博碩士論文 110222024 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:17 、訪客IP:3.135.64.200
姓名 趙建銘(Chien-Ming Chao)  查詢紙本館藏   畢業系所 物理學系
論文名稱
(Design of a Near-Ambient-Pressure Reaction Cell and Study of the Reactivity on Layered VSe2)
相關論文
★ 鐵電型液晶材料光熱相變研究★ An AFM study of thermal behavior of lipid over layers on mica
★ 利用RHEED、LEED、AES 研究Al2O3在NiAl(100)和Co在Al2O3/NiAl(100)上的幾何結構和生長方式★ Patterning Co Nanoclusters on Thin Film Al2O3/NiAl(100)
★ Growth of Oxide on NiAl(100) and its Interaction with Au★ 用原子力顯微鏡在脂質膜上做微影術並且討論其在基板上之動力行為
★ Catalytic properties of Au nanoclusters supported on Al2O3/NiAl (100) surface★ Atomic Structures and Electro-catalytic Properties of Pt Nanoclusters on Thin Film Al2O3/NiAl(100)
★ Nanowires from Aligned One-dimensional Arrays of Co Nanoclusters on Al2O3 Grown on Vicinal NiAl Surfaces★ 以掃描穿隧電子顯微鏡及光激發能譜研究奈金屬粒子在氧化鋁薄膜上的成長
★ 在氧化鋁上成長金與白金的和金奈米粒子★ 以第一原理研究一到二顆金原子在θ型氧化鋁(001)表面上的吸附與擴散行為
★ 甲醇在以thita-三氧化二鋁/鎳鋁合金為基板之奈米黃金粒子上的分解反應-以熱脫附質譜術與傅立葉紅外光譜儀方法之研究★ 探測θ-Al2O3/NiAl(100)表面之下的結構以及Au-Pt雙金屬顆粒在θ-Al2O3/NiAl(100)表面上的形貌
★ 利用穿隧式電子顯微鏡的探針產生在鎳鋁合金(100)面上的局部氧化反應★ 利用PES探討吸附物對Au-Pt奈米團簇所引發表面發生重構的現象
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2027-12-31以後開放)
摘要(中) 我們建立了一套安裝於超高真空腔體內的近常壓反應室,透過搭配的飛秒解析超寬頻紅外光譜以研究表面催化反應的超快動力學。反應室以這樣的方式安裝因為樣品,催化模型系統是在超高真空條件下製備以防止汙染,而反應是在近常壓條件下進行的。反應室與超高真空腔體採用橡膠面密封隔離,如此一來近常壓實驗就可以在反應室內進行並保持腔體的超高真空環境,並且橡膠面密封可以維持約八個量級的壓差。此外,反應室也連接質譜儀,因此我們可以同時用紅外光譜和質譜監測反應。我們用這套近常壓反應室執行了有關質譜和紅外光譜量測的測試。質譜方面,氣態氮氣及甲醇的訊號隨著反應室內的氣壓上升可以被量測到,並且最終在約 1 mbar 飽和。然而,我們發現氣態甲醇的吸收強度不足以套用近常壓反應室而被紅外光譜量測到。因此,我們將甲醇曝進腔體內去監測紅外光吸收特徵。氣態甲醇的吸收特徵可以在氣壓高於 1 mabr 時被觀察到,並且隨著氣壓到 3 mbar時變得明顯。將腔體內的甲醇抽掉後,氣態甲醇吸收特徵便消失。
另外,我們研究了層狀 VSe2 對甲醇的反應性。表面結構藉由反射式高能電子繞射(RHEED)和光電子能譜(PES)來表徵,而反應、中間產物、氣態產物則是透過光電子能譜、近常壓光電子能譜(NAP-PES)、近常壓質譜(NAP-MS)來監測。我們透過氬離子轟擊來製造表面缺陷並且能藉由控制氬離子的劑量來調控表面缺陷的數量。藉由光電子能譜我們看到甲醇在超高真空環境下的 VSe2 表面上分解並產生 CHxO 和 CHx兩種中間產物,並且它們的產量隨著表面缺陷的數量而發生改變,其中缺陷數量越少時表現出較好的表面反應能力。因此我們可以透過改變氬離子轟擊的時間來控制缺陷數量,進而影響 VSe2 表面的反應能力。由近常壓光電子能譜可以觀察到,甲醇分解並產生的兩種中間產物之相對比例,和超高真空環境下的情形是相反的,意味著氣態產物在反應中產生並從表面脫附,進而改變了殘留在表面上的中間產物相對比例。此外通過近常壓質譜的量測,氬離子轟擊產生的表面缺陷促進了 VSe2 表面對於甲醇分解的反應能力,並最終產生幾種氣態產物包括 D2(g)、D2O(g)/CD4(g)、CO(g)、CD2O(g)。
摘要(英) We designed a near-ambient-pressure (NAP) reaction cell installed inside an ultrahigh vacuum (UHV) chamber to investigate the instantaneous dynamics of surface catalytic reactions with the coupled femtosecond-resolved ultra-broadband IR spectroscopy. The reaction cell is installed in this way, because the samples, catalytic model systems, are prepared under UHV conditions to prevent contamination, and the reactions are conducted under NAP conditions. The reaction cell is isolated from the UHV chamber with rubber face sealing, so that we can perform NAP experiments in the reaction cell and maintain an UHV environment for the chamber, and the rubber face sealing can maintain about eight orders pressure difference. Besides, a mass
spectrometer is also connected to the reaction cell, so we can monitor reactions with IR and mass spectroscopies simultaneously. We conducted testing related to the measurements of mass and IR spectroscopy with the NAP reaction cell. For mass spectroscopy, the signals of gaseous nitrogen and methanol can be measured with increased pressure inside the reaction cell and finally saturated
at about 1 mbar. For IR spectra testing, however, we found the absorption intensity is not enough to be measured with the reaction cell. Therefore, we introduced methanol to the entire chamber and monitored the IR absorption feature. The absorption feature of gaseous methanol could be observed at pressure above 1 mabr and became obvious as pressure up to 3 mabr. After evacuated methanol from the chamber, the gaseous methanol absorption feature then vanished.
