博碩士論文 110223091 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:48 、訪客IP:18.119.159.246
姓名 林廖展(Liao-Chan Lin)  查詢紙本館藏   畢業系所 化學學系
論文名稱 釕與鋨錯合物染料敏化太陽能電池性能優化與特性探討
相關論文
★ 含3,4-乙烯二氧噻吩輔助配位基之鋨、釕金屬錯合物合成與其在染料敏化太陽能電池的應用★ 應用於染料敏化太陽能電池之釕金屬錯合物合成與其性質探討
★ 含共軛配位基之釕錯合物合成與其在染料敏化太陽能電池的應用★ 新型三吡啶釕錯合物光敏化染料的合成與性質探討
★ 釕錯合物敏化太陽能電池元件優化與光伏特性探討★ 金屬錯合物染料敏化太陽能電池的元件優化
★ 新型三吡啶鋨錯合物染料 合成與配位基效應之探討★ 含高度共軛芳香雜環之釕錯合物的合成以應用於染料敏化太陽能電池
★ 多聯吡啶釕錯合物光敏化染料的合成與性質探討★ 優化含氯元素之多聯吡啶釕錯合物敏化太陽能電池與元件特性探討
★ 有機共吸附染料的合成與性質探討
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 染料敏化太陽能電池(Dye-sensitized solar cells (DSCs))具有製程簡易等優點,在此太陽光電技術中,吸附於多孔隙二氧化鈦(TiO2)薄膜上的染料分子是影響其元件光電轉換效率的關鍵,為使元件展現最佳性能,須依據染料分子的吸光與吸附性質,調整二氧化鈦薄膜厚度,並須嘗試添加共吸附劑以減少染料在薄膜上的聚集,以提高元件的短路電流密度(Short-circuit current density (Jsc)),若能同時抑制電荷再結合,也可一併增加元件的開路電壓(Open-circuit voltage (Voc))與填充因子(Fill factor (FF))。本研究是針對本實驗室所開發的新型染料(包含釕錯合物CYC-21、CYC-53、CYC-55,與鋨錯合物CYC-45I、CYC-45Cl、CYC-33O ),進行元件條件的優化以提高其光電轉換效率,其調整項目除了使用不同的共吸附劑(包含Chenodeoxycholic acid (CDCA)與2-(4-Butoxyphenyl)-N-hydroxyacetamide (BPHA))與染料分子進行共吸附,以有效減少染料分子的聚集現象並填補裸露的TiO2表面外,也另外改變I-/I3-氧化還原對電解液的組成(包含不同濃度的LiI、4-tert-Butylpyridine (tBP)、Guanidinium thiocyanate (GuSCN)、Lithium carbonate (Li2CO3)等)、調整染料分子的吸附溫度和時間、以及嘗試使用不同有機小分子進行染料吸附之二氧化鈦表面的後處理等。在標準測試條件下(AM 1.5G,25 °C),CYC-21與CYC-45I染料敏化元件經上述優化後的最高光電轉換效率分別為9.10%和6.17%,值得強調的是,本研究證實CYC-45I染料敏化元件性能可優於本實驗室先前已發表之CYC-33O染料(敏化元件效率為5.7%),此部分結果可對高效能鋨錯合物染料的元件優化提供明確方向。
摘要(英) Dye-sensitized solar cells (DSCs) have many advantages, such as easy fabrication. In this type of photovoltaic technology, dye molecules adsorbed onto porous titanium dioxide (TiO2) films are critical for influencing the device′s power conversion efficiency. To achieve optimal device performance, the thickness of the TiO2 film should be adjusted according to the light-harvesting and adsorption properties of the dye molecules. Co-adsorbents should be added to reduce dye aggregation on the film, aiming to increase the short-circuit current density (Jsc). Additionally, inhibiting charge recombination can enhance the open-circuit voltage (Voc) and fill factor (FF). This study focuses on optimizing the device fabrication conditions for newly developed dyes from our laboratory, including ruthenium complexes CYC-21, CYC-53, and CYC-55, and osmium complexes CYC-45I, CYC-45Cl, and CYC-33O, to enhance their performance. Adjustments include the use of different co-adsorbents such as chenodeoxycholic acid (CDCA) and 2-(4-butoxyphenyl)-N-hydroxyacetamide (BPHA), to effectively reduce dye aggregation and cover the bare TiO2 surface. Additionally, changes in the composition of the I-/I3- redox couple electrolyte (including various concentrations of LiI, 4-tert-butylpyridine (tBP), guanidinium thiocyanate (GuSCN), lithium carbonate (Li2CO3), etc.), modification of the TiO2 film thickness, adjustment of the dye molecules’ adsorption temperature and time, and exploration of different organic small molecules for post-staining surface treatment of the dye-adsorbed TiO2 were conducted. Under standard testing conditions (AM 1.5G, 25 °C), the highest power conversion efficiencies of the optimized CYC-21 and CYC-45I dye-sensitized devices were 9.10% and 6.17%, respectively. Notably, this study confirms that the performance of the CYC-45I dye-sensitized device surpasses that of the previously published CYC-33O dye (with an efficiency of 5.7%). These findings provide a clear index for the molecular design and the device optimization of high-efficiency osmium complex dyes.
