博碩士論文 110223013 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:55 、訪客IP:18.227.190.182
姓名 黃詩詠(Shih-Yung Huang)  查詢紙本館藏   畢業系所 化學學系
論文名稱 氫氧化亞鐵吸附於鉑(111)電極上的結構及電催化活性
相關論文
★ 岐狀結構材料在鋰電池的應用★ Adsorption and Electrochemical Polymerization of Pyrrole on Au (100) Electrode as Examine by In Situ Scanning Tunneling Microscopy
★ Synthesis and Characterization of Cyclopentadithiophene (CDT) based Organic Photovoltaic and Pyrazine Contained Hole Transporting Small Molecules★ 有機碘化物在金、銠、鉑(111)電極和有機二硫醇化物在鉑(111)電極的吸附結構
★ STM研究銥(111)上碘、一氧化碳和一氧化氮的吸附及銅(100)上鎳和鉛的沈積★ 利用掃描式電子穿隧顯微鏡觀察鍍銅在鉑(111)及銠(111)電極表面
★ 使用in-situ STM和循環伏安儀研究銅和銀在碘修飾的鉑(100)電極之沈積過程★ 利用in-situ STM觀察銅(100)電極上鉛與鎳的沉積過程
★ 利用in-situ STM觀察硫酸根、氧及碘在釕(001)電極和醋酸、間苯三酚在銠(111)電極的吸附結構★ 掃描式電子穿隧顯微鏡及循環伏安法對 有機碘化物在鉑(111)電極上的研究
★ 半導體碘化鉛薄膜在單結晶銠電極上的研究★ 利用掃描式電子穿隧顯微鏡觀察汞薄膜在銥(111)電極上鹵素的吸附結構
★ 掃描式電子穿隧顯微鏡研究碘原子對汞在 銥(111)、鉑(111)及銠(111)上沈積的影響★ 掃描式電子穿隧顯微鏡對烷基及芳基硫醇分子在鉑(111)及金(111)上之研究
★ 掃描式電子穿隧顯微鏡研究一氧化碳、硫、硫醇分子及氯在釕(001)上的吸附結構★ 硫氧化物及聚賽吩衍生物 在金、鉑電極上之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本研究利用循環伏安法 (Cyclic Voltammetry,CV) 和掃描式穿隧電子顯微鏡 (Scanning Tunneling Microscope,STM) 探討三個主題:氫氧化亞鐵的空間結構、陰離子對氫氧化亞鐵的影響及催化活性。第一部分為在 pH3 硫酸溶液(1 mM H2SO4 + 0.1 M K2SO4) 含有10 mM FeSO4中,Pt(111) 電極上吸附 Fe(OH)2 薄膜的空間結構。本實驗採用傳統的退火及冷淬方法處理 Pt(111) 電極,使其表面生成單層的天然氧化物,從而形成有序的 Fe(OH)2 薄膜。在 0.1 ~ -0.1 V (vs. Ag/AgCl) 可以觀察到獨特的車輪狀 (SW) 結構,與真空中觀察到的六邊形 FeO(111) 雙層結構不同,該車輪狀結構是扭曲的六邊形。將電位正調至 0.4 V,車輪狀結構轉變為有序的顆粒狀形貌,為 (6  39) 的傾斜結構;將電位從 -0.1 V 往負電位移動,表面轉變為無序的莫爾圖案,此過程為不可逆的反應,隨著電位移動表面會先長出第二層 Fe(OH)2 以及第三層的金屬鐵,接著金屬鐵會以三維(Volmer-Weber mode)的方式生長。
第二部分著重於陰離子及硼酸共吸附對 Fe(OH)2 在 Pt(111) 的空間結構,同樣的 STM 實驗也在 pH3 鹽酸溶液 (1 mM HCl + 0.1 M KCl + 10 mM FeCl2)中進行,表面會隨電位出現微三角環 (TL) 及類似車輪狀形貌,皆是一個扭曲的六方型晶格,藉由表面不同形貌可以得知,溶液中的陰離子會和鐵離子共吸附於電極表面上。當溶液中含有硼酸時,可以觀察到硼酸在負電位形成獨特梯形狀形貌,得以證實硼酸和鐵離子共吸附於電極表面上。
第三部分探討了鐵氧化物修飾的 Pt(111) 對一氧化碳氧化(CO)、氧氣還原(ORR)、甲酸氧化(FAO)和氫氣析出反應(HER)的催化活性。CO 氧化反應一直被視為一個重要的模型系統,能夠深入理解異相催化反應。電化學結果顯示,有 Fe(OH)x 修飾的電極其 CO 氧化電位比單純 Pt(111) 更負;掃描式穿隧電子顯微鏡(STM)觀察表面有 Fe(OH)x 修飾的 Pt(111) 在含有飽和 CO 的過氯酸中的電極表面狀態,發現 Fe(OH)x 和 CO 以不同的區域吸附,並競爭 Pt 電極表面的活性位點,可能是以 Fe(OH)x 和 CO 區域之間的交界作為 CO 氧化的活性位點。
Fe(OH)x 修飾的 Pt(111) 對 ORR 和 FAO 也表現出很高的活性。在 0.1 M KOH 中,ORR 的半波電位從 -0.29 V 移動到 -0.19 V,氧氣通過 4e- 過程還原成水;FAO 活性通過峰電流增加三倍來體現。這些優點可能來自於氧氣與 Fe(OH)x 修飾的 Pt 電極之間的氧結合強度增加,然而,Fe(OH)x 修飾對 Pt 電極的還原反應並沒有正面影響,像是 Fe(OH)x/Pt(111) 電極無法在鹼性溶液中促進水的分解。
