博碩士論文 110222005 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:27 、訪客IP:3.14.249.33
姓名 梁銓軒(Quan-Xuan Liang)  查詢紙本館藏   畢業系所 物理學系
論文名稱
(A Structural Study of Copper Oxide Grown on Cu(110) under Near Ambient Pressure Conditions)
相關論文
★ 鐵電型液晶材料光熱相變研究★ An AFM study of thermal behavior of lipid over layers on mica
★ 利用RHEED、LEED、AES 研究Al2O3在NiAl(100)和Co在Al2O3/NiAl(100)上的幾何結構和生長方式★ Patterning Co Nanoclusters on Thin Film Al2O3/NiAl(100)
★ Growth of Oxide on NiAl(100) and its Interaction with Au★ 用原子力顯微鏡在脂質膜上做微影術並且討論其在基板上之動力行為
★ Catalytic properties of Au nanoclusters supported on Al2O3/NiAl (100) surface★ Atomic Structures and Electro-catalytic Properties of Pt Nanoclusters on Thin Film Al2O3/NiAl(100)
★ Nanowires from Aligned One-dimensional Arrays of Co Nanoclusters on Al2O3 Grown on Vicinal NiAl Surfaces★ 以掃描穿隧電子顯微鏡及光激發能譜研究奈金屬粒子在氧化鋁薄膜上的成長
★ 在氧化鋁上成長金與白金的和金奈米粒子★ 以第一原理研究一到二顆金原子在θ型氧化鋁(001)表面上的吸附與擴散行為
★ 甲醇在以thita-三氧化二鋁/鎳鋁合金為基板之奈米黃金粒子上的分解反應-以熱脫附質譜術與傅立葉紅外光譜儀方法之研究★ 探測θ-Al2O3/NiAl(100)表面之下的結構以及Au-Pt雙金屬顆粒在θ-Al2O3/NiAl(100)表面上的形貌
★ 利用穿隧式電子顯微鏡的探針產生在鎳鋁合金(100)面上的局部氧化反應★ 利用PES探討吸附物對Au-Pt奈米團簇所引發表面發生重構的現象
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2027-1-17以後開放)
摘要(中) 在近常壓的氧氣壓力條件下,兩種不同型態的氧化銅已經被證實。初
始態的氧化銅與基板間的交互作用和隨著氣壓上升造成的結構變化都會影
響其催化能力。隨著由高真空至近常壓的氧氣壓力變化並控制在合適的
成長溫度 (550K),藉由高能電子繞射 (RHEED)、掃描穿隧顯微鏡 (STM)
及常壓 X-ray 光電子能譜 (AP-XPS) 去觀察晶體結構和電子態的變化在銅(110) 表面。

在氧氣氣壓小於 10?5 托時,電子繞射結果顯示表面由 c(6 × 2) 和 (2 × 1) 共存態組成。隨著氧氣壓力處於 10?5 托至 10?2 托之間且曝氧量大於 1.8 × 104L,由繞射結果我們發現表面始終只有 c(6 × 2) 的結構出現,銅 2p 圖譜只表現出塊材的訊號也表明沒有氧化銅的形成。然而,氧 1s 圖譜顯示氧量的確上升。此外,在 STM 圖裡面,我們發現到平台上的高低起伏出現明顯的改變,從而推斷表面下有氧與銅形成鍵結導致此現象。當氧氣壓介於 10?2 托至 10?1 托之間,氧化亞銅逐漸佔據表面。而在初始階段時,氧化亞銅與 c(6 × 2) 共存時為雙重態且偏好向下生長。最終在 10?1托的氣壓下,氧化亞銅的厚度大約是 3.5 奈米且結構改變成非晶態,還伴隨著氧化銅的薄膜態。隨著增加氧氣壓力至大於 1 托時,由光譜我們可得知氧化銅厚度超過 3.41 奈米且強化學吸附的氧明顯增加。然而,在此氣壓下無法觀察到繞射結構,表示氧化銅的成長方式轉為無定型態。氧氣氣壓進一步調節到 5 托時,沒有新的銅化物出現。氧化銅厚度也沒有明顯變化,僅有強化學吸附的氧數量上的提升。
摘要(英) Under near ambient oxygen pressure condition, there are two kinds of
copper oxide having been confirmed. The interaction between initial state of
copper oxide and substrate and the structure evolution with pressure increase
will influence the catalytic capability. With regulating the oxygen pressure
from high vacuum to near ambient pressure and controlling at moderate
growth temperature (550 K), we observe the changes of crystal structure
and electronic state on Cu(110) surface by reflective high energy electron
diffraction (RHEED), scanning tunneling microscopy (STM) and ambient
pressure X-ray photoelectron spectroscopy (AP-XPS).

