博碩士論文 110226015 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:67 、訪客IP:18.223.239.171
姓名 周峻弘(JYUN-HONG JHOU)  查詢紙本館藏   畢業系所 光電科學與工程學系
論文名稱 自發輻射放大量測系統之應用 與雷射光路之串連
(The application of the ASE measurement system and interconnection of laser path)
相關論文
★ 以膠體微影技術應用於開孔電極垂直式有機電晶體之研究★ 有機高分子電化學發光元件
★ 開孔電極結構對於垂直式有機電晶體電性影響之研究★ 微米光柵壓印有機太陽能電池主動層之研究
★ 有機波導結構的ASE現象研究以及共振腔結構的模擬★ 利用金屬微共振腔研究光與有機激發態強耦合現象
★ 多層式雙極有機場效電晶體之研究★ 電光非週期性晶疇極化反轉鈮酸鋰波導定向耦合元件之研究
★ 全氟己基四聯?吩共軛分子奈米結構成長與其對薄膜電晶體電性影響之研究★ 有機染料分子薄膜之光電特性研究
★ 多層結構有機電晶體之研究★ 利用氧流量調整改善短通道氧化物半導體在高電場下的電流崩潰現象
★ 有機強耦合共振腔元件設計與發光量測系統架設之研究★ 強耦合有機微共振腔之設計與研究
★ 光激發有機極化子元件之製作與量測★ 即時多角度量測光譜儀系統應用於有機發光二極體空間頻譜之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2029-6-23以後開放)
摘要(中) 本論文主要是自發輻射放大量測系統的架設和量測,以及沿續學長和同學之研究結果,以波長355 nm的Q-smart 450 Nd:YAG脈衝雷射為起點並使用反射鏡將即時性多角度光譜系統、即時性多角度動量影像量測系統和自發輻射放大系統三者的光路串連起來。
自發輻射放大量測系統是以透鏡、柱狀透鏡和可調式狹縫所組成的,高功率的脈衝雷射首先透過電控光學衰減器控制雷射功率大小,再利用帶通濾波片過濾不需要的雜光,並透過無焦透鏡組、柱狀透鏡和可調式狹縫調整光束的大小、形狀和長度,以長度變化法的方式進行樣品的量測,因有機薄膜、空氣和玻璃基板三者折射率大小的不同而形成了如同波導的結構,自發輻射的光子在波導中通過受激輻射而得到增益,最後經由有機材料的側邊斷面出光,再使用光纖接收光譜儀分析。
自發輻射放大系統的優點在於能透過量測有機薄膜加上玻璃基板這樣的簡單結構,不需要透過製作共振腔這樣繁瑣的結構,就能夠正確且快速的了解有機材料的雷射特性,這對於有機雷射的材料選擇能夠節省下非常多的時間,且系統組成的光學元件都是可拆卸式的,因此能夠簡單的使用反射鏡將雷射導入即時性多角度光譜系統和即時性多角度動量影像量測系統之中,方便有機雷射的激發進而透過上述兩系統量測其光學上的特性。
摘要(英) The main focus of this thesis is the establishment and measurement of the amplified spontaneous emission measurement system, building upon previous research results. It starts with Q-smart 450 Nd:YAG pulsed laser at a wavelength of 355 nm, utilizing reflectors to interconnect the one-snap multi-angle spectroscopy optical system, the one-snap multi-angle momentum imaging system, and the amplified spontaneous emission measurement system.
The amplified spontaneous emission measurement system comprises of lenses, cylindrical lens, and an adjustable slit. The high-power pulsed laser is first controlled by a tunable optical attenuator to regulate laser power. Unwanted wavelength of the laser is filtered out using a bandpass filter, and the beam size, shape, and length are adjusted by afocal system, cylindrical lens, and an adjustable slit. Measurement of samples is conducted via the variable stripe length method, utilizing the refractive index differences between organic films, air, and glass substrates, which form a waveguide structure. Photons of spontaneous emission get gain via stimulated emission inside the waveguide, resulting in amplification, and finally emit from the side face of the glass. The emitted light is then analyzed using a spectrometer via optical fiber.