摘要(英) The current study employed cyclic voltammetry (CV) and in situ scanning tunneling microscopy (STM) to probe the redox chemistry and spatial structure of an iron oxide thin film adsorbed on an ordered Pt(111) electrode in pH3 sulfate solution (1 mM H2SO4 + 0.1 M K2SO4) containing 10 mM FeSO4. We used the conventional annealing-and-quenching method to treat the Pt(111) electrode. The subsequently produced sub-monolayer native oxide on this Pt sample enabled the formation of an ordered FeO thin film. In situ STM imaging yielded a unique spoke – wheel (SW) structure between 0.1 and -0.1 V (vs. Ag/AgCl) in pH3 sulfate solution. As opposed to the hexagonal FeO(111) bilayer structure observed on Pt(111) in vacuum, the SW structure was distorted hexagonal. While the potential was shifted to -0.4 V, the spoke-wheel (SW) structure transformed into an ordered spot-like morphology with Pt(111) - (6  39) oblique structure. On the other hand, when the potential was shifted from -0.1 V towards negative values, the surface transformed into a disordered moiré pattern, representing an irreversible reaction. As the potential continued to decrease, a second layer of iron oxide and a third layer of metallic iron gradually formed on the surface. The growth of metallic iron followed a three-dimensional mode known as the Volmer-Weber mode.
In order to investigate the possible coadsorption of anion and borate with Fe2+ on the Pt electrode, we conducted similar STM experiment with a Pt(111) electrode in pH3 chloride medium (1 mM HCl + 0.1 M KCl + 10 mM FeCl2). At 0.1 V, the surface exhibited varying sizes of micro triangular loops (TL) morphology, which was consistent with the results in sulfuric acid, showing a distorted hexagonal lattice. Shifting the potential from 0.1 to 0 V resulted in a transformation of the TL to a SW – like structure. It has the same characteristics as the SW pattern seen in pH3 sulfate medium, except it is apparently less ordered. The different surface morphologies indicated the co-adsorption of anions from the solution with iron ions on the electrode surface. In the presence of borate in the solution, a unique trapezoidal morphology was observed at negative potentials, confirming the co-adsorption of borate and iron ions on the electrode surface.
