博碩士論文 110226070 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:31 、訪客IP:3.144.103.205
姓名 歐奕辰(I-Chen Ou)  查詢紙本館藏   畢業系所 光電科學與工程學系
論文名稱 六角晶格排列環狀光子晶體結構研究
(Study of torus photonic crystals arranged in hexagonal lattice)
相關論文
★ 氮化鎵微光學元件之研究★ 二維雙輸入雙輸出光子晶體分光器
★ 矽光波導元件光耗損研究★ 矽晶片波導元件研究
★ 砷化鎵光子晶體共振腔研究★ 應用奈米小球製作之波導模態共振器
★ 光子晶體異常折射之能流研究★ 氮化鎵光子晶體共振腔
★ 分析BATC大視野多色巡天計畫中正常星系的質光比★ 新型中空多模干涉分光器
★ 表面電漿對於半導體發光元件光萃取效率的影響之探討★ 半導體光子晶體雷射之研究
★ 新型中空光波導研製與應用★ 動態波長分配技術在乙太被動光纖網路的應用
★ 禁止頻帶材料的光學與聲波特性研究★ 漸變式光子晶體透鏡研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本論文選擇折射率為3.3的Teflon做為製作波導的材料,我們使用2.5維的圓柱座標有限時域差分法(Finite-Difference-Time-Domain in cylindrical coordinates, CC-FDTD)來加速模擬3維空間中六角晶格排列環狀波導架構中的光場傳播,並探討如何獲得適當參數,使環狀波導產生低發散出射光,最後比較六角晶格排列環狀波導之週期型和Bessel型架構,得到週期型排列有最小的擴散半角1.91°,Bessel型排列有最好的能量傳輸效率6.29%的結果。而在本實驗室的林冠毅同學負責的四方晶格排列環狀波導架構下,週期型架構表現最佳,同時擁有全架構中最小的擴散半角1.38°以及最好的能量傳輸效率27.33%。最後將我們的數據和美國海軍研究實驗室和日本京都大學METLAB的實驗結果比較,得到在未來我們需要將擴散半角縮小至0.06°以下,使其能夠實際應用在MPT(Microwave Power Transmission)技術中的結論。
摘要(英) We have developed a waveguide system consisting of a square-cross-section tori with a hexagonal lattice arrangement in Teflon with a refractive index of 3.3. Using the two-dimensional Finite-Difference Time-Domain (FDTD) method in cylindrical coordinates, we simulate light propagation within this three-dimensional toroidal waveguide structure. In this configuration, the two-dimensional method fully replaces the three-dimensional approach, significantly reducing computational time.
This study also illustrates how to obtain and optimize the parameters necessary for achieving low-divergence output beams from the toroidal waveguide.
In comparing the simulation results of the periodic and Bessel-type configurations of the hexagonal lattice-arranged toroidal waveguide, we find that the periodic configuration achieves the smallest divergence half-angle of 1.91°, while the Bessel-type configuration exhibits the higher energy transmission efficiency of 6.29%.
By contrast, in the square lattice-arranged toroidal waveguide structure handled by Lin Guan Yi from our laboratory, the periodic configuration of the square lattice outperforms all other configurations, achieving both the smallest divergence half-angle of 1.38° and the highest energy transmission efficiency of 27.33%, showing a better performance among the hexagonal and square lattice configurations.
Finally, we compare our data with experimental results from the U.S. Naval Research Laboratory and METLAB at Kyoto University, Japan, concluding that for future applications in Microwave Power Transmission (MPT) technology, the divergence half-angle must be reduced to below 0.06°.
關鍵字(中) ★ 環形波導
★ 微波能量傳輸
★ 太陽能衛星
關鍵字(英) ★ torus waveguide
★ microwave power transmission
★ solar power satellite
論文目次 摘要 i
Abstract ii
致謝 iii
目錄 iv
圖目錄 v
第一章 序論 1
1.1 研究動機 1
1.2 文獻回顧 2
1.3 結論 6
第二章 理論和模擬方法 7
2.1 光子晶體簡介 7
2.2 有限時域差分法 8
2.2.1 卡式座標下的有限時域差分法 8
2.2.2 圓柱座標下的有限時域差分法 12
2.3 Bessel function 17
2.4 結論 19
第三章 環狀波導設計與模擬 20
3.1 架構說明 20
3.2 尋找低發散光可能的條件 27
3.3 週期型架構結果 30
3.4 Bessel架構 34
3.5 結果分析 44
3.6 討論 48
3.7 結論 52
第四章 總結與未來展望 53
4.1 總結 53
4.2 未來展望 54
參考文獻 55
參考文獻 1. Glaser, P.E., Power from the Sun: Its Future. Science, 1968. 162(3856): p. 857-861.
2. Tsai, Y.-L., et al., Optical confinement using a doughnut waveguide. Journal of Physics D: Applied Physics, 2010. 43(24): p. 245103.
3. Brown, W.C., The technology and application of free-space power transmission by microwave beam. Proceedings of the IEEE, 1974. 62(1): p. 11-25.