關鍵字(中) ★ 染料敏化太陽能電池
★ 鋨錯合物
★ 釕錯合物
關鍵字(英)
論文目次 中文摘要 I
Abstract II
謝誌 IV
目錄 V
圖目錄 XI
表目錄 XXI
附錄 XXV
第一章、 緒論 1
1.1. 前言 1
1.2. 太陽光譜的介紹 2
1.3. 太陽能電池光伏參數的影響 5
1.4. 染料敏化太陽能電池的工作原理 7
1.5. 染料敏化太陽能電池構造及影響效率的因素 10
1.5.1. 光電極 10
1.5.2. 染料分子 16
1.5.3. 電解質作用 21
1.5.4. 電解質中所使用的添加劑 23
1.6. 染料添中所使用的添加劑 29
1.6.1. 共吸附劑 29
1.6.2. 共吸附劑之種類 31
1.6.3. 預吸附劑 35
1.6.4. 表面後處理 37
1.7. 研究動機 40
第二章、 實驗方法 41
2.1. 實驗藥品、材料與儀器 41
2.1.1. 實驗藥品 41
2.1.2. 實驗材料 44
2.1.3. 實驗儀器 44
2.2. 二氧化鈦球珠(TiO2 bead)之合成與漿料製備 46
2.2.1. 二氧化鈦球珠(TiO2 bead)的合成 46
2.2.2. 製備用於網印機(Screen Printing)塗布之二氧化鈦漿料 48
2.3. 染料溶液配製 49
2.4. 電解液配製 49
2.5. TiO2光電極製備過程 50
2.5.1. 預吸附、共吸附、後吸附的光電極製備程序 53
2.6. Pt對電極製備 54
2.7. 染料敏化太陽能電池元件的組裝和光伏參數的量測 55
2.8. 儀器分析與樣品製備 56
2.8.1. 太陽光模擬器與光電轉換效率量測 56
2.8.2. 太陽能電池外部量子效率量測系統 57
2.8.3. 紫外光/可見光/近紅外光吸收光譜 58
2.8.4. 光強度調制光電流/光電壓分析儀;電荷萃取 60
第三章、 結果與討論 62
3.1. 自製TiO2球珠漿料(自製層)應用於Black dye染料元件效率和分析 62
3.2. 應用於本實驗之釕與鋨錯合物與有機共吸附染料簡介 67
3.3. CYC-21、CYC-53、CYC-55釕系染料敏化元件組裝條件的優化 70
3.3.1. 改變吸附時間對CYC-21、CYC-53敏化電池光伏參數之影響 70
3.3.2. 調整TiO2薄膜厚與比例對CYC-21與CYC-53敏化元件光伏參數的影響 74
3.3.3. 導入BPHA及改變共吸附濃度與種類對CYC-21敏化元件光伏參數的影響 81
3.3.4. 電解液組成變化對於CYC-21敏化元件光伏參數的影響 89
3.3.4-1. 電解液中添加不同濃度LiI對CYC-21敏化元件光伏參數的影響 89
3.3.4-2. 電解液中添加不同濃度BMII對CYC-21敏化元件光伏參數影響 92
3.3.4-3. 電解液中添加不同濃度I2對CYC-21元件光伏參數的影響 95
3.3.4-4. 電解液中添加不同濃度tBP對CYC-21敏化元件光伏參數的影響 98
3.4. 釕錯合物CYC-21系列染料與N719染料敏化元件之光伏性質比較 101
3.5. CYC-21系列敏化TiO2薄膜之光物理及元件電荷轉移性質探討 104
3.5.1. CYC-21系列及N719染料的UV/Vis吸收光譜圖 104
3.5.2. CYC-21系列染料元件電荷再結合現象與Voc值的關聯性 111
3.5.3. CYC-21系列染料元件的TiO2電子有效擴散係數 114
3.5.4. CYC-21系列染料元件TiO2薄膜上的電子擴散長度及電子收集率 116
3.5.5. 影響CYC-21系列染料元件填充因子的因素 117
3.5.6. CYC-21系列染料的長時間穩定性 118
3.6. CYC-33O、CYC-45Cl、CYC-45I鋨系染料敏化元件組裝條件的優化 120
3.6.1. 添加共吸附劑對CYC-45I敏化元件光伏參數之影響 122
3.6.2. 添加共吸附劑TBA-BPH對CYC-45I敏化元件光伏參數的影響 125
3.6.3. 導入後吸附劑對CYC-45I敏化元件光伏參數的影響 127
3.6.4. 改變吸附溫度對CYC-45I敏化元件光伏參數之影響 132
3.6.5. 調整TiO2薄膜層數對CYC-45I敏化元件光伏參數的影響 135
3.6.6. 電解液組成變化對於CYC-45I敏化元件光伏參數的影響 139
3.6.6-1. 電解液中添加不同濃度BMII對CYC-45I敏化元件光伏參數的影響 139