The catalytic activity of Pt(111) modified with iron oxide toward the oxidation of carbon monoxide (CO), oxygen reduction reaction (ORR), oxidation of formic acid (FAO), and hydrogen evolution reaction (HER) are examined. The CO oxidation reaction has been a model system to gain insight of heterogenous catalytic reaction. Voltammetric results show that the Fe(OH)x modifier causes CO admolecule to be oxidized at more negative potential than that of bare Pt(111). In situ STM is used to probe the state of Fe(OH)x – modified Pt(111) electrode immersed in CO – saturated perchloric acid, revealing Fe(OH)x and CO are adsorbed in segregated domains and compete for surface sites on the Pt electrode. It is likely that the domain boundies between Fe(OH)x and CO domains act as the active sites for CO oxidation.
The Fe(OH)x modified Pt(111) also exhibits higher activity toward ORR and FAO. The half wave potential for ORR shifts from -0.29 to -0.19 V and oxygen molecule is reduced to water via the 4e- process in 0.1 M KOH. The FAO activity is manifested by the increase of peak current by three times. These merits can stem from an increase of oxygen binding strength of oxygen entities to the Fe(OH)x modified Pt electrode. However, the Fe(OH)x modifier does not show a positive effect of Pt electrode on the reduction reaction. For example, Fe(OH)x/Pt(111) electrode cannot promote water splitting in alkaline media.
關鍵字(中) ★ 電化學
★ 鐵金屬
★ 一氧化碳氧化
★ 氧氣還原反應
★ 燃料電池
關鍵字(英)
論文目次 摘要 i
Abstract i
誌謝 iii
目錄 iv
圖目錄 vii
表目錄 x
第一章 緒論 1
1-1 薄膜成長理論 1
1-2-1 薄膜成長模式 1
1-2-2 影響薄膜成長的因素 2
1-2-3 晶格匹配度 2
1-2 燃料電池 5
1-2-1 質子交換薄膜燃料電池 5
1-2-2 一氧化碳吸附於鉑的現象 6
1-2-3 氧氣還原反應 7
1-3 氧化亞鐵薄膜研究及催化活性 10
1-3-1 氧化亞鐵薄膜於Au(111)及Pt(111)沉積情形 10
1-3-2 氧化亞鐵薄膜一氧化碳氧化活性 11
1-3-3 氧化亞鐵薄膜氧氣還原反應活性 11
1-4 系統物性介紹 16
1-4-1 鉑及鐵之物理性質比較 16
1-4-2 酸性溶液中的標準電極電位 17
1-5 文獻回顧及研究動機 18
1-5-1 鐵薄膜的研究 18
1-5-2 研究動機 19
第二章 實驗部分 20
2-1 藥品部分 20
2-2 實驗氣體 20
2-3 金屬線材 20
2-4 儀器設備 21
2-4-1 循環伏安儀 21
2-4-2 掃描式穿隧電子顯微鏡 21
2-4-3 點焊機 22
2-4-4 旋轉電極 22
2-4-5 研磨機 22
2-4-6 超音波振盪器 22
2-5 實驗步驟 25
2-5-1 鉑(111) 單晶 CV 電極製備 25
