參考文獻 |
Beckman, M. E., & Venditti, J. J. (2011). Intonation. The handbook of phonological theory, 485-532.
Benzi, R., Sutera, A., & Vulpiani, A. (1981). The mechanism of stochastic resonance. Journal of Physics A: mathematical and general, 14(11), L453.
Bidelman, G. M., & Howell, M. (2016). Functional changes in inter-and intra-hemispheric cortical processing underlying degraded speech perception. NeuroImage, 124, 581-590.
Bidelman, G. M., Weiss, M. W., Moreno, S., & Alain, C. (2014). Coordinated plasticity in brainstem and auditory cortex contributes to enhanced categorical speech perception in musicians. European Journal of Neuroscience, 40(4), 2662-2673.
Bidelman, G. M., & Yellamsetty, A. (2017). Noise and pitch interact during the cortical segregation of concurrent speech. Hearing Research, 351, 34-44.
Bidelman, G. M., & Yoo, J. (2020). Musicians show improved speech segregation in competitive, multi-talker cocktail party scenarios. Frontiers in Psychology, 11, 1927.
Binns, C., & Culling, J. F. (2007). The role of fundamental frequency contours in the perception of speech against interfering speech. The Journal of the Acoustical Society of America, 122(3), 1765-1776.
Boebinger, D., Evans, S., Rosen, S., Lima, C. F., Manly, T., & Scott, S. K. (2015). Musicians and non-musicians are equally adept at perceiving masked speech. The Journal of the Acoustical Society of America, 137(1), 378-387.
Boersma, P. (2007). Praat: doing phonetics by computer. http://www.praat.org/.
Bowles, A. R., Chang, C. B., & Karuzis, V. P. (2016). Pitch ability as an aptitude for tone learning. Language Learning, 66(4), 774-808.
Bradlow, A. R., Kraus, N., & Hayes, E. (2003). Speaking clearly for children with learning disabilities. Journal of Speech, Language, and Hearing Research, 46(1), 80-97.
Bregman, A. S. (1994). Auditory scene analysis: The perceptual organization of sound. MIT press.
Brodbeck, C., Das, P., Gillis, M., Kulasingham, J. P., Bhattasali, S., Gaston, P., Resnik, P., & Simon, J. Z. (2023). Eelbrain, a Python toolkit for time-continuous analysis with temporal response functions. Elife, 12, e85012.
Brodbeck, C., & Simon, J. Z. (2020). Continuous speech processing. Current Opinion in Physiology, 18, 25-31.
Burnham, D., Brooker, R., & Reid, A. (2015). The effects of absolute pitch ability and musical training on lexical tone perception. Psychology of Music, 43(6), 881-897.
Chao, Y. R. (1965). A grammar of spoken Chinese. (The University of California Press, 1965)
Chen, F., Wong, L. L., & Hu, Y. (2014). Effects of lexical tone contour on Mandarin sentence intelligibility. Journal of Speech, Language, and Hearing Research, 57(1), 338-345.
Chen, J., Yang, H., Wu, X., & Moore, B. C. (2018). The effect of F0 contour on the intelligibility of speech in the presence of interfering sounds for Mandarin Chinese. The Journal of the Acoustical Society of America, 143(2), 864-877.
Chen, S., Yang, Y., & Wayland, R. (2021). Categorical perception of Mandarin pitch directions by Cantonese-speaking musicians and non-musicians. Frontiers in Psychology, 12, 713949.
Chen, Y., Wong, L. L., Qian, J., Kuehnel, V., Voss, S. C., & Chen, F. (2020). The role of lexical tone information in the recognition of Mandarin sentences in listeners with hearing aids. Ear and Hearing, 41(3), 532-538.
Chuang, S.-Y., Wang, H.-M., & Tsao, Y. (2022). Improved lite audio-visual speech enhancement. IEEE/ACM Transactions on Audio, Speech, and Language Processing, 30, 1345-1359.
Clarke, J., Kazanoğlu, D., Başkent, D., & Gaudrain, E. (2017). Effect of F 0 contours on top-down repair of interrupted speech. The Journal of the Acoustical Society of America, 142(1), EL7-EL12.