3.6.6-2. 電解液中添加不同濃度LiI對CYC-45I敏化元件光伏參數的影響 142
3.6.6-3. 電解液中添加不同濃度I2對CYC-45I敏化元件光伏參數的影響 145
3.6.6-4. 電解液中添加不同濃度tBP和GuSCN對CYC-45I敏化元件光伏參數的影響 148
3.6.6-5. 電解液中添加不同濃度Li2CO3對CYC-45I敏化元件光伏參數的影響 150
3.6.7. 調整浸泡時間對CYC-45I敏化元件光伏參數的影響 153
3.7. 鋨錯合物CYC-45系列染料與BD染料敏化元件之光伏性質比較 156
3.8. CYC-45系列元件之光物理及電荷轉移性質探討 159
3.8.1. CYC-45系列及BD染料的UV/Vis吸收光譜圖 159
3.8.2. CYC-45系列染料元件電荷再結合現象與Voc值的關聯性 166
3.8.3. CYC-45系列染料元件電子在TiO2薄膜上的有效擴散係數 168
3.8.4. CYC-45系列染料元件TiO2薄膜上的電子擴散長度及電子收集率 170
3.8.5. 影響CYC-45系列染料元件填充因子的因素 172
3.8.6. CYC-45系列染料的長時間穩定性 173
3.8.7. CYC-45Cl與CYC-45I與碘離子之作用 175
第四章、結論 177
參考文獻 180
附錄 193
參考文獻 [1] R. Newell, Y. Qian and D. Raimi, Global energy outlook 2015, IEA. 2016.
[2] N. S. Lewis and D. G. Nocera, Powering the planet:Chemical challenges in solar energy utilization, Proc Natl Acad Sci USA. 2006, 103, 15729–15735.
[3] A. Feltrin and A. Freundlich, Material considerations for terawatt level deployment of photovoltaics, Renew. Energy. 2008, 33, 180–185.
[4] Y. Ren, D. Zhang, J. Suo, Y. Cao, F. T. Eickemeyer, N. Vlachopoulos, S. M. Zakeeruddin, A. Hagfeldt and M. Grätzel, Hydroxamic acid pre-adsorption raises the efficiency of cosensitized solar cells, Nature 2023, 613, 60–65.
[5] A. Mishra and P. Bauerle, Small molecule organic semiconductors on the move: promises for future solar energy technology, Angew. Chem. Int. Ed. 2012, 51, 2020–2067.
[6] D. Kumar, D. K. Dheer and L. Kumar, Effect of different operating conditions on the conversion efficiency of triple-junction solar cell, Mater. Res. Express 2021, 8, 035902.
[7] M. Z. Iqbal and S. Khan, Progress in the performance of dye sensitized solar cells by incorporating cost effective counter electrodes, Solar Energy 2018, 160, 130–152.
[8] J. Cubas, S. Pindado and C. De Manuel, Explicit expressions for solar panel equivalent circuit parameters based on analytical formulation and the lambert W-function, Energies, 2014, 7, 4098–4115.