When the oxygen pressure is below 10?5 Torr, the result from electron
diffraction demonstrates the surface is composed of the co-existence state of
c(6 × 2) and (2 × 1). As the oxygen pressure is regulated in the interval
between 10?5 Torr and 10?2 Torr and the oxygen exposure is greater than
1.8 × 104 L, only the structure c(6 × 2) appears on the surface from the
diffraction result and only the signal of bulk copper is captured in the Cu
2p spectrum which denotes that there is not the formation of copper oxide.
However, the oxygen 1s spectrum shows that the amount of oxygen does
increase. In addition, we found there was a significant undulation in the
terrace in the STM images, which led to the inference that this phenomenon
was caused by the formation of bonds between oxygen and copper under
the surface. When the oxygen pressure is in the interval between 10?2 Torr
and 10?1 Torr, Cu2O gradually occupies the surface. In the initial stage,
Cu2O is double phase when it coexists with c(6×2) and also prefers to grow
downward. Finally, at a pressure of 10?1 Torr, the thickness of Cu2O is about
3.5 nm and the structure changes to the amorphous state, accompanied by
thin film state of CuO. As the oxygen pressure is increased to greater than 1
Torr, from the spectrum we can see that the CuO thickness exceeds 3.41 nm
and the strongly chemisorbed oxygen increases significantly. However, no
diffraction structure can be observed at this pressure, which indicates that
the growth mode of CuO transfers to the amorphous state. The oxygen
pressure was further adjusted to 5 Torr, no new copper compounds appear.
The thickness of CuO has not changed significantly, only the amount of
strongly chemisorbed oxygen has increased.
關鍵字(中) ★ 銅(110)
★ 氧化銅
★ STM
★ APXPS
★ RHEED
關鍵字(英)
論文目次 1 Introduction 1
2 Literature Survey 3
2.1 The Properties of Two Distinct Reconstructions on Cu(110) . 3
2.1.1 The Mechanisms of Forming Process for Two Reconstructions . . . . . . . . . . . . . . . . . . . . . . . . 3
2.1.2 The phase Transition between Two Distinct Reconstructions . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2 CO Reaction on Low-index Copper Surfaces in Oxygen-Lean
Condition . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.3 The Properties of Cuprous and Cupric Oxide . . . . . . . . . 9
2.3.1 The Higher CO Adsorption Energy on Cu2O Surface
Grown on Cu(111) Compared with Metallic Cu . . . . 9
2.3.2 The Structure of Cu2O on Cu(110) and Its Band Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.3.3 The CO Reduction Operates on CuO with Different
Structures . . . . . . . . . . . . . . . . . . . . . . . . 15
xiv
2.3.4 The Structure and Band Structure of CuO . . . . . . 17
3 Experimental Apparatus and Procedures 18
3.1 Vacuum System . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.2 Reflection High Energy Electron Diffraction (RHEED) . . . . 20
3.2.1 The Principle of Scattering and Diffraction Condition 21
3.2.2 RHEED System Operation . . . . . . . . . . . . . . . 23
3.3 Ambient Pressure- X-Ray Photoelectron Spectroscopy (APXPS) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.3.1 Photoelectric Effect in Soft X-Ray Region . . . . . . . 24