4. Tsai, Y.-L., et al., Donuts make diffractionless electromagnetic waves. Photonics and Nanostructures - Fundamentals and Applications, 2012. 10(1): p. 9-15.
5. Rodenbeck, C.T., et al., Terrestrial Microwave Power Beaming. IEEE Journal of Microwaves, 2022. 2(1): p. 28-43.
6. Czerwinski, M.G. and J.M. Usoff. Development of the Haystack Ultrawideband Satellite Imaging Radar. 2014.
7. Ozgun, O., et al., PETOOL: MATLAB-based one-way and two-way split-step parabolic equation tool for radiowave propagation over variable terrain. Computer Physics Communications, 2011. 182(12): p. 2638-2654.
8. Takahashi, T., et al. Development of phased array for high accurate microwave power transmission. in 2011 IEEE MTT-S International Microwave Workshop Series on Innovative Wireless Power Transmission: Technologies, Systems, and Applications. 2011.
9. Mano, S. and T. Katagi, A method for measuring amplitude and phase of each radiating element of a phased array antenna. Electronics and Communications in Japan Part I-communications, 1982. 65: p. 58-64.
10. Guo, Y., et al. LEO Satellite-Based Space Solar Power Systems. in 2023 IEEE International Conference on Acoustics, Speech, and Signal Processing Workshops (ICASSPW). 2023.
11. Shinohara, N., Beam Control Technologies With a High-Efficiency Phased Array for Microwave Power Transmission in Japan. Proceedings of the IEEE, 2013. 101(6): p. 1448-1463.
12. Sasaki, S., K. Tanaka, and K.i. Maki, Microwave Power Transmission Technologies for Solar Power Satellites. Proceedings of the IEEE, 2013. 101(6): p. 1438-1447.
13. Rodenbeck, C.T., et al., Microwave and Millimeter Wave Power Beaming. IEEE Journal of Microwaves, 2021. 1(1): p. 229-259.
14. Song, K.D., et al., Preliminary operational aspects of microwave-powered airship drone. International Journal of Micro Air Vehicles, 2019. 11: p. 1756829319861368.
15. Dong, Y., et al., Focused microwave power transmission system with high-efficiency rectifying surface. IET Microwaves, Antennas & Propagation, 2018. 12(5): p. 808-813.
16. Yablonovitch, E., Inhibited Spontaneous Emission in Solid-State Physics and Electronics. Physical Review Letters, 1987. 58(20): p. 2059-2062.
17. John, S., Strong localization of photons in certain disordered dielectric superlattices. Physical Review Letters, 1987. 58(23): p. 2486-2489.
18. Chan, C.-H., et al., Self-assembled free-standing colloidal crystals. Nanotechnology, 2005. 16(9): p. 1440.
19. Kane, Y., Numerical solution of initial boundary value problems involving maxwell′s equations in isotropic media. IEEE Transactions on Antennas and Propagation, 1966. 14(3): p. 302-307.
20. Stratton, J.A., Electromagnetic Theory. 1941, New York: McGraw-Hill. p. 23.
21. Taflove, A. and M.E. Brodwin, Numerical Solution of Steady-State Electromagnetic Scattering Problems Using the Time-Dependent Maxwell′s Equations. IEEE Transactions on Microwave Theory and Techniques, 1975. 23(8): p. 623-630.
22. Taflove, A. and S.C. Hagness, Computational electrodynamics : the finite-difference time-domain method. 2nd / Allen Taflove, Susan C. Hagness. ed. Artech House antennas and propagation library. 2000, Boston: Artech House.
23. 高本慶, 時域有限差分法 = FDTD method / 高本慶編著. 第一版 ed. 1995, 北京市: 國防工業.
24. Fusco, M., FDTD algorithm in curvilinear coordinates (EM scattering). IEEE Transactions on Antennas and Propagation, 1990. 38(1): p. 76-89.
25. Durnin, J., Exact solutions for nondiffracting beams. I. The scalar theory. Journal of the Optical Society of America A, 1987. 4(4): p. 651-654.
26. Khonina, S.N., et al. Bessel Beam: Significance and Applications—A Progressive Review. Micromachines, 2020. 11, DOI: 10.3390/mi11110997.
27. Herman, R.M. and T.A. Wiggins, Production and uses of diffractionless beams. Journal of the Optical Society of America A, 1991. 8(6): p. 932-942.
28. Toit, C.F.d., The numerical computation of Bessel functions of the first and second kind for integer orders and complex arguments. IEEE Transactions on Antennas and Propagation, 1990. 38(9): p. 1341-1349.
29. Kasap, S.O., Optoelectronics and photonics : principles and practices / S.O. Kasap. 2001, Upper Saddle River, NJ: Prentice Hall.
30. 林冠毅, 光電科學研究所碩士論文. 2024: 中央大學.
31. Yang, B., et al., A 5.8-GHz Phased Array System Using Power-Variable Phase-Controlled Magnetrons for Wireless Power Transfer. IEEE Transactions on Microwave Theory and Techniques, 2020. 68(11): p. 4951-4959.
指導教授 陳啟昌(Chii-Chang Chen) 審核日期 2025-1-7
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明