博碩士論文 110226077 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:17 、訪客IP:3.14.12.254
姓名 高行隆(Hsin-Lung Kao)  查詢紙本館藏   畢業系所 光電科學與工程學系
論文名稱 YbYAG薄片雷射與多通放大器開發研究
(Yb:YAG Thin Disk Laser and Multiple-pass Amplifier)
相關論文
★ 以體積全像布拉格光柵為反射鏡之單縱模波長可調式V型共振腔鈦藍寶石固態雷射研究★ 以體積全像布拉格光柵為反射鏡之外腔式半導體雷射研究
★ 已體積布拉格光柵為可調反射率輸出雷射鏡研究★ 以錐形半導體放大器為增益介質、外腔VBG回饋半導體雷射研究
★ 利用楔形稜鏡與繞射光柵設計非光線追跡薄型太陽能集光器★ 以體積布拉格光柵為共振腔反射鏡之有效腔長研究
★ 穩態紅外線LED封裝熱阻量測★ 以體積布拉格光柵作為雷射共振腔內反射鏡之縱向模態研究
★ 以光激發螢光影像量測矽太陽能電池額外載子生命期及串聯電阻分佈之研究★ 以體積布拉格光柵作為雷射共振腔反射鏡之橫模行為研究
★ 鎖相熱影像檢測法用以檢測材料內部缺陷★ 光聲影像顯微術之研究
★ 光激發額外載子於太陽能電池內空間分佈之二維軸對稱與二維線對稱物理參數模擬★ 基於純量繞射理論以遠場聲場重建光聲影像之研究
★ 基於光聲訊號之三維資訊重建★ 以動態模型分析PQ:PMMA作為體積布拉格光柵之繞射效率研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 為了獲得高平均功率同調光,可藉由提升TDL架構的pump laser-TDL光轉換效率或是提高seed從MA架構獲得的增益來達成。以中山大學提供的Yb:YAG樣本作增益介質,通過自行設計的激發腔與晶體散熱系統,本論文初步建立了TDL架構與MA架構。對於TDL架構,其在共振腔長度為270 mm、輸出耦合鏡之曲率半徑與反射率分別為500 mm及95%、晶體濃度為13.3 at%時,藉由50 Hz repetition rate、duty cycle 10%,平均功率43.6 W的pump laser能夠有平均輸出功率為22.68 W,slope efficiency為61.3%,pump laser-TDL光轉換效率52%。對於MA架構,建立了二通放大器,使1040 nm、pulse energy 25.68 nJ的seed光能有1.8倍的增益,驗證了在平均功率12.4 W的pump laser,晶體能有1.55×10^21 (cm^(-3))的雷射上能階電子密度。通過二通放大結果,可推估seed laser pulse energy 2.568 μJ,其中心波長改為1030 nm且FWHM 1nm,能在趟數增加至9趟時有最大輸出能量0.5 J。
摘要(英) To achieve high average power coherent light beam, the pump laser-TDL light transfer efficiency of a TDL system or the gain of a MA system should be enhanced. This research builds up a fundamental TDL system and a MA system, which based on the Yb:YAG samples offered by NSYSU as gain medium with self-designed pump cavity and crystal cooling system. For TDL system, this research shows that a 13.3 at.%, 300 μm Yb:YAG with a 270 mm long resonator which output coupler’s radius of curvature and reflectivity is 500 mm and 95%,respectively, pumped by a 50 Hz repetition rate,duty cycle 10%,average power 43.6 W pump laser, can deliver TDL, which average output power comes to 22.68 W and the slope efficiency is 61.3%, the pump laser-TDL light transfer efficiency is 52%. For MA system, a 2-pass amplifier is built to let a 1040 nm, pulse energy 25.68 nJ seed has a 1.8x amplification, which proves that the upper laser level density should be 1.55×10^21 (cm^(-3)) when pumped by an average power 12.4 W pump laser. By the results of 2-pass amplifier, the simulation shows a 9-pass amplifier can amplify the seed laser, which central wavelength is 1030 nm and FWHM 1 nm , pulse energy 2.568 μJ, to 0.5 J.