Coffey, E., Herholz, S., Scala, S., & Zatorre, R. (2011). Montreal Music History Questionnaire: a tool for the assessment of music-related experience in music cognition research. The Neurosciences and Music IV: Learning and Memory, Conference. Edinburgh, UK,
Coffey, E. B., Chepesiuk, A. M., Herholz, S. C., Baillet, S., & Zatorre, R. J. (2017). Neural correlates of early sound encoding and their relationship to speech-in-noise perception. Frontiers in Neuroscience, 11, 283171.
Coffey, E. B., Mogilever, N. B., & Zatorre, R. J. (2017). Speech-in-noise perception in musicians: A review. Hearing Research, 352, 49-69.
Coffey, E. B., Nicol, T., White-Schwoch, T., Chandrasekaran, B., Krizman, J., Skoe, E., Zatorre, R. J., & Kraus, N. (2019). Evolving perspectives on the sources of the frequency-following response. Nature Communications, 10(1), 5036.
Crosse, M. J., Zuk, N. J., Di Liberto, G. M., Nidiffer, A. R., Molholm, S., & Lalor, E. C. (2021). Linear modeling of neurophysiological responses to speech and other continuous stimuli: methodological considerations for applied research. Frontiers in Neuroscience, 15, 705621.
Cutler, A., Dahan, D., & Van Donselaar, W. (1997). Prosody in the comprehension of spoken language: A literature review. Language and Speech, 40(2), 141-201.
Das, N., Bertrand, A., & Francart, T. (2018). EEG-based auditory attention detection: boundary conditions for background noise and speaker positions. Journal of Neural Engineering, 15(6), 066017.
der Nederlanden, C. M. V. B., Joanisse, M. F., & Grahn, J. A. (2020). Music as a scaffold for listening to speech: Better neural phase-locking to song than speech. NeuroImage, 214, 116767.
Ding, N., Melloni, L., Zhang, H., Tian, X., & Poeppel, D. (2016). Cortical tracking of hierarchical linguistic structures in connected speech. Nature Neuroscience, 19(1), 158-164.
Ding, N., Patel, A. D., Chen, L., Butler, H., Luo, C., & Poeppel, D. (2017). Temporal modulations in speech and music. Neuroscience & Biobehavioral Reviews, 81, 181-187.
Ding, N., & Simon, J. Z. (2014). Cortical entrainment to continuous speech: functional roles and interpretations. Frontiers in Human Neuroscience, 8, 311.
Du, Y., & Zatorre, R. J. (2017). Musical training sharpens and bonds ears and tongue to hear speech better. Proceedings of the National Academy of Sciences, 114(51), 13579-13584.
Etard, O., & Reichenbach, T. (2019). Neural speech tracking in the theta and in the delta frequency band differentially encode clarity and comprehension of speech in noise. Journal of Neuroscience, 39(29), 5750-5759.
Fields, E. C., & Kuperberg, G. R. (2020). Having your cake and eating it too: Flexibility and power with mass univariate statistics for ERP data. Psychophysiology, 57(2), e13468.
Fuller, C. D., Galvin III, J. J., Maat, B., Free, R. H., & Başkent, D. (2014). The musician effect: does it persist under degraded pitch conditions of cochlear implant simulations? Frontiers in Neuroscience, 8, 179.
Gelfer, M. P., & Mikos, V. A. (2005). The relative contributions of speaking fundamental frequency and formant frequencies to gender identification based on isolated vowels. Journal of Voice, 19(4), 544-554.
Gillis, M., Decruy, L., Vanthornhout, J., & Francart, T. (2022). Hearing loss is associated with delayed neural responses to continuous speech. European Journal of Neuroscience, 55(6), 1671-1690.
Gillis, M., Van Canneyt, J., Francart, T., & Vanthornhout, J. (2022). Neural tracking as a diagnostic tool to assess the auditory pathway. Hearing Research, 426, 108607.
Girding, E., Zhang, J., & Svantesson, J.-O. (1983). A generative model for tone and intonation in Standard Chinese. Working Papers (Lund University: Department of Linguistics), 25, 53-65.