[9] S. W. Rhee and W. Kwon, Key technological elements in dye-sensitized solar cells (DSC), Korean J Chem Eng. 2011, 28, 1481–1494.
[10] M. Grätzel, Dye-sensitized solar cells, J. Photochem. Photobiol. C 2003, 4, 145–153.
[11] S. E. Clapham, A. Hadzovic and R. H. Morris, Mechanisms of the H2-hydrogenation and transfer hydrogenation of polar bonds catalyzed by ruthenium hydride complexes, Coord. Chem. Rev. 2004, 248, 2201–2237.
[12] V. Thavasi, V. Renugopalakrishnan, R. Jose and S. Ramakrishna, Controlled electron injection and transport at materials interfaces in dye sensitized solar cells, Mater. Sci. Eng. R. 2009, 63, 81–99.
[13] M. Law, L. E. Greene, J. C. Johnson, R. Saykally and P. Yang, Nanowire dye-sensitized solar cells, Nature 2005, 4, 455–459
[14] K. Park, Q. Zhang, D. Myers and G. Cao, Charge transport properties in TiO2 network with different particle sizes for dye sensitized solar cells, ACS Appl. Mater. Interfaces 2013, 5, 1044–1052.
[15] L. Song, Y. Zhou, Y. Guan, P. Du, J. Xiong and F. Ko, Branched open-ended TiO2 nanotubes for improved efficiency of flexible dye-sensitized solar cells, J. Alloys Compd. 2017, 724, 1124–1133.
[16] J. Nissfolk, K. Fredin, A. Hagfeldt and G. Boschloo, Recombination and transport processes in dye-sensitized solar cells investigated under working conditions, J. Phys. Chem. B 2006, 110, 22950–22951.
[17] S. Ito, T. N. Murakami, P. Comte, P. Liska, C. Grätzel, M. K. Nazeeruddin and M. Grätzel, Fabrication of thin film dye sensitized solar cells with solar to electric power conversion efficiency over 10%, Thin Solid Films 2008, 516, 4613–4619.
[18] X. Miao, K. Pan, Y. Liao, W. Zhou, Q. Pan and G. Wang, Controlled synthesis of mesoporous anatase TiO2 microspheres as a scattering layer to enhance the photoelectrical conversion efficiency, J. Mater. Chem. A 2013, 1, 9860–9861.
[19] X. Wu, G. Q. Lu and L. Wang, Shell-in-shell TiO2 hollow spheres synthesized by one-pot hydrothermal method for dye-sensitized solar cell application, Energy Environ Sci. 2011, 4, 3565–3570.
[20] D. Chen, F. Huang, Y. B. Cheng and R. A. Caruso, Mesoporous anatase TiO2 beads with high surface areas and controllable pore sizes: A superior candidate for high-performance dye-sensitized solar cells, Adv. Mater. 2009, 21, 2206–2210.
[21] D. Chen, L. Cao, F. Huang, P. Imperia, Y. B. Cheng and R. A. Caruso, Synthesis of monodisperse mesoporous titania beads with controllable diameter, high surface areas, and variable pore diameters (14-23 nm), J. Am. Chem. Soc. 2010, 132, 4438–4444.
[22] G. P. Smestad, F. C. Krebs, C. M. Lampert, C. G. Granqvist, K. L. Chopra, X. Mathew and H. Takakura, Reporting solar cell efficiencies in solar energy materials and solar cells, Sol. Energ. Mat. Sol. Cells 2008, 92, 371–373.
[23] M. K. Nazeeruddin, A. Kay, I. Rodicio, R. Humphry Baker, E. Mueller, P. Liska, N. Vlachopoulos and M. Grätzel, Conversion of light to electricity by cis-X-2bis(2,2′-bipyridyl-4,4′-dicarboxylate) ruthenium(II) charge-transfer sensitizers (X = Cl-, Br-, I-, CN-, and SCN-) on nanocrystalline titanium dioxide electrodes, J. Am. Chem. Soc. 1993, 115, 6382–6390.
[24] A. Hagfeldt and M. Graetzel, Light-induced redox reactions in nanocrystalline systems, Chem. Rev. 2002, 95, 49–68.
