博碩士論文 110225005 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:34 、訪客IP:18.220.96.228
姓名 蔣崇平(Chung-Ping Chiang)  查詢紙本館藏   畢業系所 統計研究所
論文名稱 時間相依一致性指標-三種方法之比較
(Time-dependent C-index : A Comparison of Three Methods)
相關論文
★ 長期與存活資料之聯合模型-新方法和數值方法的改進★ 復發事件存活分析的共享廣義伽瑪脆弱因子之半母數聯合模型
★ 加乘法風險模型結合長期追蹤資料之聯合模型★ 有序雙重事件時間分析使用與時間相關的共變數-邊際方法的比較
★ 存活與長期追蹤資料之聯合模型-台灣愛滋病實例研究★ 以聯合模型探討地中海果蠅繁殖力與老化之關係
★ 聯合模型在雞尾酒療法療效評估之應用—利用CD4/CD8比值探討台灣愛滋病資料★ 時間相依共變數之雙重存活時間分析—台灣愛滋病病患存活時間與 CD4 / CD8 比值關係之案例研究
★ Cox比例風險模型之參數估計─比較部分概似法與聯合模型★ 復發事件存活時間分析-丙型干擾素對慢性肉芽病患復發療效之案例研究
★ Cox 比例風險假設之探討與擴充風險模型之應用★ 以聯合模型探討原發性膽汁性肝硬化
★ 聯合長期追蹤與存活資料分析-肝硬化病患之實例研究★ 復發事件存活時間分析-rhDNase對囊狀纖維化病患復發療效之案例研究
★ 聯合長期追蹤與存活資料分析-原發性膽汁性肝硬化病患之實例研究★ 復發事件存活時間分析-Thiotepa對膀胱癌病患復發療效之案例研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本研究的目的在於針對存活資料中含有的長期追蹤(Longitudinal) 性質的共變數(生物指標),並且伴隨著測量誤差的情形下去計算時間相依一致性指標(Time-dependent concordance)。我們進一步比較的三種方法可以依據基於模型(Model-based)與非基於模型分成兩類,基於模型中包含了聯合模型(Joint model) 補值法與鄰近點補值法(Nearest Neighbor Estimate),而目前存在的文獻中的非基於模型則是利用IPCW(Inverse of the probability of censoring weighted)來進行加權。本研究會比較此三種方法所估計的時間相依一致性指標,在各種不同測量誤差、測量值缺失率、設限率及樣本數下的影響,最後以實際愛滋病的資料做分析,展示三種方法下的結果。
摘要(英) The purpose of this study is to calculate the Time-dependent concordance for the Longitudinal covariance (biological index) contained in the survival data, and to calculate the time-dependent C-index with the measurement error. The three methods we further compared can be divided into two categories based on the Model-based and non-model-based. The model-based method includes the Joint model compensation method and the Nearest Neighbor Estimate. The non-model-based methods in the existing literature use IPCW (Inverse of the probability of censoring weighted) for weighting. This study will compare the time-dependent C-index estimated by these three methods, and the impact of various measurement errors, missing measurement rates, censoring rates, and sample sizes. Finally, the actual AIDS data will be used to analyze the three methods.
關鍵字(中) ★ 1.比例風險模型
★ 2.聯合模型
★ 3.長期追蹤資料
★ 4.模型比較
★ 5.時間相依一致性指標
關鍵字(英) ★ 1.Cox model
★ 2.Joint model
★ 3.Longitudinal data
★ 4.Model comparison
★ 5.Time-dependent concordance
論文目次 摘要 i
Abstract ii
致謝 iii
圖目錄 iv
表目錄 v
第一章 緒論 1
1.1 一致性指標 2
1.2 基於模型下的一致性指標 2
1.3 非基於模型下的一致性指標 5
第二章 統計方法 6
2.1 基於模型之時間相依一致性指標及補值法 7
2.2 非基於模型之時間相依一致性指標 14
第三章 模擬研究 16
3.1 在不同測量誤差下時間相依一致性指標之比較 18
3.2 在不同測量值缺失率下時間相依一致性指標之比較 23
3.3 在不同設限率下時間相依一致性指標之比較 27
3.4 在不同樣本數下時間相依一致性指標之比較 29
第四章 資料分析 32
4.1 愛滋病資料介紹 32
4.2 時間相依一致性指標模型 33
第五章 結論 37
參考文獻 38
附錄A.1 I/D定義下之AUC與一致性指標推導 42
參考文獻 Bennett, S. (1983). Analysis of Survival Data by the Proportional Odds Model. Statistics in Medicine, 2, 273–277.