Gordon, E. (1989). Advanced measures of music audiation. Gia Publications.
Groppe, D. M., Urbach, T. P., & Kutas, M. (2011). Mass univariate analysis of event‐related brain potentials/fields I: A critical tutorial review. Psychophysiology, 48(12), 1711-1725.
Han, H. J., Munson, B., & Schlauch, R. S. (2021). Fundamental frequency range and other acoustic factors that might contribute to the clear-speech benefit. The Journal of the Acoustical Society of America, 149(3), 1685-1698.
Hennessy, S., Mack, W. J., & Habibi, A. (2022). Speech‐in‐noise perception in musicians and non‐musicians: A multi‐level meta-analysis. Hearing Research, 416, 108442.
Hopkins, K., & Moore, B. C. (2011). The effects of age and cochlear hearing loss on temporal fine structure sensitivity, frequency selectivity, and speech reception in noise. The Journal of the Acoustical Society of America, 130(1), 334-349.
Hsieh, I. H., & Guo, Y. J. (2023). No musician advantage in the perception of degraded-fundamental frequency speech in noisy environments. Journal of Speech Language and Hearing Research, 66(8), 2643-2655.
Hu, G., Determan, S. C., Dong, Y., Beeve, A. T., Collins, J. E., & Gai, Y. (2020). Spectral and temporal envelope cues for human and automatic speech recognition in noise. Journal of the Association for Research in Otolaryngology, 21, 73-87.
Irsik, V. C., Almanaseer, A., Johnsrude, I. S., & Herrmann, B. (2021). Cortical responses to the amplitude envelopes of sounds change with age. Journal of Neuroscience, 41(23), 5045-5055.
Keitel, A., Gross, J., & Kayser, C. (2018). Perceptually relevant speech tracking in auditory and motor cortex reflects distinct linguistic features. PLoS Biology, 16(3), e2004473.
Kleiner, M., Brainard, D., & Pelli, D. (2007). What’s new in Psychtoolbox-3? Perception, 36(14).
Kovács, P., Tóth, B., Honbolygó, F., Szalárdy, O., Kohári, A., Mády, K., Magyari, L., & Winkler, I. (2023). Speech prosody supports speaker selection and auditory stream segregation in a multi-talker situation. Brain Research, 1805, 148246.
Kraus, N., & Chandrasekaran, B. (2010). Music training for the development of auditory skills. Nature Reviews Neuroscience, 11(8), 599-605.
Kutas, M., & Federmeier, K. D. (2011). Thirty years and counting: finding meaning in the N400 component of the event-related brain potential (ERP). Annual Review of Psychology, 62, 621-647.
Lad, M., Holmes, E., Chu, A., & Griffiths, T. D. (2020). Speech-in-noise detection is related to auditory working memory precision for frequency. Scientific Reports, 10(1), 13997.
Law, L. N., & Zentner, M. (2012). Assessing musical abilities objectively: Construction and validation of the profile of music perception skills. PloS One, 7(12), e52508.
Li, W., & Yang, Y. (2009). Perception of prosodic hierarchical boundaries in Mandarin Chinese sentences. Neuroscience, 158(4), 1416-1425.
Liu, F., Jiang, C., Wang, B., Xu, Y., & Patel, A. D. (2015). A music perception disorder (congenital amusia) influences speech comprehension. Neuropsychologia, 66, 111-118.
Madsen, S. M., Dau, T., & Oxenham, A. J. (2021). No interaction between fundamental-frequency differences and spectral region when perceiving speech in a speech background. PloS One, 16(4), e0249654.
Madsen, S. M., Marschall, M., Dau, T., & Oxenham, A. J. (2019). Speech perception is similar for musicians and non-musicians across a wide range of conditions. Scientific Reports, 9(1), 10404.
Madsen, S. M., Whiteford, K. L., & Oxenham, A. J. (2017). Musicians do not benefit from differences in fundamental frequency when listening to speech in competing speech backgrounds. Scientific Reports, 7(1), 12624.
Maggu, A. R., Lau, J. C., Waye, M. M., & Wong, P. C. (2021). Combination of absolute pitch and tone language experience enhances lexical tone perception. Scientific Reports, 11(1), 1485.