The advantage of amplified spontaneous emission measurement system lies in the ability to measure the laser characteristics of organic materials, through the structure of organic films on glass substrates, without building complex structures like resonant cavities. This approach saves considerable time in material selection for organic lasers. Moreover, the optical components of the system are modular. As a result, the laser can be conveniently directed into the one-snap multi-angle spectroscopy optical system and the one-snap multi-angle momentum imaging system, exciting organic lasers and the measuring the optical properties through the above two systems.
關鍵字(中) ★ 自發輻射放大
★ 雷射
關鍵字(英) ★ ASE
★ laser
論文目次 目錄
摘要 i
Abstract ii
誌謝 iv
目錄 v
圖目錄 vii
第一章 緒論 1
1-1 前言 1
1-2 研究目的與動機 3
第二章 基本原理 4
2-1自發輻射放大量測系統的介紹 4
2-2 電子躍遷(Electronic Transition) 6
2-2-1 居量反轉(Inversed Population) 7
2-3 自發輻射放大(Amplified spontaneous emission , ASE) 8
2-3-1 有機薄膜的膜厚 10
2-3-2 自發輻射放大的驗證 12
2-3-3 自發輻射放大的淨增益 12
2-3-4 自發輻射放大材料的選擇 14
2-4 有機雷射 20
2-4-1 光激發有機雷射 20
2-4-2 電激發有機雷射 24
第三章 實驗方法與步驟 26
3-1 系統架構 26
3-1-1 自發輻射放大量測系統(ASE Measurement System) 26
3-1-2 即時性多角度光譜量測系統 31
3-1-3 即時性多角度動量影像量測系統 34
3-2 串聯系統 36
3-2-1系統的串聯方式 36
3-3 各系統量測結果 38
3-3-1 自發輻射放大量測結果 38
3-3-2 即時性多角度光譜量測系統量測結果 40
3-3-3 即時性多角度動量影像量測系統量測結果 43
第四章 結論與未來展望 45
參考文獻 47
參考文獻 [1] J.-S. Park, H. Chae, H. K. Chung, and S. I. Lee, "Thin film encapsulation for flexible AM-OLED: a review," Semiconductor science and technology, vol. 26, no. 3, p. 034001, 2011.
[2] S. Sax et al., "Efficient Blue‐Light‐Emitting Polymer Heterostructure Devices: The Fabrication of Multilayer Structures from Orthogonal Solvents," Advanced Materials, vol. 22, no. 18, pp. 2087-2091, 2010.
[3] T. Earmme, E. Ahmed, and S. A. Jenekhe, "Solution‐processed highly efficient blue phosphorescent polymer light‐emitting diodes enabled by a new electron transport material," Advanced Materials, vol. 22, no. 42, pp. 4744-4748, 2010.
[4] Q. Wang et al., "High‐Performance, Phosphorescent, Top‐Emitting Organic Light‐Emitting Diodes with p–i–n Homojunctions," Advanced Functional Materials, vol. 21, no. 9, pp. 1681-1686, 2011.
[5] G. K. Mor, K. Shankar, M. Paulose, O. K. Varghese, and C. A. Grimes, "Use of highly-ordered TiO2 nanotube arrays in dye-sensitized solar cells," Nano letters, vol. 6, no. 2, pp. 215-218, 2006.
[6] J. Lin, Y. Hu, Y. Lv, X. Guo, and X. Liu, "Light gain amplification in microcavity organic semiconductor laser diodes under electrical pumping," Sci. Bull, vol. 62, no. 24, pp. 1637-1638, 2017.
[7] T. H. Maiman, "Stimulated optical radiation in ruby," 1960.
[8] U. H. Bunz, "Poly (p-phenyleneethynylene) s by alkyne metathesis," Accounts of chemical research, vol. 34, no. 12, pp. 998-1010, 2001.
[9] I. D. W. Samuel and G. A. Turnbull, "Organic semiconductor lasers," Chemical reviews, vol. 107, no. 4, pp. 1272-1295, 2007.
[10] F. J. Duarte and L. W. Hillman, "Dye laser principles, with applications," 1990.
[11] N. Tessler, "Lasers based on semiconducting organic materials," Advanced Materials, vol. 11, no. 5, pp. 363-370, 1999.