2-5-2 鉑(111)單晶 STM 電極製備 25
2-5-3 STM 探針製備 26
2-5-4 循環伏安法(CV)的實驗步驟 26
2-5-5 電化學掃描式穿隧電子顯微鏡(EC-STM)的實驗步驟 27
第三章 氫氧化亞鐵在硫酸中於 Pt(111) 電極上的吸附現象 29
3-1 氫氧化亞鐵於 Pt(111) 電極上電沉積之探討 29
3-1-1 氫氧化亞鐵於 Pt(111) 電極上電沉積的CV圖 29
3-1-2 氫氧化亞鐵於 Pt(111) 電極上電沉積的STM圖 37
3-2 不同pH 值下硫酸中氫氧化亞鐵於 Pt(111) 電極上電沉積之探討 45
3-2-1 pH 4硫酸中氫氧化亞鐵於 Pt(111) 電極上電沉積的CV圖 45
3-2-2 pH 5硫酸中氫氧化亞鐵於 Pt(111) 電極上電沉積的CV圖 49
3-2-3 pH 4硫酸中氫氧化亞鐵於 Pt(111) 電極上電沉積的STM圖 54
3-2-4 pH 5硫酸中氫氧化亞鐵於 Pt(111) 電極上電沉積的STM圖 57
3-3 添加不同濃度硫酸亞鐵於 Pt(111) 電極上電沉積之探討 61
3-3-1 不同濃度硫酸亞鐵沉積於 Pt(111) 電極上之CV圖 61
3-3-2 不同濃度氫氧化亞鐵沉積於 Pt(111) 電極上之STM圖 64
3-4 浸泡不同濃度氫氧化亞鐵於 Pt(111) 電極上之探討 66
3-4-1 pH1 過氯酸中浸泡 FeSO4 於 Pt(111) 電極上的CV圖 66
3-4-2 pH3 硫酸中浸泡 FeSO4 於 Pt(111) 電極上的CV圖 72
3-4-3 pH3 硫酸中浸泡 FeSO4 於 Pt(111) 電極上之STM圖 76
3-4-4 0.1M KOH下浸泡 FeSO4.7H2O的情形 78
第四章 陰離子對於氫氧化亞鐵在 Pt(111) 電極上的吸附現象 83
4-1 含氯離子溶液對於氫氧化亞鐵於 Pt(111) 電極上電沉積之探討 83
4-1-1 含氯離子溶液對於氫氧化亞鐵於Pt(111)電極電沉積CV圖 83
4-1-2 含氯離子溶液對於氫氧化亞鐵於Pt(111)電極電沉積STM圖 86
4-2 硼酸對於氫氧化亞鐵於 Pt(111) 電極上電沉積之探討 88
4-2-1 硼酸對於氫氧化亞鐵於 Pt(111) 電極上電沉積之CV圖 88
4-2-2 硼酸對於氫氧化亞鐵於 Pt(111) 電極上電沉積之STM圖 94
4-2-3 有無添加硼酸對於氫氧化亞鐵於Pt(111)電極上電沉積CV圖 97
第五章 氫氧化亞鐵的應用及其催化活性探討 102
5-1 氫氧化亞鐵修飾於 Pt(111) 上的一氧化碳氧化反應的活性 102
5-1-1 一氧化碳氧化反應之CV圖 102
5-1-2 沉積 FeSO4 的一氧化碳氧化的活性 106
5-1-3 氫氧化亞鐵在不含硼酸下修飾於Pt(111)上的一氧化碳氧化反應之 STM 圖 109
5-1-4 氫氧化亞鐵在含硼酸下修飾於Pt(111)上的一氧化碳氧化反應之 STM圖 111
5-2 氫氧化亞鐵在 Poly Pt 上的氧氣還原反應的活性 113
5-3 氫氧化亞鐵在 pH1 硫酸中的甲酸氧化反應活性 119
5-4 氫氧化亞鐵薄膜對水的還原反應活性 121
第六章 結論 123
第七章 參考文獻 124
第八章 附錄 129
8-1 浸泡不同濃度 FeSO4 的甲酸氧化活性 129
8-2 0.1 M 氫亞化鉀中浸泡 FeSO4 於Pt(111)電極上之STM圖 131
8-3 實驗技巧介紹 133
8-3-1 循環伏安法(CV) 133
8-3-2 STM 探針製備 134
8-3-3 電化學掃描式穿隧電子顯微鏡(EC-STM) 134
參考文獻 (1) P. Allongue, F. Maroun, Electrodeposited magnetic layers in the ultrathin limit. MRS bulletin, 2010, 35, 761-770
(2) L. Zhang, J. Dong, F. Ding, Strategies, Status, and Challenges in Wafer Scale Single Crystalline Two-Dimensional Materials Synthesis, Chemical Reviews. 121 (2021) 6321–6372.
(3) Chou, H.-L. and J. Rick, Investigation of CO and OH adsorption and oxidation in the presence of cocatalytic ruthenium ions on the Pt(111) surface.Catalysis Communications, 2022. 162: p. 106400.