3.3.2 The Principle of Synchrotron Radiation and The Endstation of AP-XPS in TLS 24A1 . . . . . . . . . . . . 26
3.3.3 Data Analysis and Thickness Estimation . . . . . . . 29
3.4 Scanning Tunneling Microscopy (STM) . . . . . . . . . . . . 30
3.4.1 The Theory of Scanning Tunneling Microscopy . . . . 31
3.4.2 The Model of RHK-UHV 300 . . . . . . . . . . . . . 34
3.4.3 STM Tip Preparation . . . . . . . . . . . . . . . . . . 35
xv
3.5 Experimental Procedure . . . . . . . . . . . . . . . . . . . . 37
4 Results 40
4.1 Cu(110) and Distinct Oxygen Induced Surface Reconstructions 40
4.2 Cuprous Oxide on Cu(110) . . . . . . . . . . . . . . . . . . . 51
4.2.1 3D Double Phase Cuprous Oxide . . . . . . . . . . . . 51
4.2.2 Amorphous State of Bulk Cuprous Oxide and Thin
Film of Cupric Oxide on Surface . . . . . . . . . . . . 58
4.3 Amorphous State of Bulk Cupric Oxide . . . . . . . . . . . . 63
4.4 Thermal Decomposition of Cupric Oxide and Cuprous Oxide 66
5 Discussion 71
參考文獻 [1] B. Eren, D. Zherebetskyy, L. L. Patera, C. H. Wu, H. Bluhm, C. Africh,
L.-W. Wang, G. A. Somorjai, and M. Salmeron, “Activation of cu (111)
surface by decomposition into nanoclusters driven by co adsorption,”
Science, vol. 351, no. 6272, pp. 475–478, 2016.
[2] B. Eren, L. Lichtenstein, C. H. Wu, H. Bluhm, G. A. Somorjai, and
M. Salmeron, “Reaction of co with preadsorbed oxygen on low-index copper surfaces: an ambient pressure x-ray photoelectron spectroscopy and
scanning tunneling microscopy study,” The Journal of Physical Chemistry C, vol. 119, no. 26, pp. 14669–14674, 2015.
[3] T. Yang, T. Gu, Y. Han, W. Wang, Y. Yu, Y. Zang, H. Zhang, B. Mao,
Y. Li, B. Yang, et al., “Surface orientation and pressure dependence of
co2 activation on cu surfaces,” The Journal of Physical Chemistry C,
vol. 124, no. 50, pp. 27511–27518, 2020.
[4] B. Eren, C. Heine, H. Bluhm, G. A. Somorjai, and M. Salmeron, “Catalyst chemical state during co oxidation reaction on cu (111) studied
with ambient-pressure x-ray photoelectron spectroscopy and near edge
x-ray adsorption fine structure spectroscopy,” Journal of the American
Chemical Society, vol. 137, no. 34, pp. 11186–11190, 2015.
[5] X. Wang, J. C. Hanson, A. I. Frenkel, J.-Y. Kim, and J. A. Rodriguez,
“Time-resolved studies for the mechanism of reduction of copper oxides
with carbon monoxide: complex behavior of lattice oxygen and the for73
mation of suboxides,” The Journal of Physical Chemistry B, vol. 108,
no. 36, pp. 13667–13673, 2004.
[6] D. Svintsitskiy, A. Stadnichenko, D. Demidov, S. Koscheev, and
A. Boronin, “Investigation of oxygen states and reactivities on a nanostructured cupric oxide surface,” Applied surface science, vol. 257, no. 20,
pp. 8542–8549, 2011.
[7] L. Sun, M. Hohage, and P. Zeppenfeld, “Oxygen-induced reconstructions
of cu (110) studied by reflectance difference spectroscopy,” Physical Review B, vol. 69, no. 4, p. 045407, 2004.
[8] Q. Liu, L. Li, N. Cai, W. A. Saidi, and G. Zhou, “Oxygen chemisorptioninduced surface phase transitions on cu (110),” Surface science, vol. 627,
pp. 75–84, 2014.
