參考文獻 |
[1] Baird, C. and M. Cann, Environmental Chemistry. New York: WH 608. 2005, Freeman and Company.
[2] Wang, L., R. Atkinson, and J. Arey, Dicarbonyl products of the OH radical-initiated reactions of naphthalene and the C1-and C2-alkylnaphthalenes. Environmental science & technology, 2007. 41(8): p. 2803-2810.
[3] Atkinson, R., Atmospheric chemistry of VOCs and NOx. Atmospheric environment, 2000. 34(12-14): p. 2063-2101.
[4] Hahad, O., J. Lelieveld, F. Birklein, K. Lieb, A. Daiber, and T. Munzel, Ambient Air Pollution Increases the Risk of Cerebrovascular and Neuropsychiatric Disorders through Induction of Inflammation and Oxidative Stress. Int J Mol Sci, 2020. 21(12).
[5] Zhu, L., D. Shen, and K.H. Luo, A critical review on VOCs adsorption by different porous materials: Species, mechanisms and modification methods. Journal of hazardous materials, 2020. 389: p. 122102.
[6] Austin, D.K.W.W.C.C., Determination of complex mixtures of volatile organic compounds in ambient air: an overview. 2006.
[7] Zhang, X., B. Gao, A.E. Creamer, C. Cao, and Y. Li, Adsorption of VOCs onto engineered carbon materials: A review. Journal of hazardous materials, 2017. 338: p. 102-123.
[8] Li, X., L. Zhang, Z. Yang, P. Wang, Y. Yan, and J. Ran, Adsorption materials for volatile organic compounds (VOCs) and the key factors for VOCs adsorption process: A review. Separation and Purification Technology, 2020. 235: p. 116213.
[9] Engewald, K.D.W., Adsorbent materials commonly used in air analysis for adsorptive enrichment and thermal desorption of volatile organic compounds. 2002.
[10] Wu, T.M., G.R. Wu, H.M. Kao, and J.L. Wang, Using mesoporous silica MCM-41 for in-line enrichment of atmospheric volatile organic compounds. J Chromatogr A, 2006. 1105(1-2): p. 168-75.
[11] Su, Y.C., H.M. Kao, and J.L. Wang, Mesoporous silicate MCM-48 as an enrichment medium for ambient volatile organic compound analysis. J Chromatogr A, 2010. 1217(36): p. 5643-51.
[12] Erigoni, A. and U. Diaz, Porous silica-based organic-inorganic hybrid catalysts: A review. Catalysts, 2021. 11(1): p. 79.
[13] Ou-Yang, C.-F., J.-Y. Liu, H.-M. Kao, J.-H. Wang, S.-P. Liu, and J.-L. Wang, Analysis of polycyclic aromatic hydrocarbons using porous material MCM-41 as a sorbent. Analytical Methods, 2013. 5(23): p. 6874-6880.
[14] Chughtai, A.H., N. Ahmad, H.A. Younus, A. Laypkov, and F. Verpoort, Metal–organic frameworks: versatile heterogeneous catalysts for efficient catalytic organic transformations. Chemical Society Reviews, 2015. 44(19): p. 6804-6849.
[15] Li, J.-R., J. Sculley, and H.-C. Zhou, Metal–organic frameworks for separations. Chemical reviews, 2012. 112(2): p. 869-932.
[16] Lin, R.-B., S. Xiang, W. Zhou, and B. Chen, Microporous metal-organic framework materials for gas separation. Chem, 2020. 6(2): p. 337-363.
[17] Kreno, L.E., K. Leong, O.K. Farha, M. Allendorf, R.P. Van Duyne, and J.T. Hupp, Metal–organic framework materials as chemical sensors. Chemical reviews, 2012. 112(2): p. 1105-1125.
[18] Horcajada, P., T. Chalati, C. Serre, B. Gillet, C. Sebrie, T. Baati, J.F. Eubank, D. Heurtaux, P. Clayette, and C. Kreuz, Porous metal–organic-framework nanoscale carriers as a potential platform for drug delivery and imaging. Nature materials, 2010. 9(2): p. 172-178.