[25] M. K. Nazeeruddin, R. H. Baker, P. Liska and M. Grätzel, Investigation of sensitizer adsorption and the influence of protons on current and voltage of a dye-sensitized nanocrystalline TiO2 solar cell, J. Phys. Chem. B 2003, 707, 8981–8987
[26] M. K. Nazeeruddin, F. D. Angelis, S. Fantacci, A. Selloni, G. Viscardi, P. Liska, S. Ito, B. Takeru and M. Grätzel, Combined experimental and DFT-TDDFT computational study of photo-electrochemical cell ruthenium sensitizers, J. Am. Chem. Soc. 2005, 727, 16835–16847.
[27] M. Grätzel, Recent advances in sensitized mesoscopic solar cells, Acc. Chem. Res. 2009, 42, 1788–1798.
[28] T. Kinoshita, J. Fujisawa, J. Nakazaki, S. Uchida, T. Kubo and H. Segawa, Enhancement of near-IR photoelectric conversion in dye-sensitized solar cells using an osmium sensitizer with strong spin-forbidden transition, J. Phys. Chem. Lett. 2012, 3, 394–398.
[29] R. Juwita, J. Y. Lin, S. J. Lin, Y. C. Liu, T. Y. Wu, Y. M. Feng, C. Y. Chen, H. H. Gavin Tsai and C. G. Wu, Osmium sensitizer with enhanced spin-orbit coupling for panchromatic dye-sensitized solar cells, J. Mater. Chem. A 2020, 8, 12361–12369.
[30] B. O’Regan and M. Grätzel, A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films, Nature 1991, 353, 737–739.
[31] J. Cong, X. Yang, L. Kloob and L. Sun, Iodine iodide-free redox shuttles for liquid electrolyte-based dye-sensitized, Energy Environ. Sci. 2012, 5, 9180–9194.
[32] X. Wang, S. A. Kulkarni, B. I. Ito, S. K. Batabyal, K. Nonomura, C. C. Wong, M. Grätzel, S. G. Mhaisalkar and S. Uchida, Nanoclay gelation approach toward improved dye-sensitized solar cell efficiencies: An investigation of charge transport and shift in the TiO2 conduction band, ACS Appl. Mater. Interfaces 2013, 5, 444–450.
[33] Y. Shi, Y. Wang, M. Zhang and X. Dong, Influences of cation charge density on the photovoltaic performance of dye-sensitized solar cells: lithium, sodium, potassium, and dimethylimidazolium, Phys. Chem. Chem. Phys. 2011, 13, 14590–14597.
[34] Y. Liu, A. Hagfeldt, X. R. Xiao and S. E. Lindquist, Investigation of influence of redox species on the interfacial energetics of a dye-sensitized nanoporous TiO2 solar cell, Sol. Energy Mater. Sol. Cells 1998, 55, 267–281.
[35] K. M. Son, M. G. Kang, R. Vittal, J. Lee and K. J. Kim, Effects of substituents of imidazolium cations on the performance of dye-sensitized TiO2 solar cells, J. Appl. Electrochem. 2008, 38, 1647–1652.
[36] M. Bidikoudi, L. F. Zubeir and P. Falaras, Low viscosity highly conductive ionic liquid blends for redox active electrolytes in efficient dye-sensitized solar cells, J. Mater. Chem. A 2014, 2, 15326–15336.
[37] S. Nakade, T. Kanzaki, W. Kubo, T. Kitamura, Y. Wada and S. Yanagida, Role of electrolytes on charge recombination in dye-sensitized TiO2 solar cell (1):The case of solar cells using the I-/I3- redox couple, J. Phys. Chem. B 2005, 109, 3480–3487.
[38] C. Zhang, Y. Huang, Z. Huo, S. Chen and S. Da, Photoelectrochemical effects of guanidinium thiocyanate on dye sensitized solar cell performance and stability, J. Phys. Chem. C 2009, 113, 21779–21783.
[39] N. Kopidakis, N. R. Neale and A. J. Frank, Effect of an adsorbent on recombination and band-edge movement in dye-sensitized TiO2 solar cells: Evidence for surface passivation, J. Phys. Chem. B 2006, 110, 12485–12489.
[40] J. Zhang and A. Zaban, Efficiency enhancement in dye-sensitized solar cells by in situ passivation of the sensitized nanoporous electrode with Li2CO3, Electrochim. Acta 2008, 53, 5670–5674.