[9] X. Lian, P. Xiao, R. Liu, and G. Henkelman, “Communication: Calculations of the (2× 1)-o reconstruction kinetics on cu (110),” The Journal
of Chemical Physics, vol. 146, no. 11, 2017.
[10] L. Li, N. Cai, W. A. Saidi, and G. Zhou, “Role of oxygen in cu (1 1
0) surface restructuring in the vicinity of step edges,” Chemical Physics
Letters, vol. 613, pp. 64–69, 2014.
[11] X. Lian, S. Tian, S. Wang, Y. Lin, Y. Liu, Y. Li, and W. Guo, “Influence mechanisms of the surface morphologies on the elementary diffusion
kinetics on the cu (1 1 0) surface,” Computational Materials Science,
vol. 188, p. 110234, 2021.
74
[12] L. Li, Q. Liu, J. Li, W. A. Saidi, and G. Zhou, “Kinetic barriers of
the phase transition in the oxygen chemisorbed cu (110)-(2× 1)-o as
a function of oxygen coverage,” The Journal of Physical Chemistry C,
vol. 118, no. 36, pp. 20858–20866, 2014.
[13] G. Gruzalski, D. Zehner, J. Wendelken, and R. Hathcock, “Leed observations of oxygen ordering on cu (110),” Surface Science, vol. 151, no. 2-3,
pp. 430–446, 1985.
[14] S. Vollmer, G. Witte, and C. Woll, “Determination of site specific adsorption energies of co on copper,” Catalysis letters, vol. 77, pp. 97–101,
2001.
[15] P. Jiang, D. Prendergast, F. Borondics, S. Porsgaard, L. Giovanetti,
E. Pach, J. Newberg, H. Bluhm, F. Besenbacher, and M. Salmeron,
“Experimental and theoretical investigation of the electronic structure
of cu2o and cuo thin films on cu (110) using x-ray photoelectron and
absorption spectroscopy,” The Journal of chemical physics, vol. 138,
no. 2, 2013.
[16] S. Shi, Y. Han, T. Yang, Y. Zang, H. Zhang, Y. Li, and Z. Liu, “Ambient pressure x-ray photoelectron spectroscopy study of oxidation phase
transitions on cu (111) and cu (110),” ChemPhysChem, vol. 24, no. 22,
p. e202300543, 2023.
[17] C. Gattinoni and A. Michaelides, “Atomistic details of oxide surfaces
and surface oxidation: the example of copper and its oxides,” Surface
Science Reports, vol. 70, no. 3, pp. 424–447, 2015.
75
[18] M. Heinemann, B. Eifert, and C. Heiliger, “Band structure and phase
stability of the copper oxides cu 2 o, cuo, and cu 4 o 3,” Physical Review
B—Condensed Matter and Materials Physics, vol. 87, no. 11, p. 115111,
2013.
[19] L. Luo, Y. Kang, J. C. Yang, and G. Zhou, “Effect of oxygen gas pressure on orientations of cu2o nuclei during the initial oxidation of cu
(100),(110) and (111),” Surface science, vol. 606, no. 23-24, pp. 1790–
1797, 2012.
[20] 蘇青森等編著, 真真空技術與應用. 行政院國家科學委員會精密儀器發
展中心, 2001.
[21] C. K. Kroemer, Thermal Physics. W. H. Freeman, 1980.
[22] S. Hasegawa, “Reflection high-energy electron diffraction,” Characterization of Materials, vol. 97, pp. 1925–1938, 2012.
[23] J. D. Jackson, Classical Electrodynamics. Wiley, 1998.
[24] D. J. Griffiths, Introduction to Quantum Mechanics. Pearson Education,
2005.
[25] C. Kittel and P. McEuen, Introduction to solid state physics. John Wiley
& Sons, 2018.
[26] M. Dabrowska-Szata, “Analysis of rheed pattern from semiconductor
surfaces,” Materials chemistry and physics, vol. 81, no. 2-3, pp. 257–259,
2003.