[19] Vikrant, K., M. Cho, A. Khan, K.-H. Kim, W.-S. Ahn, and E.E. Kwon, Adsorption properties of advanced functional materials against gaseous formaldehyde. Environmental research, 2019. 178: p. 108672.
[20] Khan, N.A., Z. Hasan, and S.H. Jhung, Adsorptive removal of hazardous materials using metal-organic frameworks (MOFs): A review. Journal of hazardous materials, 2013. 244: p. 444-456.
[21] EPA, U.S., Toxic Organics - 15 (TO-15): Determination of Volatile Organic Compounds (VOCs) in Air Collected in Specially Prepared Canisters and Analyzed by Gas Chromatography–Mass Spectrometry (GC-MS). 1999.
[22] 沈克鵬,固定污染源空氣污染物危害影響評估暨消費性產品揮發性有機物管制推動計畫,工業技術研究院綠能與環境研究所,2014。
[23] 行政院環境保護署,固定污染源有機性有害空氣污染物管制策略研訂及推動計畫,2009。
[24] 行政院環境保護署,固定污染源有害空氣污染物排放標準草案總說明,2019。
[25] 行政院環保署, 空氣中有機光化前驅物檢測方法-氣相層析/火焰離子化偵測法(NIEA A505.12B)
[26] 王介亨-王家麟, 環境中揮發性有機物質監測儀器. 科儀新知, 第二十六卷第五期, 2005: p. 24-37.
[27] Matsuda, R., R. Kitaura, S. Kitagawa, Y. Kubota, R.V. Belosludov, T.C. Kobayashi, H. Sakamoto, T. Chiba, M. Takata, and Y. Kawazoe, Highly controlled acetylene accommodation in a metal–organic microporous material. Nature, 2005. 436(7048): p. 238-241.
[28] Wang, J., Y. Zhang, Y. Su, X. Liu, P. Zhang, R.-B. Lin, S. Chen, Q. Deng, Z. Zeng, and S. Deng, Fine pore engineering in a series of isoreticular metal-organic frameworks for efficient C2H2/CO2 separation. Nature communications, 2022. 13(1): p. 200.
[29] Lee, J., C.Y. Chuah, J. Kim, Y. Kim, N. Ko, Y. Seo, K. Kim, T.H. Bae, and E. Lee, Separation of acetylene from carbon dioxide and ethylene by a water‐stable microporous metal–organic framework with aligned imidazolium groups inside the channels. Angewandte Chemie, 2018. 130(26): p. 7995-7999.
[30] Zhang, X., M. Fu, H. Liu, Y. Wang, Y. Zou, L. Wang, C. Li, Y. Lu, L. Zhou, and X. Cui, A copper-based metal–organic framework with a suitable pore environment for effective ethylene purification. Inorganic Chemistry Frontiers, 2022. 9(9): p. 2104-2108.
[31] Gu, Z.-Y., G. Wang, and X.-P. Yan, MOF-5 metal− organic framework as sorbent for in-field sampling and preconcentration in combination with thermal desorption GC/MS for determination of atmospheric formaldehyde. Analytical chemistry, 2010. 82(4): p. 1365-1370.
[32] Zhang, S., Z. Du, and G. Li, Metal-organic framework-199/graphite oxide hybrid composites coated solid-phase microextraction fibers coupled with gas chromatography for determination of organochlorine pesticides from complicated samples. Talanta, 2013. 115: p. 32-39.
[33] Dutta, T., K.-H. Kim, R.J. Brown, Y.-H. Kim, and D. Boukhvalov, Metal-organic framework and Tenax-TA as optimal sorbent mixture for concurrent GC-MS analysis of C1 to C5 carbonyl compounds. Scientific reports, 2018. 8(1): p. 5033.
[34] Lin, X., L. Tang, J. Zhao, S. Liu, and Y. Xie, Efficient determination of BTX compounds based on UiO-66-diatomite composite enrichment and thermal desorption GC–MS. Microchemical Journal, 2022. 181: p. 107731.