Box, G., and Cox, D. (1964). An Analysis of Transformations. Journal of the Royal Statistical Society Series B, 26, 211-252.

Cheng, F. (2017). Asymptotic Properties of Hazard Rate Estimator in Censored Linear Regression. Sankhya A, 79, 1–12.

Chiou, S. H., Kang, S. and Yan, J. (2014). Fitting Accelerated Failure Time Models in Routine Survival Analysis with R Package aftgee. Journal of Statistical Software, 61, 1–23.

Cox, D. R. (1972). Regression models and life-tables. Journal of the Royal Statistics Society series B, 34, 187-220

Cox, D. R. (1975). Partial likelihood. Biometrics, 62, 269-276

Heagerty, P. J., Saha-Chaudhuri, P. and Saha-Chaudhuri, M. P. (2012). Package ‘risksetROC’: riskset ROC curve estimation from censored survival data.

Heagerty, P.J. and Zheng, Y. (2005). Survival Model Predictive Accuracy and ROC Curves. Biometrika, 61, 92-105.

Hsieh, F, Tseng, Y.K. and Wang, (2006). Joint Modeling of Survival and Longitudinal Data: Likelihood Approach Revisited. Biometrics, 62, 1037–1043.

James, M.R. and Dianne, M.f. (2000). Correcting for Noncompliance and Dependent Censoring in an AIDS Clinical Trial with Inverse Probability of Censoring Weighted (IPCW) Log-Rank Tests. Biometrics, 56, 779–788.

Jones, M. C. (1990). The performance of kernel density functions in kernel distribution function estimation. Statistics and Probability Letter, 9, 129–132.

Jones, M. C. and Sheather, S. J. (1991). Using non-statistic terms to advantage in kernel-based estimation of integrated squared density derivatives. Statistics and Probability Letter, 11, 511–514.

Kamarudin, A. N., Cox, T. and Kolamunnage-Dona, R. (2017). Time-dependent ROC curve analysis in medical research: current methods and applications. BMC Medical Research Methodology, 17, 53.

Lin, Y. H. (2017). Model-base Time dependent AUC and Predictive Accuracy. Graduate Institute of Statistics, National Central University, 桃園.

Martinussen, T. and Scheike, T. H. (2006). Dynamic Regression Models for Survival Data, New York: Springer.

MuKller, H. G. and Wang, J. L. (1994). Hazard rate estimation under random censoring with varying kernels and bandwidths. Biometrics, 50, 61–76.

Thomas, A, Gerds and Michael, W. K. (2012). Estimating a time-dependent concordance index for survival prediction models with covariate dependent censoring. Statistics in Medicine, 116, 2173-2184.

Tseng, Y. K., Wang, J. L. and Hsieh, F. (2005). Joint modeling of accelerated failure time and longitudinal data. Biometrika, 92, 587-603.

Tseng, Y. K. and Shu, K. N. (2011). Efficient Estimation for a Semiparametric Extended Hazards Model. Communications in Statistics—Simulation and Computation, 40, 258-273.

Tseng, Y. K., Wang, J. L., Su, Y. R., and Mao, M. (2015). An extended hazard model with longitudinal covariates. Biometrika, 102, 135-150.

Tsiatis, A. A. and Davidian, M. (2001). A semiparametric estimator for the proportional hazards model with longitudinal covariates measured with error. Biometrika, 88, 447-458.

Wei, L. J. (1992). The accelerated failure time model: A useful alternative to the cox regression model in survival analysis. Statistics in Medicine, 11, 1871–1879.

Wulfsohn, M. S. and Tsiatis, A. A. (1997). A joint model for survival and longitudinal data measured with error. Biometrics, 53, 330-339.

Xu, C., Hadjipantelis, P. Z. and Wang, J. L. (2020). Semi-parametric joint modeling of survival and longitudinal data: The R Package JSM. Journal of Statistical Software, 93, 1-29.

Zeng, D. and Lin, D. Y. (2007). Efficient estimation for the accelerated failure time model. Journal of American Statistical Association, 102, 1387–1396.

林威廷(2021)。風險回歸模型下時間相依ROC曲線。國立中央大學統計研究所碩士論文。
指導教授 曾議寬(Yi-Kuan Tseng) 審核日期 2023-7-11
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明