關鍵字(中) ★ 薄片雷射
★ 釔鋁石榴石
★ 薄片多通放大器
關鍵字(英) ★ Yb:YAG
★ Thin disk laser
★ Thin disk multiple-pass amplifier
論文目次 摘要 I
ABSTRACT II
致謝 III
目錄 IV
圖目錄 VII
表目錄 X
符號表 XI
第一章 緒論 1
1.1 前言 1
1.2 文獻回顧 1
1.3 研究動機 6
1.4 論文架構 6
第二章 背景知識 8
2.1 TDL與MA基礎架構 8
2.1.1 TDL基礎架構 8
2.1.2 MA基礎架構 9
2.2 Yb:YAG作為增益介質之特性 11
2.2.1 Yb:YAG的吸收與放射光譜及lifetime 11
2.2.2 Yb:YAG熱傳導係數 13
2.3 Yb:YAG TDL與MA的能量轉換 14
2.3.1 吸收與雷射上能階電子產生 14
2.3.2 TDL輸出 16
2.3.3 MA增益 16
2.4 晶體溫度分布 18
2.4.1 熱源 18
2.4.2 散熱系統的幾何與邊界條件 18
2.4.3 TD晶體表面溫度 19
2.5 熱透鏡效應 19
第三章 理論模型之建立與模擬 21
3.1 Pump laser之吸收 21
3.2 晶體溫度 24
3.3 TDL輸出功率 28
3.4 MA增益 30
第四章 TDL系統與架設 37
4.1 Pump laser之光譜與輸出功率 37
4.2 激發系統架構 38
4.2.1 Pump laser至Yb:YAG晶體光學系統 38
4.2.2 Pump cavity光學設計 39
4.3 Yb:YAG晶體及其冷卻系統 41
4.3.1 Yb:YAG晶體 41
4.3.2 Yb:YAG TD的固定與散熱系統 42
4.4 雷射共振腔架構 45
4.5 Yb:YAG TD表面溫度量測與熱透鏡 46
第五章 TDL輸出結果與討論 49
5.1 Pump laser在晶體上之成像 49
5.2 晶體對pump laser之吸收 49
5.3 受共振腔條件影響之雷射行為 51
5.3.1 共振腔長度 51
5.3.2 輸出耦合鏡曲率 52
5.3.3 輸出耦合鏡之反射率 53
5.4 晶體的直徑與摻雜濃度對雷射行為之影響 55
第六章 MA系統與架設 59
6.1 晶體與激發系統 59
6.2 Seed laser 59
6.3 放大系統架構 61
第七章 放大結果與討論 63
7.1 二通放大結果 63
7.2 放大器改進 65
第八章 結論 67
參考文獻 68
參考文獻 1. Patel, C.K.N., Continuous-Wave Laser Action on Vibrational-Rotational Transitions of CO2. Physical Review, 1964. 136(5A): p. A1187-A1193.
2. Maiman, T.H., Stimulated Optical Radiation in Ruby. Nature, 1960. 187(4736): p. 493-494.
3. Hecht, J., Short history of Laser development. Applied optics, 2010. 49: p. F99-122.
4. Geusic, J.E., H.M. Marcos, and L.G. Van Uitert, Laser Oscillations in Nd-DOPED Yttrium Aluminum, Yttrium Gallium and Gadolinium Garnets. Applied Physics Letters, 1964. 4: p. 182-184.
5. Kay, R.B., et al., Derivation of the Frantz-Nodvik Equation for Diode-Side-Pumped Zigzag Slab Laser Amplifiers With Gaussian Laser Mode and Pump Beam Shapes. IEEE Journal of Quantum Electronics, 2011. 47(5): p. 745-749.
6. Giesen, A., et al., Scalable concept for diode-pumped high-power solid-state lasers. Applied Physics B, 1994. 58(5): p. 365-372.