(4) Chen, D.J. and Y.Y.J. Tong, The Bifunctional Electrocatalysis of Carbon Monoxide Oxidation Reaction, in Encyclopedia of Interfacial Chemistry, K. Wandelt, Editor. 2018, Elsevier: Oxford. p. 881-897.
(5) Yeager, E. Journal of Molecular Catalysis 1986, 38, 5.
(6) Zhang, J.; Vukmirovic, M. B.; Xu, Y.; Mavrikakis, M.; Adzic, R. R. Angewandte Chemie International Edition 2005, 44, 2132.
(7) Maruyama, J.; Inaba, M.; Ogumi, Z. Journal of Electroanalytical Chemistry 1998, 458, 175.
(8) Markovic, N. M.; Gasteiger, H. A.; Ross, P. N. The Journal of Physical Chemistry 1995, 99, 3411.
(9) Chen, H., Liu, Y., Yang, F., Wei, M., Zhao, X., Ning, Y.,Bao, X. Active phase of FeOx/Pt catalysts in low-temperature CO oxidation and preferential oxidation of CO reaction. The Journal of Physical Chemistry C, (2017) 121(19), 10398-10405.
(10) Li, Y., Zhao, X., Cui, Y., Yang, F., & Bao, X. Oxidation-induced structural transition of two-dimensional iron oxide on Au(111). Journal of Physics D: Applied Physics, (2021) 54(20), 204003.
(11) Merte, L. R. Tip-dependent scanning tunneling microscopy imaging of ultrathin FeO films on Pt(111). The Journal of Physical Chemistry C, (2011). https://doi.org/10.1021/jp109581a
(12) Fu, Q.; et al. Interface-Confined Ferrous Centers for Catalytic Oxidation. Science 2010, 328, 1141−1144.
(13) Guo, X.; Fu, Q.; Ning, Y.; Wei, M.; Li, M.; Zhang, S.; Jiang, Z.; Bao, X. Ferrous Centers Confined on Core−Shell Nanostructures for Low-Temperature CO Oxidation. J. Am. Chem. Soc. 2012, 134, 12350−12353.
(14) Cao, L. Atomically dispersed iron hydroxide anchored on Pt for preferential oxidation of CO in H2. Nature, (2019).https://doi.org/10.1038/s41586-018-0869-5
(15) Lee, S. The effects of iron oxide overlayers on Pt for CO oxidation. Catalysis Communications, (2022). 172, 106549.
(16) Guan,J.Intermetallic FePt@PtBi core–shell nanoparticles for oxygen reduction electrocatalysis. Angewandte Chemie,(2021).
(17) A.J. Bard, L.R. Faulkner, Electrochemical Methods: Fundamentals and Applications, 2nd ed., New York : Wiley, 2001
(18) F.J. Sarabia, P. Sebastián-Pascual, M.T.M. Koper, V. Climent, J.M. Feliu, Effect of the Interfacial Water Structure on the Hydrogen Evolution Reaction on Pt(111) Modified with Different Nickel Hydroxide Coverages in Alkaline Media, ACS Applied Materials & Interfaces, 11 (2019) 613-623.
(19) D. Strmcnik, P.P. Lopes, B. Genorio, V.R. Stamenkovic, N.M. Markovic, Design principles for hydrogen evolution reaction catalyst materials, Nano Energy, 29 (2016) 29-36.
(20) C. Wang, H. Tissot, M. Soldemo, J. Lu, J. Weissenrieder, Inverse single-site Fe(OH)x/Pt(111) model catalyst for preferential oxidation of CO in H2, Nano Research, 15 (2022) 709-715.
(21) Z. Jiang, W. Wan, Z. Lin, J. Xie, J.G. Chen, Understanding the Role of M/Pt(111) (M = Fe, Co, Ni, Cu) Bimetallic Surfaces for Selective Hydrodeoxygenation of Furfural, ACS Catal., 7 (2017) 5758-5765.
(22) S. K. Shaikhutdinov, Y. Joseph, C. Kuhrs, W. Ranke, W. Weiss, Structure and reactivity of iron oxide surfaces, Faraday Discuss., 114 (1999) 363-380.