76
[27] H. Hirayama, “Lecture note on photon interactions and cross sections,”
KEK, High Energy Accelerator Research Organization, Oho, Tsukuba,
Ibaraki, Japan, 2000.
[28] S. Hufner, Photoelectron spectroscopy: principles and applications.
Springer Science & Business Media, 2013.
[29] NSRRC introduction.
[30] J. B. M. M. A. Heald, Classical Electromagnetic Radiation. Dover Publications, 2012.
[31] C.-H. Wang, S.-T. Chang, S.-Y. Chen, and Y.-W. Yang, “New ambient pressure x-ray photoelectron spectroscopy endstation at taiwan light
source,” in AIP Conference Proceedings, vol. 2054, AIP Publishing, 2019.
[32] D. A. Shirley, “High-resolution x-ray photoemission spectrum of the valence bands of gold,” Physical Review B, vol. 5, no. 12, p. 4709, 1972.
[33] V. Jain, M. C. Biesinger, and M. R. Linford, “The gaussian-lorentzian
sum, product, and convolution (voigt) functions in the context of peak
fitting x-ray photoelectron spectroscopy (xps) narrow scans,” Applied
Surface Science, vol. 447, pp. 548–553, 2018.
[34] P. Citrin and D. Hamann, “Phonon broadening of x-ray photoemission
line shapes in solids and its independence of hole state lifetimes,” Physical Review B, vol. 15, no. 6, p. 2923, 1977.
[35] M. Alexander, G. Thompson, X. Zhou, G. Beamson, and N. Fairley,
“Quantification of oxide film thickness at the surface of aluminium us77
ing xps,” Surface and Interface Analysis: An International Journal devoted to the development and application of techniques for the analysis
of surfaces, interfaces and thin films, vol. 34, no. 1, pp. 485–489, 2002.
[36] S. Tanuma, C. J. Powell, and D. R. Penn, “Calculations of electron
inelastic mean free paths. v. data for 14 organic compounds over the 50–
2000 ev range,” Surface and interface analysis, vol. 21, no. 3, pp. 165–
176, 1994.
[37] A. D. Gottlieb and L. Wesoloski, “Bardeen’s tunnelling theory as applied
to scanning tunnelling microscopy: a technical guide to the traditional
interpretation,” Nanotechnology, vol. 17, no. 8, p. R57, 2006.
[38] C. J. Chen, “Tunneling matrix elements in three-dimensional space: The
derivative rule and the sum rule,” Physical Review B, vol. 42, no. 14,
p. 8841, 1990.
[39] C. J. Chen, “Theory of scanning tunneling spectroscopy,” Journal of
Vacuum Science & Technology A: Vacuum, Surfaces, and Films, vol. 6,
no. 2, pp. 319–322, 1988.
[40] J. Tersoff and D. R. Hamann, “Theory of the scanning tunneling microscope,” Physical Review B, vol. 31, no. 2, p. 805, 1985.
[41] User’s guide of RHK-UHV 300.
[42] C. J. Chen, “Role of tip material in scanning tunneling microscopy,”
MRS Online Proceedings Library (OPL), vol. 159, 1989.
[43] R. Bernal and A. Avila, “Reproducible fabrication of scanning tunneling
microscope tips,” Revista de Ingenieria, no. 27, pp. 43–48, 2008.
78
[44] H. Haak, G. Sawatzky, and T. Thomas, “Auger-photoelectron coincidence measurements in copper,” Physical Review Letters, vol. 41, no. 26,
p. 1825, 1978.
[45] 李易暽, Growth and electronic properties of Rh and Au nanoclusters
supported on CuO/Cu(110). 2023.
[46] D. Wu, J. Li, and G. Zhou, “Oxygen adsorption at heterophase boundaries of the oxygenated cu (110),” Surface Science, vol. 666, pp. 28–43,
2017.