[12] F. Hide, B. J. Schwartz, M. A. Diaz-Garcia, and A. J. Heeger, "Laser emission from solutions and films containing semiconducting polymer and titanium dioxide nanocrystals," Chemical Physics Letters, vol. 256, no. 4-5, pp. 424-430, 1996.
[13] F. Hide, M. A. Diaz-Garcia, B. J. Schwartz, M. R. Andersson, Q. Pei, and A. J. Heeger, "Semiconducting polymers: a new class of solid-state laser materials," Science, vol. 273, no. 5283, pp. 1833-1836, 1996.
[14] N. Tessler, G. Denton, and R. Friend, "Lasing from conjugated-polymer microcavities," Nature, vol. 382, no. 6593, pp. 695-697, 1996.
[15] M. D. McGehee and A. J. Heeger, "Semiconducting (conjugated) polymers as materials for solid‐state lasers," Advanced Materials, vol. 12, no. 22, pp. 1655-1668, 2000.
[16] M. Zeb et al., "Amplified spontaneous emission and optical gain in organic single crystal quinquethiophene," Crystals, vol. 9, no. 12, p. 609, 2019.
[17] K. Geetha, M. Rajesh, V. Nampoori, C. Vallabhan, and P. Radhakrishnan, "Propagation characteristics and wavelength tuning of amplified spontaneous emission from dye-doped polymer," Applied optics, vol. 45, no. 4, pp. 764-769, 2006.
[18] J.-H. Lin et al., "Plasmonic random lasing and amplified spontaneous emission from donor–acceptor–donor dyes covered biocompatible silk fibroin film," Journal of Materials Chemistry C, vol. 11, no. 14, pp. 4595-4602, 2023.
[19] N. Feng et al., "Light‐Emitting Device Based on Amplified Spontaneous Emission," Laser & Photonics Reviews, p. 2200908, 2023.
[20] L. Lei, Q. Dong, K. Gundogdu, and F. So, "Metal halide perovskites for laser applications," Advanced Functional Materials, vol. 31, no. 16, p. 2010144, 2021.
[21] M. D. McGehee, R. Gupta, S. Veenstra, E. K. Miller, M. A. Diaz-Garcia, and A. J. Heeger, "Amplified spontaneous emission from photopumped films of a conjugated polymer," Physical Review B, vol. 58, no. 11, p. 7035, 1998.
[22] A. Sheridan, G. Turnbull, A. Safonov, and I. Samuel, "Tuneability of amplified spontaneous emission through control of the waveguide-mode structure in conjugated polymer films," Physical Review B, vol. 62, no. 18, p. R11929, 2000.
[23] G. Heliotis, D. D. Bradley, G. A. Turnbull, and I. D. Samuel, "Light amplification and gain in polyfluorene waveguides," Applied Physics Letters, vol. 81, no. 3, pp. 415-417, 2002.
[24] K. Shaklee and R. Leheny, "Direct determination of optical gain in semiconductor crystals," Applied Physics Letters, vol. 18, no. 11, pp. 475-477, 1971.
[25] Y. Sorek, R. Reisfeld, I. Finkelstein, and S. Ruschin, "Light amplification in a dye‐doped glass planar waveguide," Applied physics letters, vol. 66, no. 10, pp. 1169-1171, 1995.
[26] H. Rabbani-Haghighi, S. Forget, S. Chénais, A. Siove, M.-C. Castex, and E. Ishow, "Laser operation in nondoped thin films made of a small-molecule organic red-emitter," Applied Physics Letters, vol. 95, no. 3, 2009.
[27] S. Chénais and S. Forget, "Recent advances in solid‐state organic lasers," Polymer International, vol. 61, no. 3, pp. 390-406, 2012.
[28] J.-C. Ribierre et al., "Low threshold amplified spontaneous emission and ambipolar charge transport in non-volatile liquid fluorene derivatives," Chemical Communications, vol. 52, no. 15, pp. 3103-3106, 2016.
[29] V. T. Mai et al., "Lasing Operation under Long‐Pulse Excitation in Solution‐Processed Organic Gain Medium: Toward CW Lasing in Organic Semiconductors," Advanced Optical Materials, vol. 8, no. 21, p. 2001234, 2020.