In addition, we studied the reactivity of layered VSe2 toward methanol decomposition. The surface structures were characterized using reflective high energy electron diffraction (RHEED) and photoelectron spectroscopy (PES) while the reactions, intermediates, and gaseous products
were monitored by PES, near-ambient-pressure photoelectron spectroscopy (NAP-PES), and nearambient-pressure mass spectroscopy (NAP-MS). We generated the surface defects through Ar+ bombardment and controlled the defect concentration by tuning the Ar+ dosage. With PES spectra,
we observed that on VSe2 surface under UHV environment, the methanol decomposed and produced CHxO and CHx, and the production of these two intermediates altered with the surface defect concentration, where the better reactivity was presented at less defect concentration. Therefore, the surface reactivity of VSe2 can be manipulated via controlling the surface defect concentration through Ar+
bombardment. With NAP-PES spectra, the relative ratio of two
produced intermediates from methanol decomposition is opposite to the UHV case, implying some gaseous products were generated during the reaction and desorbed from the surface, and altered the relative ratio of intermediates remaining on surface. Moreover, based on measurements of
NAP-MS, the surface defects generated from Ar+ bombardment promoted the reactivity of VSe2 surface toward methanol decomposition under near ambient pressure conditions with several ultimately produced gaseous products, including D2(g), D2O(g)/CD4(g), CO(g), CD2O(g).
關鍵字(中) ★ 近常壓
★ 反應室
★ 二硒化釩
★ 甲醇分解
關鍵字(英) ★ Near-Ambient-Pressure
★ Reaction Cell
★ VSe2
★ Methanol Decomposition
論文目次 摘要 i
Abstract ii
Contents iv
List of Figures v
List of Tables xi
Chapter 1 Introduction 1
Chapter 2 Literature Survey 3
2.1 Reaction cell under atmospheric pressure flow conditions 3
2.2 Methanol-d4 Decomposition on V Nanoclusters supported by Al2O3 / NiAl (100) 6
2.3 Methanol Decomposition at Undercoordinated Pt sites on Layered PtTe2 9
Chapter 3 Experimental Apparatus and Methods 14
3.1 Overview 14
3.2 Vacuum system 14
3.3 Femtosecond - Resolved Ultra Broadband IR Spectroscopy 16
3.4 Reflective High Energy Electron Diffraction (RHEED) 18
3.5 Photoelectron Spectroscopy (PES) 20
3.6 Near-ambient-pressure Mass Spectroscopy 23
3.7 Experimental methods 24
3.7.1 Sample preparation 24
3.7.2 Ar+ bombardment 25
3.8 Procedures 25
Chapter 4 Result & Discussion 28
PartⅠ Design a NAP Reaction Cell 28
4.1 Primary Components 28
4.2 Experimental Procedures 32
4.3 Testing of Spectroscopic Measurements 33
PartⅡ Study of the Reactivity of Layered VSe2 35
4.4 Defect Engineering by Ar+ bombardment on layered VSe2 35
4.5 Reactivity of as-cleaved and defected VSe2 toward methanol decomposition 37
4.6 Methanol Decomposition under Near-Ambient Pressure Conditions 43
Chapter 5 Conclusion 52
References 54
參考文獻 [1] D. W. Blakely, et al., “New instrumentation and techniques to monitor chemical surface reactions on single crystals over a wide pressure range (10?8–105 Torr) in the same apparatus,” J. Vac. Sci. Technol. 13, 1091 (1976).
[2] Thomas Haunold, et al.; An ultrahigh vacuum-compatible reaction cell for model catalysis under atmospheric pressure flow conditions. Rev. Sci. Instrum. 1 December 2020; 91 (12): 125101.
[3] Hu, J., et al., Sulfur vacancy-rich MoS2 as a catalyst for the hydrogenation of CO2 to methanol. Nature Catalysis, 4(3): p. 242-250, 2021.
[4] T Yang, J. et al. Single atomic vacancy catalysis. ACS Nano 13, 9958–9964 (2019).