[41] A. Kay and M. Grätzel, Artificial photosynthesis. 1. Photosensitization of titania solar cells with chlorophyll derivatives and related natural porphyrins, J. Phys. Chem. A 2002, 97, 6272–6277.
[42] J. Li, W. Wu, J. Yang, J. Tang, Y. Long and J. Hua, Effect of chenodeoxycholic acid (CDCA) additive on phenothiazine dyes sensitized photovoltaic performance, Sci. China Chem. 2011, 54, 699–706.
[43] X. Li, H. Lin, S. M. Zakeeruddin, M. Grätzel and J. Li, Interface modification of dye-sensitized solar cells with pivalic acid to enhance the open-circuit voltage, Chem. Lett. 2009, 38, 322–323.
[44] P. Wang, S. M. Zakeeruddin, R. Humphry‐Baker, J. E. Moser and M. Grätzel, Molecular‐scale interface engineering of TiO2 nanocrystals: Improve the efficiency and stability of dye‐sensitized solar cells, J. Adv. Mater. 2003, 15, 2101–2104.
[45] Y. Liu, J. R. Jennings, X. Wang and Q. Wang, Significant performance improvement in dye-sensitized solar cells employing cobalt(III/II) tris-bipyridyl redox mediators by co-grafting alkyl phosphonic acids with a ruthenium sensitizer, Phys. Chem. Chem. Phys. 2013, 15, 6170–6174.
[46] N. R. Neale, N. Kopidakis, J. van de Lagemaat, M. Grätzel and A. J. Frank, Effect of a coadsorbent on the performance of dye-sensitized TiO2 solar cells: Shielding versus band-edge movement, J. Phys. Chem. B 2005, 109, 23183–23189.
[47] S. H. Aung, Y. Hao, T. Z. Oo and G. Boschloo, 2‑(4 Butoxyphenyl)‑N‑hydroxyacetamide: An efficient preadsorber for dye-sensitized solar cells, ACS Omega 2017, 2, 1820–1825.
[48] K. Kakiage, Y. Aoyama, T. Yano, T. Otsuka, T. Kyomen, M. Unno and M. Hanaya, An achievement of over 12 percent efficiency in an organic dye-sensitized solar cell, Chem. Commun. 2014, 50, 6379–6381.
[49] M. Unno, K. Kakiage, M. Yamamura, T. Kogure, T. Kyomen and M. Hanaya, Silanol dyes for solar cells: Higher efficiency and significant durability, Appl. Organomet. Chem. 2010, 24, 247–250.
[50] S. Carli, L. Casarin, S. Caramori, R. Boaretto, E. Busatto, R. Argazzi and C. A. Bignozzi, A viable surface passivation approach to improve efficiency in cobalt based dye sensitized solar cells, Polyhedron 2014, 82, 173–180.
[51] A. Hauch and A. Georg, Diffusion in the electrolyte and charge-transfer reaction at the platinum electrode in dye-sensitized solar cells, Electrochimica Acta. 2001, 46, 3457–3466.
[52] K. Zhu, N. R. Neale, A. Miedaner and A. J. Frank, Enhanced charge-collection efficiencies and light scattering in dye-sensitized solar cells using oriented TiO2 nanotubes arrays, Nano Lett. 2007, 7, 69–74.
[53] N. Kopidakis, K. D. Benkstein, J. Lagemaat and A. J. Frank, Transport-limited recombination of photocarriers in dye-sensitized nanocrystalline TiO2 solar cells, J. Phys. Chem. B 2003, 107, 11307–11315.
[54] P. R. F. Barnes, A. Y. Anderson, M. Juozapavicius, L. Liu, X. Li, E. Palomares, A. Forneli and B. C. O′Regan, Factors controlling charge recombination under dark and light conditions in dye sensitised solar cells, Phys. Chem. Chem. Phys. 2011, 13, 3547–3558.
[55] A. Tricoli, A. S. Wallerand and M. Righettoni, Highly porous TiO2 films for dye sensitized solar cells, J. Mater. Chem. 2012, 22, 14254–14261.
[56] 吳宗祐,釕錯合物敏化太陽能電池元件優化與光伏特性探討,國立中央大學化學研究所碩士學位論文,2018。
[57] C. Y. Chen, T. Y. Lin, C. F. Chiu, M. M. Lee, W. L. Li, M. Y. Chen, T. H. Hung, Z. J. Zhang, H. G. Tsai, S. S. Sun and C. G. Wu, Steric effects on the photovoltaic performance of panchromatic ruthenium sensitizers for dye-sensitized solar cells, ACS Appl. Mater. Interfaces 2024, 16, 12647–12660.
