博碩士論文 110221007 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:27 、訪客IP:3.145.53.196
姓名 王士銘(Shih-Ming Wang)  查詢紙本館藏   畢業系所 數學系
論文名稱
(Global Existence of Classical Solutions for Nonisentropic Gas Flows through Divergent Ducts)
相關論文
★ 氣流的非黏性駐波通過不連續管子之探究★ An Iteration Method for the Riemann Problem of Some Degenerate Hyperbolic Balance Laws
★ 影像模糊方法在蝴蝶辨識神經網路中之應用★ 單一非線性平衡律黎曼問題廣義解的存在性
★ 非線性二階常微方程組兩點邊界值問題之解的存在性與唯一性★ 對接近音速流量可壓縮尤拉方程式的柯西問題去架構區間逼近解
★ 一些退化擬線性波動方程的解的性質.★ 擬線性波方程中片段線性初始值問題的整體Lipchitz連續解的
★ 水文地質學的平衡模型之擴散對流反應方程★ 非線性守恆律的擾動Riemann 問題的古典解
★ BBM與KdV方程初始邊界問題解的週期性★ 共振守恆律的擾動黎曼問題的古典解
★ 可壓縮流中微黏性尤拉方程激波解的行為★ 非齊次雙曲守恆律系統初始邊界值問題之整域弱解的存在性
★ 有關非線性平衡定律之柯西問題的廣域弱解★ 單一雙曲守恆律的柯西問題熵解整體存在性的一些引理
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 在本篇研究中,我們將探討氣體通過擴張的管子在怎樣的條件下會擁有全域的經典解。該問題可以用拉格朗日坐標下的完全可壓縮歐拉方程式的初始邊界值問題來描述,當在此方程式應用黎曼不變量時,這可以被視為一個雙曲平衡律系統。我們將在熵和擴張的管子及初始和邊界數值的適當條件下,證明經典解的全域存在定理。此定理主要依賴於局部存在定理和兩個黎曼不變量的均勻性估計,而後者需要引入廣義的Lax 轉換所得出的Riccati 方程式,並從中推論出全域經典解的存在。
摘要(英) In this study, we investigate the global existence of classical solutions for gas flows through a divergent duct. This problem can be described as an initial-boundary value
problem for the full compressible Euler equations with the geometric source in Lagrangian coordinates, which can be viewed as a hyperbolic system of balance laws when the Riemann invariants are applied to the equations. We prove the global existence theorem for classical solutions under appropriate conditions on entropies, divergent ducts, and initial and boundary values. This theorem mainly depends on the local existence theorem and uniform a priori estimates on two Riemann invariants, which are obtained by introducing generalized Lax transformations.
關鍵字(中) ★ 守恆律
★ 平衡律
★ 歐拉方程
★ 全域存在性
關鍵字(英)
論文目次 摘要i
Abstract ii
Contents iii
Symbols iv
1 Introduction 1
2 Local existence theorem and Riccati equations 4
2.1 Uniform a priori estimates of Riemann invariants. . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.2 Riccati equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3 Existence and uniqueness of the global classical solution 13
3.1 Initial and boundary conditions of global classical solutions. . . . . . . . . . . . . . . . . 13
Bibliography 17
參考文獻 [1] S.-W. Chou, J. M. Hong, and H.-Y. Lee, Global Existence of Classical Solutions for the gas flows near vacuum through ducts expanding with space and time, J. Math. Anal., 10
(2023), 19-23.
[2] A. Douglis, Existence theorem for hyperbolic systems. Comm. Pure Appl. Math., 5 (1952), 119-154.
[3] T. T. Li, Global Solutions for Quasilineaar Hyperbolic Systems, Wiley, New York, 1994.
[4] T. T. Li and W. C. Yu, Boundary Value Problems for Quasilinear Hyperbolic Systems, Duke University Mathematics Series, V. Durham, NC 27706, Duke University, Mathematics
Department. X, 1985.
[5] L. W. Lin, H. X. Liu and T. Yang, Existence of globally bounded continuous solutions for nonisentropic gas dynamics equations, J. Math. Anal. Appl., 209, (1997), 492-506.
[6] T. Nishida, Nonlinear hyperbolic equations and related topics in fluid dynamics, D´epartment de Math´ematique, Universit´e de Paris-Sud, Orsay, 1978, Publications
Math´ematiques d’Orsay, No. 78-02.
[7] M. Yamaguti and T. Nishida, On some global solution for the quasilinear hyperbolic equations, Funkcial. Ekvac., 11 (1968), 51-57.
指導教授 洪盟凱 審核日期 2023-7-3
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明