[30] O. Inganäs et al., "Optical emission from confined poly (thiophene) chains," Optical Materials, vol. 9, no. 1-4, pp. 104-108, 1998.
[31] R. Xia, G. Heliotis, Y. Hou, and D. D. Bradley, "Fluorene-based conjugated polymer optical gain media," Organic Electronics, vol. 4, no. 2-3, pp. 165-177, 2003.
[32] S. A. Veldhuis et al., "Perovskite materials for light‐emitting diodes and lasers," Advanced materials, vol. 28, no. 32, pp. 6804-6834, 2016.
[33] F. Yuan et al., "High stability and ultralow threshold amplified spontaneous emission from formamidinium lead halide perovskite films," The Journal of Physical Chemistry C, vol. 121, no. 28, pp. 15318-15325, 2017.
[34] L. Lei et al., "Efficient energy funneling in quasi‐2D perovskites: from light emission to lasing," Advanced Materials, vol. 32, no. 16, p. 1906571, 2020.
[35] J. Guo et al., "Pb2+ doped CsCdBr3 perovskite nanorods for pure-blue light-emitting diodes," Chemical Engineering Journal, vol. 427, p. 131010, 2022.
[36] H. Zhu et al., "Lead halide perovskite nanowire lasers with low lasing thresholds and high quality factors," Nature materials, vol. 14, no. 6, pp. 636-642, 2015.
[37] G. Li et al., "Record‐Low‐Threshold Lasers Based on Atomically Smooth Triangular Nanoplatelet Perovskite," Advanced Functional Materials, vol. 29, no. 2, p. 1805553, 2019.
[38] F. Qin et al., "Improved hole injection for CsPbI3 nanocrystals based light-emitting diodes via coevaporation of hole transport layer," Applied Physics Letters, vol. 120, no. 6, 2022.
[39] F. Krieg et al., "Colloidal CsPbX3 (X= Cl, Br, I) nanocrystals 2.0: Zwitterionic capping ligands for improved durability and stability," ACS energy letters, vol. 3, no. 3, pp. 641-646, 2018.
[40] D. Moses, "High quantum efficiency luminescence from a conducting polymer in solution: A novel polymer laser dye," Applied Physics Letters, vol. 60, no. 26, pp. 3215-3216, 1992.
[41] S. Kéna-Cohen and S. Forrest, "Room-temperature polariton lasing in an organic single-crystal microcavity," Nature Photonics, vol. 4, no. 6, pp. 371-375, 2010.
[42] D. Yokoyama, M. Moriwake, and C. Adachi, "Spectrally narrow emissions at cutoff wavelength from edges of optically and electrically pumped anisotropic organic films," Journal of Applied Physics, vol. 103, no. 12, 2008.
[43] P. Andrew, G. A. Turnbull, I. D. Samuel, and W. L. Barnes, "Photonic band structure and emission characteristics of a metal-backed polymeric distributed feedback laser," Applied Physics Letters, vol. 81, no. 6, pp. 954-956, 2002.
[44] M. Baldo, R. Holmes, and S. Forrest, "Prospects for electrically pumped organic lasers," Physical Review B, vol. 66, no. 3, p. 035321, 2002.
[45] N. C. Giebink and S. Forrest, "Temporal response of optically pumped organic semiconductor lasers and its implication for reaching threshold under electrical excitation," Physical Review B, vol. 79, no. 7, p. 073302, 2009.
[46] S. Kéna‐Cohen, S. A. Maier, and D. D. Bradley, "Ultrastrongly Coupled Exciton–Polaritons in Metal‐Clad Organic Semiconductor Microcavities," Advanced Optical Materials, vol. 1, no. 11, pp. 827-833, 2013.
[47] E. Eizner, J. Brodeur, F. Barachati, A. Sridharan, and S. Kéna-Cohen, "Organic photodiodes with an extended responsivity using ultrastrong light–matter coupling," ACS Photonics, vol. 5, no. 7, pp. 2921-2927, 2018.
指導教授 張瑞芬(Jui-Fen Chang) 審核日期 2024-6-26
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明