[58] F. Sauvage, J. D. Decoppet, M. Zhang, S. M. Zakeeruddin, P. Comte, M. Nazeeruddin, P. Wang and M. Grätzel, Effect of sensitizer adsorption temperature on the performance of dye-sensitized solar cells, J. Am. Chem. Soc. 2011, 133, 9304–9310.
[59] K. Hara, T. Horiguchi, T. Kinoshita, K. Sayama, H. Sugihara and H. Arakawa, Highly efficient photon-to-electron conversion with mercurochrome-sensitized nanoporous oxide semiconductor solar cells, Sol. Energ. Mat. Sol. Cells 2000, 64, 115–134.
[60] K. Hara, Y. Danoh, C. Kasada, Y. Ohga, A. Shinpo, S. Suga, K. Sayama and H. Arakawa, Effect of additives on the photovoltaic performance of coumarin-dye-sensitized nanocrystalline TiO2 solar cells, Langmuir 2004, 20, 4205–4210.
[61] Y. Yang, J. Zhang, C. Zhou, S. Wu, S. Xu, W. Liu, H. Han, B. Chen and X. Z. Zhao, Effect of lithium iodide addition on poly(ethylene oxide)-poly(vinylidene fluoride) polymer-blend electrolyte for dye-sensitized nanocrystalline solar cell, J. Phys. Chem. B 2008, 112, 6594–6602.
[62] D. Kuang, C. Klein, H. J. Snaith, J. E. Moser, R. Humphry-Baker, P. Comte, S. M. Zakeeruddin and M. Grätzel, Ion coordinating sensitizer for high efficiency mesoscopic dye-sensitized solar cells: Influence of lithium ions on the photovoltaic performance of liquid and solid-state cells, Nano Lett. 2006, 6, 769–773.
[63] X. Ren, Q. Feng, G. Zhou, C. H. Huang and Z. S. Wang, Effect of cations in coadsorbate on charge recombination and conduction band edge movement in dye-sensitized solar cells, J. Phys. Chem. C 2010, 114, 7190–7195.
[64] Z. Sun, R. K. Zhang, H. H. Xie, H. Wang, M. Liang and S. Xue, Nonideal charge recombination and conduction band edge shifts in dye-sensitized solar cells based on adsorbent doped poly(ethylene oxide) electrolytes, J. Phys. Chem. C 2013, 117, 4364–4373.
[65] S. Yanagida, Y. Yu and K. Manseki, Iodine/iodide-free dye-sensitized solar cells, Acc. Chem. Res. 2009, 42, 1827–1838.
[66] L. M. Peter, Dye-sensitized nanocrystalline solar cells, Phys. Chem. Chem. Phys. 2007, 9, 2630–2642.
[67] Z. Yu, M. Gorlov, J. Nissfolk, G. Boschloo and L. Kloo, Investigation of iodine concentration effects in electrolytes for dye-sensitized solar cells, J. Phys. Chem. C 2010, 114, 10612–10620.
[68] L. Yang, R. Lindblad, E. Gabrielsson, G. Boschloo, H. Rensmo, L. Sun, A. Hagfeldt, T. Edvinsson and E. M. J. Johansson, Experimental and theoretical investigation of the function of 4-tert-butyl pyridine for interface energy level adjustment in efficient solid-state dye-sensitized solar cells, ACS Appl. Mater. Interfaces 2018, 10, 11572–11579.
[69] G. Boschloo, L. Haggman and A. Hagfeldt, Quantification of the effect of 4-tert-butylpyridine addition to I-/I3- redox electrolytes in dye-sensitized nanostructured TiO2 solar cells, J. Phys. Chem. B 2006, 110, 13144–13150.
[70] T. D. Nguyen, Y. P. Lan and C. G. Wu, The function of chalcogenophene in the cyclomatelated ring of the cycloruthenated dyes applied in dye-sensitized solar cell, Inorg. Chem. 2021, 60, 11328–11337.
