, H., Chau, J. L., Siddiqui, T. A., and Goncharenko, L. (2016). Multimodel comparison ofthe ionosphere variability during the 2009 sudden stratosphere warming, J. Geophys. Res. Space Physics,121, 7204–7225, doi:10.1002/2016JA022859.
Perkins, F. (1973), Spread F and ionospheric currents, J. Geophys. Res., 78, 218.
Pi, X., Mannucci, A. J., Lindqwister, U. J., and Ho, C. M., (1997). Monitoring of global ionospheric irregularities using the worldwide GPS network. Geophys. Res. Lett., 24, 2283-2286, doi: 10.1029/97gl02273.
Retterer, J. M. (2010). Forecasting low-latitude radio scintillation with 3-D ionospheric plume models: 1. Plume model. J. Geophys. Res., 115, A03306, https://doi.org/10.1029/2008JA013839.
Richards, P. G., Fennelly, J. A., & Torr, D. G. (1994). EUVAC: A solar EUV flux model for aeronomic calculations. Journal of Geophysica Research, 99(A5), 8981–8992. https://doi.org/10.1029/94JA00518
Richards, P. G., and Torr, D. G. (1996). The field line interhemispheric plasma model, in STEP: Handbook of Ionospheric Models, edited by R. W. Schunk, pp. 207–216, Utah State Univ, Logan
Richards, P. G., Bilitza, D., and Voglozin D. (2010). Ion density calculator (IDC): A new efficient model of ionospheric ion densities, Radio Sci., 45, RS5007, doi:10.1029/2009RS004332.
Richmond, A. D. and Roble, R. G., Electrodynamic effects of thermospheric winds from the NCAR thermospheric general circulation model (1987). J. Geophys. Res., 92, 12,365-12,376.
Richmond, A. D. (1995). Ionospheric electrodynamics using magnetic apex coordinates. Journal of Geomagnetism and Geoelectricity, 47(2), 191–212. https://doi.org/10.5636/jgg.47.191
Richmond, A. D., and Maute, A. (2013), Ionospheric electrodynamics modeling, in Modeling the Ionosphere-Thermosphere System, Geophys. Monogr. 201, edited by J. Huba, R. Schunk, and G. Khazanov, pp. 57–71, AGU, Washington, D. C., doi:10.1029/2012GM001331.
Richmond, A. D., Fang, T. W., & Maute, A. (2015). Electrodynamics of the equatorial evening ionosphere: 1. Importance of winds in different regions. Journal of Geophysical Research: Space Physics, 120(3), 2118–2132. https://doi.org/10.1002/2014JA020934
Richmond, A. D., and T. W. Fang (2015). Electrodynamics of the equatorial evening ionosphere: 2. Conductivity influences on convection, current, and electrodynamic energy flow, J. Geophys. Res. Space Physics, 120, 2133–2147, doi:10.1002/2014JA020935.
Rino, C. L., R. T. Tsunoda R. T., J. Petriceks, R. C. Livingston, M. C. Kelley, and K. D. Baker, (1981). Simultaneous rocket-borne beacon and in situ measurements of equatorial spread F—intermediate wavelength results. J. Geophys. Res. 86, 2411.
Rishbeth, H. (1971), Polarization fields produced by winds in the equatorial F-region, Planet. Space Sci., 19, 357–369
Sahai, Y., P. R. Fagundes, J. A. Bittencourt (1999), Solar cycle effects on large scale equatorial F-region plasma depletions. Adv. Space Res. 24, 1477-1480
Scherliess, L., & Fejer, B. G. (1999). Radar and satellite global equatorial F region vertical drift model. Journal of Geophysical Research, 104(A4), 6829–6842. https://doi.org/10.1029/1999JA900025
Shinagawa, H., Jin, H., Miyoshi, Y. et al. Daily and seasonal variations in the linear growth rate of the Rayleigh-Taylor instability in the ionosphere obtained with GAIA. Prog Earth Planet Sci 5, 16 (2018). https://doi.org/10.1186/s40645-018-0175-8
Shiokawa, K., Otsuka, Y., Lynn, K. J., et al. (2015). Airglow-imaging observation of plasma bubble disappearance at geomagnetically conjugate points. Earth Planet Sp. 67, 43. https://doi.org/10.1186/ s40623-015-0202-6.
Smith, J. M., Rodrigues, F. S., Fejer, B. G., and Milla, M. A. (2016). Coherent and incoherent scatter radar study of the climatology and day-to-day variability of mean F region vertical drifts and equatorial spread F, J. Geophys. Res. SpacePhysics,121, 1466–1482, doi:10.1002/2015JA021934.
Stolle, C., Luhr, H., Rother, M., & Balasis, G. (2006). Magnetic signatures of equatorial spread F as observed by the CHAMP satellite, J. Geophys. Res., 111, A02304, https://doi.org/10.1029/2005JA011184.