[5] Politano, A. et al. Tailoring the Surface Chemical Reactivity of Transition-Metal Dichalcogenide PtTe2 Crystals. Adv. Funct. Mater. 28, 1706504 (2018).
[6] D′Olimpio, G., et al., PdTe2 Transition-Metal Dichalcogenide: Chemical Reactivity, Thermal Stability, and Device Implementation. Advanced Functional Materials, 30(5): p. 1906556, 2020.
[7] S. Nappini et al., “Transition-Metal Dichalcogenide NiTe2: An Ambient-Stable Material for Catalysis and Nanoelectronics,” Advanced Functional Materials, vol. 30, no. 22, p.2000915, 2020.
[8] Hsueh, JW., Kuo, LH., Chen, PH. et al. Investigating the role of undercoordinated Pt sites at the surface of layered PtTe2 for methanol decomposition. Nat Commun 15, 653 (2024).
[9] Zellner, M. B.; Hwu, H. H.; Chen, J. G. Comparative Studies of Methanol Decomposition on Carbide-Modified V(110) and Ti(0001). Surf. Sci. 2005, 598, 185?199.
[10] Shen, M.; Zaera, F. Methanol Adsorption on Clean and Oxygen-Predosed V(100) Single-Crystal Surfaces. J. Phys. Chem. C 2008, 112, 1636?1644.
[11] Wang, H.; He, C.-Z.; Huai, L.-Y.; Tao, F.-M.; Liu, J.-Y. Decomposition of Methanol on Clean and Oxygen-Predosed V(100): A First-Principles Study. J. Phys. Chem. C 2012, 116, 25344?25353.
[12] Wu, Y.-C. et al. Catalyzed decomposition of methanol-d4 on vanadium nanoclusters supported on an ultrathin film of Al2O3/NiAl(100). J. Phys. Chem. C. 126, 3903–3914 (2022).
[13] Jianan Fu et al., Large-scale preparation of 2D VSe2 through a defect-engineering approach for efficient hydrogen evolution reaction, Chemical Engineering Journal, Volume 411, 2021, 128494.
[14] T. Gamze Ulusoy Ghobadi, et al., “Catalytic Properties of Vanadium Diselenide: A Comprehensive Study on Its Electrocatalytic Performance in Alkaline, Neutral, and Acidic Media”, ACS Omega 2017 2 (11), 8319-8329
[15] 蘇青森等編著,真空技術與應用,行政院國家科學委員會精密儀器發展中心,台灣 新竹市,2001。
[16] Elaine M. McCash, Surface Chemistry, Oxford University Press, 2001.
[17] J. B. Hudson,” Surface Science: An Introduction”, 1998.
[18] 黃威紘等編寫,新型飛秒解析超寬頻紅外光譜的尖端運用,科技部研究計畫報告,2021年10月27日。
[19] H. Shuji, "Reflection high-energy electron diffraction"
[20] S. Hasegawa, Reflection high-energy electron diffraction. Characterization of Materials. 97: p.1925-1938, 2012
[21] C. Kittel,” Introduction to Solid State Physics 8th Edition”, 2004.
[22] J. Chastain and R. C. King Jr, Handbook of X-ray photoelectron spectroscopy, Perkin-Elmer Corporation, 1992
[23] F. A. Stevie, C. L. Donley, “Introduction to x-ray photoelectron spectroscopy”, J. Vac. Sci. Technol. A, Vol38, NO.6, December, 2020
[24] S. Tanuma, C. J. Powell, and D. R. Penn, “Calculations of electron inelastic mean free paths. V. Data for 14 organic compounds over the 50-2000 eV range”, Surface and Interface Analysis, vol.21, no. 3, pp.165-176, 1994
[25] Hong, I. H. et al. Performance of the SRRC scanning photoelectron microscope. Nucl. Instrum. Methods Phys. Res. Sect. A: Accelerators, Spectrometers, Detect. Associated Equip. 467-468, 905–908 (2001).
[26] Wang, C.-H., Chang, S.-T., Chen, S.-Y. & Yang, Y.-W. New ambient pressure X-ray photoelectron spectroscopy endstation at Taiwan light source. AIP Conf. Proc. 2054, 040012 (2019).
[27] HPR30 Systems User Manual, HIDEN
[28] MPT200 Digital Pirani/Cold Cathode gauge, Operating Instructions, PFEIFFER VACUUM
[29] R. Edla, C. N. Kuo, P. Torelli, C. S. Lue, D. W. Boukhvalov, A. Politano, “Interaction of VSe2 with Ambient Gases: Stability and Chemical Reactivity”, Phys. Status Solidi RRL 2020, 14, 1900332
[30] HPR40 Systems Manual Set, HIDEN
[31] Torr Scientific Ltd. Vacuum Optics Catalogue, 2022
[32] MDC Vacuum Products. LLC Catalogue, Section 7.1 Linear motion
[33] Liao, G.-J. et al. Decomposition of methanol-d4 on a thin film of Al2O3/NiAl(100) under near-ambient-pressure conditions. J. Chem. Phys. 158, 174707 (2023).
指導教授 羅夢凡(Meng-Fan Luo) 審核日期 2025-1-10
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明