7. Speiser, J., Thin disk lasers: history and prospects. 2016. 98930L.
8. Saravani, M., A.F.M. Jafarnia, and M. Azizi, Effect of heat spreader thickness and material on temperature distribution and stresses in thin disk laser crystals. Optics & Laser Technology, 2012. 44(4): p. 756-762.
9. Uusikallio, S., et al., Determination of effective heat transfer coefficient for water spray cooling of steel. Procedia Manufacturing, 2020. 50: p. 488-491.
10. Radmard, S., A. Moshaii, and K. Pasandideh, 400 W average power Q-switched Yb:YAG thin-disk-laser. Scientific Reports, 2022. 12(1): p. 16918.
11. Huang, Y., et al., A multi-pass pumping scheme for thin disk lasers with good anti-disturbance ability. Optics Express, 2015. 23.
12. Yingnan Peng, Z.W., Dehua Li, Jiangfeng Zhu, Zhiyi Wei, A 12.1-W SESAM mode-locked Yb:YAG thin disk laser. Chin. Phys. B, 2016. 25(5): p. 54205-054205.
13. Dai, L., et al., High-efficiency, high-repetition-rate cavity-dumped Q-switched Yb:YAG thin-disk laser based on a 72-pass pump module. Optics Express, 2022. 30.
14. Negel, J.-P., et al., Ultrafast thin-disk multipass laser amplifier delivering 1.4 kW (4.7 mJ, 1030 nm) average power converted to 820 W at 515 nm and 234 W at 343 nm. Optics Express, 2015. 23(16): p. 21064-21077.
15. Koerner, J., et al., Measurement of temperature-dependent absorption and emission spectra of Yb:YAG, Yb:LuAG, and Yb:CaF2 between 20°C and 200°C and predictions on their influence on laser performance. Journal of the Optical Society of America B, 2012. 29(9): p. 2493-2502.
16. Lin, Z., et al., Amplified spontaneous emission model of thin disk laser with nonuniform temperature distribution. Journal of the Optical Society of America B, 2017. 34(3): p. 625-632.
17. Yang, P., P. Deng, and Z. Yin, Concentration quenching in Yb:YAG. Journal of Luminescence, 2002. 97(1): p. 51-54.
18. Cardinali, V., et al., Determination of the thermo-optic coefficient dn/dT of ytterbium doped ceramics (Sc2O3, Y2O3, Lu2O3, YAG), crystals (YAG, CaF2) and neodymium doped phosphate glass at cryogenic temperature. Optical Materials, 2012. 34(6): p. 990-994.
19. Koechner, W., Solid-State Laser Engineering. 6 ed. Springer Series in Optical Sciences. 2006: Springer New York, NY.
20. Furuse, H., R. Yasuhara, and K. Hiraga, Thermo-optic properties of ceramic YAG at high temperatures. Optical Materials Express, 2014. 4.
21. Paschotta, R., Gradient-index Lenses, in RP Photonics Encyclopedia.
22. Vlasova, S., et al., Investigation of temperature dependence of radiation from semiconductor lasers and light emitting diodes. IOP Conference Series: Earth and Environmental Science, 2020. 539(1): p. 012137.
23. Wendelstorf, J., K.H. Spitzer, and R. Wendelstorf, Spray water cooling heat transfer at high temperatures and liquid mass fluxes. International Journal of Heat and Mass Transfer, 2008. 51(19): p. 4902-4910.
24. Fukuda, M., et al., Temperature and current coefficients of lasing wavelength in tunable diode laser spectroscopy. Applied Physics B, 2010. 100(2): p. 377-382.
25. Nagisetty, S., et al., Lasing and thermal characteristics of Yb:YAG/YAG composite with atomic diffusion bonding. Laser Physics Letters, 2017. 14: p. 015001.
26. Lin, G.-T., Research on the Crystal Growth and Properties of Yb:Y3Al5O12 Grown by Czochralski Pulling Technique. 2023, Department of Materials and Optoelectronic Science,NSYSU. p. 61.
指導教授 鍾德元(Te-yuan Chung) 審核日期 2024-12-16
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明