Mai, G., & Wang, W. S. (2019). Delta and theta neural entrainment during phonological and semantic processing in speech perception. bioRxiv, 556837.
Mäkelä, A. M., Alku, P., Mäkinen, V., & Tiitinen, H. (2004). Glides in speech fundamental frequency are reflected in the auditory N1m response. NeuroReport, 15(7), 1205-1208.
Mäkelä, A. M., Alku, P., Mäkinen, V., Valtonen, J., May, P., & Tiitinen, H. (2002). Human cortical dynamics determined by speech fundamental frequency. NeuroImage, 17(3), 1300-1305.
Mankel, K., Barber, J., & Bidelman, G. M. (2020). Auditory categorical processing for speech is modulated by inherent musical listening skills. NeuroReport, 31(2), 162.
Mankel, K., & Bidelman, G. M. (2018). Inherent auditory skills rather than formal music training shape the neural encoding of speech. Proceedings of the National Academy of Sciences, 115(51), 13129-13134.
Marie, C., Delogu, F., Lampis, G., Belardinelli, M. O., & Besson, M. (2011). Influence of musical expertise on segmental and tonal processing in Mandarin Chinese. Journal of Cognitive Neuroscience, 23(10), 2701-2715.
Martínez-Montes, E., Hernández-Pérez, H., Chobert, J., Morgado-Rodríguez, L., Suárez-Murias, C., Valdés-Sosa, P. A., & Besson, M. (2013). Musical expertise and foreign speech perception. Frontiers in Systems Neuroscience, 7, 84.
Mattys, S. L., Davis, M. H., Bradlow, A. R., & Scott, S. K. (2013). Speech recognition in adverse conditions: A review. Speech Recognition in Adverse Conditions, 1-26.
Micheyl, C., Delhommeau, K., Perrot, X., & Oxenham, A. J. (2006). Influence of musical and psychoacoustical training on pitch discrimination. Hearing Research, 219(1-2), 36-47.
Miettinen, I., Alku, P., Salminen, N., May, P. J., & Tiitinen, H. (2011). Responsiveness of the human auditory cortex to degraded speech sounds: reduction of amplitude resolution vs. additive noise. Brain Research, 1367, 298-309.
Miller, S. E., Schlauch, R. S., & Watson, P. J. (2010). The effects of fundamental frequency contour manipulations on speech intelligibility in background noise. The Journal of the Acoustical Society of America, 128(1), 435-443.
Millman, R. E., Woods, W. P., & Quinlan, P. T. (2011). Functional asymmetries in the representation of noise-vocoded speech. NeuroImage, 54(3), 2364-2373.
Mohammadi, Y., Graversen, C., Manresa, J. B., Østergaard, J., & Andersen, O. K. (2024). Effects of background noise and linguistic violations on frontal theta oscillations during effortful listening. Ear and Hearing, 45(3), 721-729.
Müllensiefen, D., Gingras, B., Musil, J., & Stewart, L. (2014). The musicality of non-musicians: An index for assessing musical sophistication in the general population. PloS One, 9(2), e89642.
Muncke, J., Kuruvila, I., & Hoppe, U. (2022). Prediction of speech intelligibility by means of EEG responses to sentences in Noise. Frontiers in Neuroscience, 16, 876421.
Musacchia, G., Strait, D., & Kraus, N. (2008). Relationships between behavior, brainstem and cortical encoding of seen and heard speech in musicians and non-musicians. Hearing Research, 241(1-2), 34-42.
Musso, M., Fürniss, H., Glauche, V., Urbach, H., Weiller, C., & Rijntjes, M. (2020). Musicians use speech-specific areas when processing tones: The key to their superior linguistic competence? Behavioural Brain Research, 390, 112662.
Oldfield, R. C. (1971). The assessment and analysis of handedness: the Edinburgh inventory. Neuropsychologia, 9(1), 97-113.
Parbery-Clark, A., Strait, D. L., Anderson, S., Hittner, E., & Kraus, N. (2011). Musical experience and the aging auditory system: implications for cognitive abilities and hearing speech in noise. PloS One, 6(5), e18082.