[35] Zou, D. and D. Liu, Understanding the modifications and applications of highly stable porous frameworks via UiO-66. Materials Today Chemistry, 2019. 12: p. 139-165.
[36] Cavka, J.H., S. Jakobsen, U. Olsbye, N. Guillou, C. Lamberti, S. Bordiga, and K.P. Lillerud, A new zirconium inorganic building brick forming metal organic frameworks with exceptional stability. Journal of the American Chemical Society, 2008. 130(42): p. 13850-13851.
[37] DeCoste, J.B., G.W. Peterson, H. Jasuja, T.G. Glover, Y.-g. Huang, and K.S. Walton, Stability and degradation mechanisms of metal–organic frameworks containing the Zr 6 O 4 (OH) 4 secondary building unit. Journal of Materials Chemistry A, 2013. 1(18): p. 5642-5650.
[38] Chavan, S., J.G. Vitillo, D. Gianolio, O. Zavorotynska, B. Civalleri, S. Jakobsen, M.H. Nilsen, L. Valenzano, C. Lamberti, and K.P. Lillerud, H 2 storage in isostructural UiO-67 and UiO-66 MOFs. Physical Chemistry Chemical Physics, 2012. 14(5): p. 1614-1626.
[39] Duerinck, T., R. Bueno-Perez, F. Vermoortele, D. De Vos, S. Calero, G. Baron, and J. Denayer, Understanding hydrocarbon adsorption in the UiO-66 metal–organic framework: separation of (Un) saturated linear, branched, cyclic adsorbates, including stereoisomers. The Journal of Physical Chemistry C, 2013. 117(24): p. 12567-12578.
[40] Lin, X.-T., G. Sun, J.-Q. Zhao, L.-L. Tang, S.-H. Li, and Y.-B. Xie, UiO-66 Selective Enrichment Integrated with Thermal Desorption GC-MS for Detection of Benzene Homologues in Ambient Air. Journal of Analytical Methods in Chemistry, 2021. 2021.
[41] Zhang, X., Y. Yang, X. Lv, Y. Wang, N. Liu, D. Chen, and L. Cui, Adsorption/desorption kinetics and breakthrough of gaseous toluene for modified microporous-mesoporous UiO-66 metal organic framework. Journal of hazardous materials, 2019. 366: p. 140-150.
[42] Shearer, G.C., S. Chavan, J. Ethiraj, J.G. Vitillo, S. Svelle, U. Olsbye, C. Lamberti, S. Bordiga, and K.P. Lillerud, Tuned to perfection: ironing out the defects in metal–organic framework UiO-66. Chemistry of Materials, 2014. 26(14): p. 4068-4071.
[43] 陳芳翊,開發醛酮類化合物與金屬有機骨架材料應用於周界揮發性有機物檢測方法,化學學系,國立中央大學,2022。.
[44] 王美珠,碩士論文,針對工業排放之污染性有機氣態物質開發連續監測技術,化學學系,國立中央大學,2016。.
[45] 朱晨瑄, 以線上熱脫附氣相層析質譜法監測空氣中有害空氣污染物,化學學系,國立中央大學,2020。
[46] 中華民國行政院環保署, 空氣中有機光化前驅物檢測方法-氣相層析/火焰離子化偵測法 (NIEA A505.12B). 2013.
[47] Agency, U.S.E.P., Compendium Method TO-17 Determination of Volatile Organic
Compounds in Ambient Air Using Active Sampling Onto Sorbent Tubes 1999.
[48] Agency, U.S.E.P., Compendium Method TO-15 Determination Of Volatile Organic Compounds (VOCs ) In Air Collected In Specially-Prepared Canisters And Analyzed By Gas Chromatography/Mass Spectrometry (GC/MS) 1999.
[49] Gong, Q. and K.L. Demerjian, Hydrocarbon losses on a regenerated nation® dryer. Journal Of The Air & Waste Management Association, 1995. 45(6): p. 490-493.