[47] J. Wang, D. Lu, C. Li, Y. Zhu, J. A. Boscoboinik, and G. Zhou, “Measuring charge transfer between adsorbate and metal surfaces,” The Journal
of Physical Chemistry Letters, vol. 11, no. 16, pp. 6827–6834, 2020.
[48] T. Kataoka, Y. Yamazaki, V. Singh, A. Fujimori, F.-H. Chang, H.-J. Lin,
D. Huang, C. Chen, G. Xing, J. Seo, et al., “Ferromagnetic interaction
between cu ions in the bulk region of cu-doped zno nanowires,” Physical
Review B—Condensed Matter and Materials Physics, vol. 84, no. 15,
p. 153203, 2011.
[49] L. Li and G. Zhou, “Oxygen subsurface adsorption on the cu (110)-c
(6× 2) surface,” Surface science, vol. 615, pp. 57–64, 2013.
[50] A. Wright and J. Nelson, “Theory of the copper vacancy in cuprous
oxide,” Journal of Applied Physics, vol. 92, no. 10, pp. 5849–5851, 2002.
[51] B.-H. Liu, M. Huber, M. A. van Spronsen, M. Salmeron, and H. Bluhm,
“Ambient pressure x-ray photoelectron spectroscopy study of room79
temperature oxygen adsorption on cu (1 0 0) and cu (1 1 1),” Applied
Surface Science, vol. 583, p. 152438, 2022.
[52] J. Wang, C. Li, Y. Zhu, J. A. Boscoboinik, and G. Zhou, “Insight into
the phase transformation pathways of copper oxidation: from oxygen
chemisorption on the clean surface to multilayer bulk oxide growth,”
The Journal of Physical Chemistry C, vol. 122, no. 46, pp. 26519–26527,
2018.
[53] X. Lian, P. Xiao, S.-C. Yang, R. Liu, and G. Henkelman, “Calculations
of oxide formation on low-index cu surfaces,” The Journal of chemical
physics, vol. 145, no. 4, 2016.
[54] M. C. Biesinger, L. W. Lau, A. R. Gerson, and R. S. C. Smart, “Resolving surface chemical states in xps analysis of first row transition metals,
oxides and hydroxides: Sc, ti, v, cu and zn,” Applied surface science,
vol. 257, no. 3, pp. 887–898, 2010.
[55] T. Robert, M. Bartel, and G. Offergeld, “Characterization of oxygen
species adsorbed on copper and nickel oxides by x-ray photoelectron
spectroscopy,” Surface Science, vol. 33, no. 1, pp. 123–130, 1972.
[56] K. Sakata and K. Amemiya, “Time-and depth-resolved chemical state
analysis of the surface-to-subsurface oxidation of cu by x-ray absorption spectroscopy at near ambient pressure,” The Journal of Physical
Chemistry Letters, vol. 13, no. 41, pp. 9573–9580, 2022.
80
[57] P. Gunter, O. Gijzeman, and J. Niemantsverdriet, “Surface roughness
effects in quantitative xps: magic angle for determining overlayer thickness,” Applied surface science, vol. 115, no. 4, pp. 342–346, 1997.
[58] J. Ghijsen, L.-H. Tjeng, J. van Elp, H. Eskes, J. Westerink, G. A.
Sawatzky, and M. T. Czyzyk, “Electronic structure of cu 2 o and cuo,”
Physical Review B, vol. 38, no. 16, p. 11322, 1988.
[59] S. Poulston, P. Parlett, P. Stone, and M. Bowker, “Surface oxidation
and reduction of cuo and cu2o studied using xps and xaes,” Surface and
Interface Analysis: An International Journal devoted to the development
and application of techniques for the analysis of surfaces, interfaces and
thin films, vol. 24, no. 12, pp. 811–820, 1996.
[60] G. Zhou and J. C. Yang, “Reduction of c u 2 o islands grown on a cu
(100) surface through vacuum annealing,” Physical review letters, vol. 93,
no. 22, p. 226101, 2004.
指導教授 羅夢凡(Meng-Fan Luo) 審核日期 2025-1-20
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明