參考文獻 |
1. Patel, C.K.N., Continuous-Wave Laser Action on Vibrational-Rotational Transitions of CO2. Physical Review, 1964. 136(5A): p. A1187-A1193.
2. Maiman, T.H., Stimulated Optical Radiation in Ruby. Nature, 1960. 187(4736): p. 493-494.
3. Hecht, J., Short history of Laser development. Applied optics, 2010. 49: p. F99-122.
4. Geusic, J.E., H.M. Marcos, and L.G. Van Uitert, Laser Oscillations in Nd-DOPED Yttrium Aluminum, Yttrium Gallium and Gadolinium Garnets. Applied Physics Letters, 1964. 4: p. 182-184.
5. Kay, R.B., et al., Derivation of the Frantz-Nodvik Equation for Diode-Side-Pumped Zigzag Slab Laser Amplifiers With Gaussian Laser Mode and Pump Beam Shapes. IEEE Journal of Quantum Electronics, 2011. 47(5): p. 745-749.
6. Giesen, A., et al., Scalable concept for diode-pumped high-power solid-state lasers. Applied Physics B, 1994. 58(5): p. 365-372.
7. Speiser, J., Thin disk lasers: history and prospects. 2016. 98930L.
8. Saravani, M., A.F.M. Jafarnia, and M. Azizi, Effect of heat spreader thickness and material on temperature distribution and stresses in thin disk laser crystals. Optics & Laser Technology, 2012. 44(4): p. 756-762.
9. Uusikallio, S., et al., Determination of effective heat transfer coefficient for water spray cooling of steel. Procedia Manufacturing, 2020. 50: p. 488-491.
10. Radmard, S., A. Moshaii, and K. Pasandideh, 400 W average power Q-switched Yb:YAG thin-disk-laser. Scientific Reports, 2022. 12(1): p. 16918.
11. Huang, Y., et al., A multi-pass pumping scheme for thin disk lasers with good anti-disturbance ability. Optics Express, 2015. 23.
12. Yingnan Peng, Z.W., Dehua Li, Jiangfeng Zhu, Zhiyi Wei, A 12.1-W SESAM mode-locked Yb:YAG thin disk laser. Chin. Phys. B, 2016. 25(5): p. 54205-054205.
13. Dai, L., et al., High-efficiency, high-repetition-rate cavity-dumped Q-switched Yb:YAG thin-disk laser based on a 72-pass pump module. Optics Express, 2022. 30.
14. Negel, J.-P., et al., Ultrafast thin-disk multipass laser amplifier delivering 1.4 kW (4.7 mJ, 1030 nm) average power converted to 820 W at 515 nm and 234 W at 343 nm. Optics Express, 2015. 23(16): p. 21064-21077.
15. Koerner, J., et al., Measurement of temperature-dependent absorption and emission spectra of Yb:YAG, Yb:LuAG, and Yb:CaF2 between 20°C and 200°C and predictions on their influence on laser performance. Journal of the Optical Society of America B, 2012. 29(9): p. 2493-2502.
16. Lin, Z., et al., Amplified spontaneous emission model of thin disk laser with nonuniform temperature distribution. Journal of the Optical Society of America B, 2017. 34(3): p. 625-632.
17. Yang, P., P. Deng, and Z. Yin, Concentration quenching in Yb:YAG. Journal of Luminescence, 2002. 97(1): p. 51-54.
18. Cardinali, V., et al., Determination of the thermo-optic coefficient dn/dT of ytterbium doped ceramics (Sc2O3, Y2O3, Lu2O3, YAG), crystals (YAG, CaF2) and neodymium doped phosphate glass at cryogenic temperature. Optical Materials, 2012. 34(6): p. 990-994.
19. Koechner, W., Solid-State Laser Engineering. 6 ed. Springer Series in Optical Sciences. 2006: Springer New York, NY.
20. Furuse, H., R. Yasuhara, and K. Hiraga, Thermo-optic properties of ceramic YAG at high temperatures. Optical Materials Express, 2014. 4.
21. Paschotta, R., Gradient-index Lenses, in RP Photonics Encyclopedia.
22. Vlasova, S., et al., Investigation of temperature dependence of radiation from semiconductor lasers and light emitting diodes. IOP Conference Series: Earth and Environmental Science, 2020. 539(1): p. 012137.
23. Wendelstorf, J., K.H. Spitzer, and R. Wendelstorf, Spray water cooling heat transfer at high temperatures and liquid mass fluxes. International Journal of Heat and Mass Transfer, 2008. 51(19): p. 4902-4910.
24. Fukuda, M., et al., Temperature and current coefficients of lasing wavelength in tunable diode laser spectroscopy. Applied Physics B, 2010. 100(2): p. 377-382.
25. Nagisetty, S., et al., Lasing and thermal characteristics of Yb:YAG/YAG composite with atomic diffusion bonding. Laser Physics Letters, 2017. 14: p. 015001.
26. Lin, G.-T., Research on the Crystal Growth and Properties of Yb:Y3Al5O12 Grown by Czochralski Pulling Technique. 2023, Department of Materials and Optoelectronic Science,NSYSU. p. 61. |