Parbery‐Clark, A., Marmel, F., Bair, J., & Kraus, N. (2011). What subcortical–cortical relationships tell us about processing speech in noise. European Journal of Neuroscience, 33(3), 549-557.
Patel, A. D. (2011). Why would musical training benefit the neural encoding of speech? The OPERA hypothesis. Frontiers in Psychology, 2, 142.
Patel, A. D. (2012). The OPERA hypothesis: assumptions and clarifications. Annals of the New York Academy of Sciences, 1252(1), 124-128.
Patel, A. D., Xu, Y., & Wang, B. (2010). The role of F0 variation in the intelligibility of Mandarin sentences. Proceedings of Speech Prosody 2010, 1-4.
Poeppel, D., & Assaneo, M. F. (2020). Speech rhythms and their neural foundations. Nature Reviews Neuroscience, 21(6), 322-334.
Schellenberg, E. G., & Lima, C. F. (2024). Music Training and Nonmusical Abilities. Annual Review of Psychology, 75(1), 87-128.
Scherer, K. R. (2003). Vocal communication of emotion: A review of research paradigms. Speech Communication, 40(1-2), 227-256.
Schilling, A., Tziridis, K., Schulze, H., & Krauss, P. (2021). The stochastic resonance model of auditory perception: A unified explanation of tinnitus development, Zwicker tone illusion, and residual inhibition. Progress in Brain Research, 262, 139-157.
Schumacher, P. B., & Baumann, S. (2010). Pitch accent type affects the N400 during referential processing. NeuroReport, 21(9), 618-622.
Shahin, A. J. (2011). Neurophysiological influence of musical training on speech perception. Frontiers in Psychology, 2, 126.
Shen, J., & Souza, P. E. (2019). The ability to glimpse dynamic pitch in noise by younger and older listeners. The Journal of the Acoustical Society of America, 146(3), EL232-EL237.
Slater, J., & Kraus, N. (2016). The role of rhythm in perceiving speech in noise: A comparison of percussionists, vocalists and non-musicians. Cognitive Processing, 17, 79-87.
Sloboda, J. A., Davidson, J. W., Howe, M. J., & Moore, D. G. (1996). The role of practice in the development of performing musicians. British Journal of Psychology, 87(2), 287-309.
Song, F., Zhan, Y., Ford, J. C., Cai, D.-C., Fellows, A. M., Shan, F., Song, P., Chen, G., Soli, S. D., & Shi, Y. (2020). Increased right frontal brain activity during the mandarin hearing-in-noise test. Frontiers in Neuroscience, 14, 614012.
Steinhauer, K., Alter, K., & Friederici, A. D. (1999). Brain potentials indicate immediate use of prosodic cues in natural speech processing. Nature Neuroscience, 2(2), 191-196.
Tabri, D., Chacra, K. M. S. A., & Pring, T. (2015). Speech perception in noise by monolingual, bilingual and trilingual listeners. International Journal of Language & Communication Disorders, 46, 411-422.
Tang, W., Xiong, W., Zhang, Y.-x., Dong, Q., & Nan, Y. (2016). Musical experience facilitates lexical tone processing among Mandarin speakers: Behavioral and neural evidence. Neuropsychologia, 91, 247-253.
Teoh, E. S., Cappelloni, M. S., & Lalor, E. C. (2019). Prosodic pitch processing is represented in delta-band EEG and is dissociable from the cortical tracking of other acoustic and phonetic features. European Journal of Neuroscience, 50(11), 3831-3842.
Vaissière, J. (2005). Perception of intonation. In D.B. Pisoni & R.E. Remez (Eds.), The Handbook of Speech Perception (pp. 236-263). Oxford, Blackwell Publishing.
Verschueren, E., Gillis, M., Decruy, L., Vanthornhout, J., & Francart, T. (2022). Speech understanding oppositely affects acoustic and linguistic neural tracking in a speech rate manipulation paradigm. Journal of Neuroscience, 42(39), 7442-7453.