[50] Burns, W.F., D.T. Tingey, R.C. Evans, and E.H. Bates, Problems with a Nafion® membrane dryer for drying chromatographic samples. Journal of Chromatography A, 1983. 269: p. 1-9.
[51] Gawłowski, J., T. Gierczak, E. Pietruszyñska, M. Gawryś, and J. Niedzielski, Dry purge for the removal of water from the solid sorbents used to sample volatile organic compounds from the atmospheric air. Analyst, 2000. 125(11): p. 2112-2117.
[52] Agilent 5977 Series EI Source Selection Guide.
[53] Agilent 5977 Series MSD System Concepts Guide.
[54] 曾美惠,碩士論文,離子通道孔徑對熱脫附 GC-MS 連續監測空氣有害物質穩定性的影響,化學學系,國立中央大學,2021。.
[55] 詹竹玉,藉由注氫技術改善質譜儀電子游離源條件以優化空氣有害污染物連續監測方法,化學學系,國立中央大學,2022。.
[56] LabWrench, GC - Gas Chromatography/GC Accessories/Agilent Technologies-JetCleanSelf-CleaningIonSource. https://www.labwrench.com/equipment/24541/agilent-technologies-jetclean-self-cleaning-ion-source. 2022.
[57] Lesieur, M., E. Almasi, and T. Sheehan, Significant Robustness Improvements of PAHs Analysis in Palm Oil Using the JetClean Self-Cleaning Ion Source in a GC/MS/MS System. Agilent Technologies, 2017.
[58] Andrianova, A.A. and B.D. Quimby, Optimized GC/MS Analysis for PAHs in Challenging Matrices. Application Note Food Testing & Agriculture, 2019.
[59] Wong, D., Zhao, L., Quimby, B., Riener, J., EU Priority PAH Analysis in Pumpkin Seed Oil Using Bond Elut EMR–Lipid Cleanup by GC/MS/MS. Application Note Food Testing & Agriculture, Agilent Technologies Inc, United States, 2019.
[60] Shimadzu Instruments definition of S/N ratio
https://www.shimadzu.com.tw/service-support/faq/gas-chromatograph-mass-spectrometry/sn/index.html.
[61] 行政院環境保護署土汙基管會, 台塑仁武廠污染事件; https://enews.epa.gov.tw/Page/894720A1EB490390/0ea1ee76-acef-49ea-b0d2-753882b5532f. .
[62] 報導者-房慧真. 【高雄環境難民大風吹】集體失憶的汙染歷史,大社被抹除的遷廠承諾. 2019; https://www.twreporter.org/a/kaohsiung-environment-refugee-dashe.
[63] 行政院環境保護署土污基管會. 台塑仁武廠污染事件. 2019; https://enews.epa.gov.tw/Page/894720A1EB490390/0ea1ee76-acef-49ea-b0d2-753882b5532f.
[64] 公視新聞網,台聚仁武焚化爐管線爆炸; https://news.pts.org.tw/article/590601 [16 Jul.2022].
[65] 聯合新聞網. 仁大工業區 仍有3致癌物須減量. 2021; https://udn.com/news/story/7327/5769857.
[66] 高雄市政府環境保護局空氣品質管理中心. 空氣品質監測站監測數值查詢. 2021; https://www.ksaqmc.com.tw/MIS/MisBackup/AirInfoBP.aspx.
[67] Guo, S.-R., 空氣中氯乙烯, 1, 2-二氯乙烷 GC/MS 在線監測方法. 2017, National Central University.
[68] Sittig, M., Vinyl Chloride and PVC manufacture: process and environmental aspects. 1978: Noyes Data Corporation.
[69] Registry, A.f.T.S.a.D., ToxFAQs™ for Styrene. 2012.
[70] Registry, A.f.T.S.a.D., ToxFAQs™ for Acrylonitrile. 1999.
[71] 行政院環境保護署, 臭氧層保護相關法規. 2019.