[71] J. J. Kim, H. Choi, C. Kim, M. S. Kang, H. S. Kang and J. Ko, Novel amphiphilic ruthenium sensitizer with hydrophobic thiophene or thieno(3,2-b)thiophene-substituted 2,2′-dipyridylamine ligands for effective nanocrystalline dye sensitized solar cells, Chem. Mater. 2009, 21, 5719–5726.
[72] 蔡源寧,含高度共軛芳香雜環之釕錯合物的合成以應用於染料敏化太陽能電池,國立中央大學化學研究所碩士學位論文,2023。
[73] L. Dloczik, O. Ileperuma, I. Lauermann, L. M. Peter, E. A. Ponomarev, G. Redmond, N. J. Shaw and I. Uhlendorf, Dynamic response of dye-sensitized nanocrystalline solar cells: Characterization by intensity-modulated photocurrent spectroscopy, J. Phys. Chem. B 1997, 101, 10281–10289.
[74] J. Krüger, R. Plass, M. Grätzel, P. J. Cameron and L. M. Peter, Charge transport and back reaction in solid-state dye-sensitized solar cells: A study using intensity-modulated photovoltage and photocurrent spectroscopy, J. Phys. Chem. B 2003, 107, 7536–7539.
[75] G. Schlichthörl, N. G. Park and A. J. Frank, Evaluation of the charge-collection efficiency of dye-sensitized nanocrystalline TiO2 solar cells, J. Phys. Chem. B 1999, 103, 782–791.
[76] S. K. Pathak, A. Abate, P. Ruckdeschel, B. Roose, K. C. Gödel, Y. Vaynzof, A. Santhala, S. I. Watanabe, D. J. Hollman, N. Noel, A. Sepe, U. Wiesner, R. Friend, H. J. Snaith and U. Steiner, Performance and stability enhancement of dye‐sensitized and perovskite solar cells by al doping of TiO2, Adv. Funct. Mater. 2014, 24, 6046–6055.
[77] J. Bisquert, A. Zaban and P. Salvador, Analysis of the mechanisms of electron recombination in nanoporous TiO2 dye-sensitized solar cells. Nonequilibrium steady-state statistics and interfacial electron transfer via surface states, J. Phys. Chem. B 2002, 106, 8774–8782.
[78] 林庭毅,金屬錯合物染料敏化太陽能電池的元件優化,國立中央大學化學研究所碩士學位論文,2021。
[79] B. C. O′Regan, K. Walley, M. Juozapavicius, A. Anderson, F. Matar, T. Ghaddar, S. M. Zakeeruddin, C. Klein and J. R. Durrant, Structure/function relationships in dyes for solar energy conversion:A two-atom change in dye structure and the mechanism for its effect on cell voltage, J. Am. Chem. Soc. 2009, 131, 3541–3548.
[80] H. An, D. Song, J. Lee, E. M. Kang, J. Jaworski, J. M. Kim and Y. S. Kang, Promotion of strongly anchored dyes on the surface of titania by tetraethyl orthosilicate treatment for enhanced solar cell performance, J. Mater. Chem. A 2014, 2, 2250–2255.
[81] J. Spivack, O. Siclovan, S. Gasaway, E. Williams, A. Yakimov and J. Gui, Improved efficiency of dye sensitized solar cells by treatment of the dyed titania electrode with alkyl(trialkoxy)silanes, Sol. Energ. Mat. Sol. Cells 2006, 90, 1296–1307.
[82] 陳世昀,有機共吸附染料的合成與性質探討,國立中央大學化學研究所碩士學位論文,2020。
[83] 黃品嘉,新型三吡啶鋨錯合物染料合成與配位基效應之探討,國立中央大學化學研究所碩士學位論文,2022。
[84] S. Fantacci, M. G. Lobello and F. De Angelis, Everything you always wanted to know about black dye (but were afraid to ask):A DFT/TDDFT investigation, Chimia 2013, 67, 121–128.
[85] M. K. Nazeeruddin, S. M. Zakeeruddin and K. Kalyanasundaram, Enhanced intensities of the ligand-to-metal charge-transfer transitions in ruthenium (III) and osmium (III) complexes of substituted bipyridines, J. Phys. Chem. 2002, 97, 9607–9612.
[86] W. B. Swords, G. Li and G. J. Meyer, Iodide ion pairing with highly charged ruthenium polypyridyl cations in CH3CN, Inorg. Chem. 2015, 54, 4512–4519.
指導教授 陳家原(Chia-Yuan Chen) 審核日期 2024-8-19
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明