Wallentin, M., Nielsen, A. H., Friis-Olivarius, M., Vuust, C., & Vuust, P. (2010). The Musical Ear Test, a new reliable test for measuring musical competence. Learning and Individual Differences, 20(3), 188-196.
Wang, J., Shu, H., Zhang, L., Liu, Z., & Zhang, Y. (2013). The roles of fundamental frequency contours and sentence context in Mandarin Chinese speech intelligibility. The Journal of the Acoustical Society of America, 134(1), EL91-EL97.
Wang, L., Bastiaansen, M., Yang, Y., & Hagoort, P. (2011). The influence of information structure on the depth of semantic processing: How focus and pitch accent determine the size of the N400 effect. Neuropsychologia, 49(5), 813-820.
Wong, F. C., Chandrasekaran, B., Garibaldi, K., & Wong, P. C. (2011). White matter anisotropy in the ventral language pathway predicts sound-to-word learning success. Journal of Neuroscience, 31(24), 8780-8785.
Wong, P. C., Jin, J. X., Gunasekera, G. M., Abel, R., Lee, E. R., & Dhar, S. (2009). Aging and cortical mechanisms of speech perception in noise. Neuropsychologia, 47(3), 693-703.
Wong, P. C., & Perrachione, T. K. (2007). Learning pitch patterns in lexical identification by native English-speaking adults. Applied Psycholinguistics, 28(4), 565-585.
Wu, H., Ma, X., Zhang, L., Liu, Y., Zhang, Y., & Shu, H. (2015). Musical experience modulates categorical perception of lexical tones in native Chinese speakers. Frontiers in Psychology, 6, 436.
Wu, M. (2019). Effect of F0 contour on perception of Mandarin Chinese speech against masking. PloS One, 14(1), e0209976.
Xu, G., Zhang, L., Shu, H., Wang, X., & Li, P. (2013). Access to lexical meaning in pitch-flattened Chinese sentences: An fMRI study. Neuropsychologia, 51(3), 550-556.
Yang, X., Wang, K., & Shamma, S. A. (1992). Auditory representations of acoustic signals. IEEE Transactions on Information Theory, 38(2), 824-839.
Yasmin, S., Irsik, V. C., Johnsrude, I. S., & Herrmann, B. (2023). The effects of speech masking on neural tracking of acoustic and semantic features of natural speech. Neuropsychologia, 186, 108584.
Zarate, J. M., Ritson, C. R., & Poeppel, D. (2012). Pitch-interval discrimination and musical expertise: Is the semitone a perceptual boundary? The Journal of the Acoustical Society of America, 132(2), 984-993.
Zendel, B. R., & Alain, C. (2009). Concurrent sound segregation is enhanced in musicians. Journal of Cognitive Neuroscience, 21(8), 1488-1498.
Zendel, B. R., Tremblay, C.-D., Belleville, S., & Peretz, I. (2015). The impact of musicianship on the cortical mechanisms related to separating speech from background noise. Journal of Cognitive Neuroscience, 27(5), 1044-1059.
Zhang, J. D., Susino, M., McPherson, G. E., & Schubert, E. (2020). The definition of a musician in music psychology: A literature review and the six-year rule. Psychology of Music, 48(3), 389-409.
Zhang, X., Li, J., Li, Z., Hong, B., Diao, T., Ma, X., Nolte, G., Engel, A. K., & Zhang, D. (2023). Leading and following: Noise differently affects semantic and acoustic processing during naturalistic speech comprehension. NeuroImage, 282, 120404.
Zheng, Y., Gao, P., & Li, X. (2023). The modulating effect of musical expertise on lexical‐semantic prediction in speech‐in‐noise comprehension: Evidence from an EEG study. Psychophysiology, 60(11), e14371.
Zhu, J., Chen, X., & Yang, Y. (2021). Effects of amateur musical experience on categorical perception of lexical tones by native Chinese adults: an ERP study. Frontiers in Psychology, 12, 611189.
Zou, J., Feng, J., Xu, T., Jin, P., Luo, C., Zhang, J., Pan, X., Chen, F., Zheng, J., & Ding, N. (2019). Auditory and language contributions to neural encoding of speech features in noisy environments. NeuroImage, 192, 66-75. |