(23) I. Diez-Perez, P. Gorostiza, F. Sanz, C. Müller, First Stages of Electrochemical Growth of the Passive Film on Iron, J. Electrochem. Soc., 148 (2001) B307-B313.
(24) I. Dı́ez-Pérez, P. Gorostiza, F. Sanz, Direct Evidence of the Electronic Conduction of the Passive Film on Iron by EC-STM, J. Electrochem. Soc., 150 (2003) B348.
(25) R.M. Rynders, R.C. Alkire, Use of In Situ Atomic Force Microscopy to Image Copper Electrodeposits on Platinum, J. Electrochem. Soc., 141 (1994) 1166-1173.
(26) K.-D. Schierbaum, Ordered ultra-thin cerium oxide overlayers on Pt(111) single crystal surfaces studied by LEED and XPS, Surf. Sci., 399 (1998) 29-38.
(27) T. Schedel-Niedrig, W. Weiss, R. Schlögl, Electronic structure of ultrathin ordered iron oxide films grown onto Pt(111), Phys. Rev. B, 52 (1995) 17449-17460.
(28) G.H. Vurens, M. Salmeron, G.A. Somorjai, Structure, composition and chemisorption studies of thin ordered iron oxide films on Pt(111), Surf. Sci., 201 (1988) 129-144.
(29) H. Liu, A. Zakhtser, A. Naitabdi, F. Rochet, F. Bournel, C. Salzemann, C. Petit, J.-J. Gallet, W. Jie, Operando Near-Ambient Pressure X-ray Photoelectron Spectroscopy Study of the CO Oxidation Reaction on the Oxide/Metal Model Catalyst ZnO/Pt(111), ACS Catal., 9 (2019) 10212-10225.
(30) M. Ritter, W. Ranke, W. Weiss, Growth and structure of ultrathin FeO films on Pt(111) studied by STM and LEED, Phys. Rev. B, 57 (1998) 7240-7251.
(31) Y. Li, X. Zhao, Y. Cui, F. Yang, X. Bao, Oxidation-induced structural transition of two-dimensional iron oxide on Au(111), J. Phys. D: Appl. Phys., 54 (2021) 204003.
(32) G.S. Parkinson, Iron oxide surfaces, Surf. Sci. Rep., 71 (2016) 272-365.
(33) W. Weiss, W. Ranke, Surface chemistry and catalysis on well-defined epitaxial iron-oxide layers, Prog. Surf. Sci., 70 (2002) 1-151.
(34) Z.-L. Wu, Z.-H. Zang, S.-L. Yau, Electrodeposition of Copper at Well-Defined Pt(111) and Rh(111) Electrodes in Sulfuric Acid Solutions: Studying with In Situ Scanning Tunneling Microscopy, Langmuir, 16 (2000) 3522-3528.
(35) Z.-L. Wu, S.-L. Yau, Examination of Underpotential Deposition of Copper on Pt(111) Electrodes in Hydrochloric Acid Solutions with in Situ Scanning Tunneling Microscopy, Langmuir, 17 (2001) 4627-4633.
(36) C.-H. Shue, S.-L. Yau, In Situ Scanning Tunneling Microscopy of Underpotential Deposition of Copper at Pt(100) Electrodes Coated with an Iodine Monolayer, J. Phys. Chem. B, 105 (2001) 5489-5496.
(37) W. Chen, P. Yen, Y. Kuo, S. Chen, S. Yau, Epitaxial Electrodeposition of Nickel on Pt(111) Electrode, J. Phys. Chem. C, 116 (2012) 21343–21349.
(38) F.J. Sarabia, V. Climent, J.M. Feliu, Underpotential deposition of Nickel on platinum single crystal electrodes, J. Electroanal. Chem., 819 (2018) 391-400.
(39) M.B. Rooney, D.C. Coomber, A.M. Bond, Achievement of Near-Reversible Behavior for the [Fe(CN)6]3-/4- Redox Couple Using Cyclic Voltammetry at Glassy Carbon, Gold, and Platinum Macrodisk Electrodes in the Absence of Added Supporting Electrolyte, Anal. Chem., 72 (2000) 3486-3491.