Su, S. Y., Liu, C. H., Ho, H. H., & Chao, C. K. (2006). Distribution characteristics of topside ionospheric density irregularities: Equatorial versus midlatitude regions. J. Geophys. Res., 111, A06305, https://doi.org/10.1029/2005JA011330.
Sultan, P. J. (1996). Linear theory and modeling of the Rayleigh-Taylor instability leading to the occurrence of equatorial spread F. Journal of Geophysical Research, 101(A12), 26875–26891. https://doi.org/10.1029/96ja00682
Sun Y. Y., Matsuo, T., Araujo-Pradere, E. A., & Liu, J. Y. (2013). Ground-based GPS observation of SED-associated irregularities over CONUS. J Geophys Res Space Phys 118(5):2478–2489. https://doi.org/10.1029/2012ja018103
Sun, Y. Y., Liu, J. Y., Chao, C. K., & Chen, C. H. (2015a). Intensity of low-latitude nighttime F-region ionospheric density irregularities observed by ROCSAT and ground-based GPS receivers in solar maximum. J. Atmos. Sol.-Terr. Phys., 123, 92-101, https://doi.org/10.1016/j.jastp.2014.12.013.
Sun, Y. Y., Matsuo, T., Maruyama, N., & Liu, J. Y. (2015b). Field?aligned neutral wind bias correction scheme for global ionospheric modeling at midlatitudes by assimilating FORMOSAT?3/COSMIC hmF2 data under geomagnetically quiet conditions. Journal of Geophysical Research: Space Physics,120, 3130–3149. https://doi.org/10.1002/2014JA020768
Tsunoda, R. T. (1985). Control of the seasonal and longitudinal occurrence of equatorial. scintillations by the longitudinal gradient in integrated E region Pedersen conductivity. Journal of Geophysical Research, 90(A1), 447–456. https://doi.org/10.1029/JA090iA01p00447
Tsunoda, R. T., Saito, S., & Nguyen, T. T. (2018). Post-sunset rise of equatorial F layer—Or upwelling growth. Progress in Earth and Planetary Science, 22, 5. https://doi-org.cuucar.idm.oclc.org/10.1186/s40645-018-0179-4
Uma, G., Liu, J. Y., Chen, S. P., Sun, Y. Y., Brahmanandam, P. S., & Lin, C. H. (2012). A comparison of the equatorial spread F derived by the International Reference Ionosphere and the S4 index observed by FORMOSAT-3/COSMIC during the solar minimum period of 2007-2009. Earth, Planets and Space, 64(6), 467-471. https://doi.org/10.5047/eps.2011.10.014.
Wang, N., Guo, L., Ding, Z. et al. (2019). Longitudinal differences in the statistical characteristics of ionospheric spread-F occurrences at midlatitude in Eastern Asia. Earth Planets Space 71, 47. https://doi.org/10.1186/s40623-019-1026-6
Wu, Q. (2015). Longitudinal and seasonal variation of the equatorial flux tube integrated Rayleigh-Taylor instability growth rate. Journal of Geophysical Research: Space Physics, 120(9), 7952–7957. https://doi.org/10.1002/2015JA021553
Wu, Q., (2017). Solar effect on the Rayleigh-Taylor instability growth rate as simulated by the NCAR TIEGCM. J. Atmos. Sol. Terr. Phys. 156, 97–102. https://doi.org/ 10.1016/j.jastp.2017.03.007
Xiong, C., Park, J., Luhr, H., Stolle, C., & Ma, S. Y. (2010). Comparing plasma bubble occurrence rates at CHAMP and GRACE altitudes during high and low solar activity. Annales Geophysicae, 28(9), 1647-1658. https://doi.org/10.5194/angeo-28-1647-2010
Yokoyama, T., Shinagawa, H., & Jin, H. (2014). Nonlinear growth, bifurcation, and pinching of equatorial plasma bubble simulated by three-dimensional high-resolution bubble model. J. Geophys. Res., 119, 10474-10482, https://doi.org/10.1002/2014JA020708.
Zalesak, S. T., and Ossakow, S. L. (1982). On the prospect for artificially inducing equatorial spread F, Memo. Rep. 4899, Nav. Res. Lab., Washington, D. C.
Zalesak, S. T., and Huba, J. D. (1991). Effect of meridional winds on the development of equatorial spread F. Eos Trans. AGU 72, 211.
Zargham, S., and Seyler, C. E. (1989). Collisional and inertial dynamics of the ionospheric interchange instability. Journal of Geophysical Research, 94(A7), 9009. https://doi.org/10.1029/ja094ia07p09009
Zhou, X., Yue, X., Liu, H.-L., Lu, X., Wu, H., Zhao, X., & He, J. (2021). A comparative study of ionospheric day-to-day variability over Wuhan based on ionosonde measurements and model simulations. Journal of Geophysical Research: Space Physics, 126, e2020JA028589. https://doi.org/10.1029/2020JA0285895 |