[72] Tsai, W.-T., Fate of chloromethanes in the atmospheric environment: Implications for human health, ozone formation and depletion, and global warming impacts. Toxics, 2017. 5(4): p. 23.
[73] Montzka, S., S. Reimann, S. O′Doherty, A. Engel, K. Krüger, and W. Sturges, Ozone-depleting substances (ODSs) and related chemicals. 2011, World Meteorological Organization.
[74] Registry, A.f.T.S.a.D., ToxFAQs™ for 1,3-Butadiene. 2012.
[75] 吳征戰, 探討不同官能基在金屬有機骨架材料上的配位基對UiO-66在硝酸水相合成的影響. 碩士論文, 2016.
[76] Kandiah, M., M.H. Nilsen, S. Usseglio, S. Jakobsen, U. Olsbye, M. Tilset, C. Larabi, E.A. Quadrelli, F. Bonino, and K.P. Lillerud, Synthesis and stability of tagged UiO-66 Zr-MOFs. Chemistry of Materials, 2010. 22(24): p. 6632-6640.
[77] 羅聖全, 年 5 月, 科學基礎之重要利器-掃描式電子顯微鏡 (SEM), 科學研習, 台灣中央大學. 2013.
[78] Stenzel, M.H., Remove organics by activated carbon adsorption. Chemical Engineering Progress;(United States), 1993. 89(4).
[79] Harris, Daniel C , Quantitative chemical analysis, 2010.
[80] Zdravkov, B., J. Čermák, M. Šefara, and J. Janků, Pore classification in the characterization of porous materials: A perspective. Open Chemistry, 2007. 5(2): p. 385-395.
[81] Wu, T.-M., G.-R. Wu, H.-M. Kao, and J.-L. Wang, Using mesoporous silica MCM-41 for in-line enrichment of atmospheric volatile organic compounds. Journal of Chromatography A, 2006. 1105(1): p. 168-175.
[82] Wang, H., Q. Wang, S.J. Teat, D.H. Olson, and J. Li, Synthesis, structure, and selective gas adsorption of a single-crystalline zirconium based microporous metal–organic framework. Crystal Growth & Design, 2017. 17(4): p. 2034-2040.
[83] Feng, L., S. Yuan, L.-L. Zhang, K. Tan, J.-L. Li, A. Kirchon, L.-M. Liu, P. Zhang, Y. Han, and Y.J. Chabal, Creating hierarchical pores by controlled linker thermolysis in multivariate metal–organic frameworks. Journal of the American Chemical Society, 2018. 140(6): p. 2363-2372.
[84] Ko, N., J. Hong, S. Sung, K.E. Cordova, H.J. Park, J.K. Yang, and J. Kim, A significant enhancement of water vapour uptake at low pressure by amine-functionalization of UiO-67. Dalton Transactions, 2015. 44(5): p. 2047-2051.
[85] Mondloch, J.E., M.J. Katz, N. Planas, D. Semrouni, L. Gagliardi, J.T. Hupp, and O.K. Farha, Are Zr 6-based MOFs water stable? Linker hydrolysis vs. capillary-force-driven channel collapse. Chemical communications, 2014. 50(64): p. 8944-8946.
[86] Athar, M., P. Rzepka, D. Thoeny, M. Ranocchiari, and J.A. van Bokhoven, Thermal degradation of defective high-surface-area UiO-66 in different gaseous environments. RSC advances, 2021. 11(61): p. 38849-38855.
[87] Hamon, L., C. Serre, T. Devic, T. Loiseau, F. Millange, G. Ferey, and G.D. Weireld, Comparative study of hydrogen sulfide adsorption in the MIL-53 (Al, Cr, Fe), MIL-47 (V), MIL-100 (Cr), and MIL-101 (Cr) metal− organic frameworks at room temperature. Journal of the American Chemical Society, 2009. 131(25): p. 8775-8777.
[88] Agilent,AgilentMassHunterWorkstationSoftwareQuantitativeAnalysis https://www.agilent.com/cs/library/usermanuals/public/G3335-90000%20QuantitationDataSet.pdf. |