(40) M. Stieble, K. Jüttner, Surface blocking in the redox system Pt/[Fe(CN)6]3−,[Fe(CN)6]4−: An ac impedance study, J. Electroanal. Chem., 290 (1990) 163-180.
(41) Y. Joseph, C. Kuhrs, W. Ranke, M. Ritter, W. Weiss, Adsorption of water on FeO(111) and Fe3O4(111): identification of active sites for dissociation, Chem. Phys. Lett., 314 (1999) 195-202.
(42) Y. Tang, H. Qin, K. Wu, Q. Guo, J. Guo, The reduction and oxidation of Fe2O3(0001) surface investigated by scanning tunneling microscopy, Surf. Sci., 609 (2013) 67-72.
(43) H. Zeuthen, W. Kudernatsch, G. Peng, L.R. Merte, L.K. Ono, L. Lammich, Y. Bai, L.C. Grabow, M. Mavrikakis, S. Wendt, F. Besenbacher, Structure of Stoichiometric and Oxygen-Rich Ultrathin FeO(111) Films Grown on Pd(111), J. Phys. Chem. C, 117 (2013) 15155-15163.
(44) L.R. Merte, L.C. Grabow, G. Peng, J. Knudsen, H. Zeuthen, W. Kudernatsch, S. Porsgaard, E. Lægsgaard, M. Mavrikakis, F. Besenbacher, Tip-Dependent Scanning Tunneling Microscopy Imaging of Ultrathin FeO Films on Pt(111), J. Phys. Chem. C, 115 (2011) 2089-2099.
(45) H.F. Jurca, A. Damian, C. Gougaud, D. Thiaudière, R. Cortès, F. Maroun, P. Allongue, Epitaxial Electrodeposition of Fe on Au(111): Structure, Nucleation, and Growth Mechanisms, J. Phys. Chem. C, 120 (2016) 16080-16089.
(46) E. Herrero, L.J. Buller, H.D. Abruña, Underpotential Deposition at Single Crystal Surfaces of Au, Pt, Ag and Other Materials, Chem. Rev., 101 (2001) 1897-1930.
(47) M.P. Ryan, R.C. Newman, G.E. Thompson, An STM Study of the Passive Film Formed on Iron in Borate Buffer Solution, J. Electrochem. Soc., 142 (1995) L177.
(48) M.A. van Spronsen, J.W.M. Frenken, I.M.N. Groot, Observing the oxidation of platinum, Nat. Commun., 8 (2017) 429.
(49) L.R. Merte, Y. Bai, H. Zeuthen, G. Peng, L. Lammich, F. Besenbacher, M. Mavrikakis, S. Wendt, Identification of O-rich structures on Pt(111)-supported ultrathin iron oxide films, Surf. Sci., 652 (2016) 261-268.
(50) F. Ringleb, Y. Fujimori, H.-F. Wang, H. Ariga, E. Carrasco, M. Sterrer, H.-J. Freund, L. Giordano, G. Pacchioni, J. Goniakowski, Interaction of Water with FeO(111)/Pt(111): Environmental Effects and Influence of Oxygen, J. Phys. Chem. C, 115 (2011) 19328-19335.
(51) A.M. Funtikov, U. Stimming, R. Vogel, Anion adsorption from sulfuric acid solutions on Pt(111) single crystal electrodes, J. Electroanal. Chem., 428 (1997) 147-153.
(52) N. Li, J. Lipkowski, Chronocoulometric studies of chloride adsorption at the Pt(111) electrode surface, J. Electroanal. Chem., 491 (2000) 95-102.
(53) Ruqia, B., & Choi, S. I. Pt and Pt–Ni (OH)2 electrodes for the hydrogen evolution reaction in alkaline electrolytes and their nanoscaled electrocatalysts. ChemSusChem, (2018) 11(16), 2643-2653.
指導教授 姚學麟(Shueh-Lin Yau) 審核日期 2023-7-26
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明