博碩士論文 110256016 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:48 、訪客IP:3.145.162.15
姓名 吳健綺(Chien-Chi Wu)  查詢紙本館藏   畢業系所 光電科學與工程學系
論文名稱 非對稱環形共振腔耦合與品質因子控制
(Coupling and Quality Factor Control of Asymmetric Ring Resonators)
相關論文
★ 電子束曝光製程氮化矽微環型共振腔之研究分析★ 以Groove-first 製程步驟製作U型槽與波導
★ 氮化矽微環形共振腔模擬與傳統紫外光製程之研究★ 微環形共振腔非線性效應與壓縮光之研究
★ 以可重構之SU-8聚合物披覆層對氮化矽微環形共振腔進行色散調製★ 利用傳統光學微影和i-line紫外光微影製作氮化矽微共振腔
★ 錐形波導設計對氮化矽微環形共振腔耦合效應研究★ 耦合共振腔光波導頻寬優化研究
★ 高功率脈衝磁控濺鍍氮化鎵環形共振腔製程之研究★ 以原子層沉積披覆層及飛秒雷射退火對氮化矽微環形共振腔進行表面改質研究
★ 低限制氮化矽波導之高品質因子微環形共振腔製程研究★ 氮化矽微環型干涉儀製程與穿透頻譜調製
★ 6 吋晶圓製程整合 奈米光學應用和均勻性分析研究★ 微環形共振腔耦合馬赫曾德爾干涉儀之研究
★ 雙重曝光氮化矽環形共振腔製作與熱效應調製★ 奈米壓印製作環形共振腔之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 隨著AI與數據中心的增加,資料傳輸的密度也隨之提升,此時選用矽光晶片成為一個優選方案。矽光晶片的優勢在於比電訊號擁有更大的頻寬,且更為節能。在製程方面,由於元件的物理特性,在量產製程大多使用i-line或DUV即可製作。為了能同時傳輸多組波長訊號以增加通訊密度,矽光晶片中的波長分波多工(Wavelength Division Multiplexing, WDM)系統變得至關重要。矽光晶片中的WDM系統通常使用馬赫曾德爾干涉儀(Mach-Zehnder interferometer, MZI)或環形共振腔作為多工器(Multiplexer, MUX)或解多工器(Demultiplexer, DEMUX)器件。環形共振腔本身擁有高密度佈局與窄雷射線寬的優勢,因此本論文將環形共振腔作為研究元件。由於WDM系統中的最窄通道間距僅25GHz (0.2nm),環形共振腔如果產生過多的模態或過寬的波長線寬,都會導致訊號之間發生干擾。
為此,本論文展示了使用非對稱環形共振腔達成高階模態抑制及相對較高的本質品質因子結構設計。當中也驗證了在不改變直波導與環形波導間距下如何提高元件耦合係數。理論分析表明,如果要獲得較高的多模抑制能力,縮小環形波導的寬度是最直接的方法,但這也會間接增加散射損耗。若要獲得較高的品質因子,就必須增加環寬,減少模態與波導側壁的交互作用,但這同時也會導致波導中存在高階模態。
為了實現最佳的性能平衡,本研究探討了非對稱環寬設計對元件性能的影響。首先本論文透過RSoft FullWAVE FDTD 模擬設計出了1μm至3μm做漸進變化的非對稱環型波導,其中也包含了對照組的設計,分別為1μm均勻環寬波導及3μm均勻環寬波導。這些設計均選用氮化矽材料來製作波導結構。經量測實驗後, 數據顯示出本質品質因子的趨勢為3μm環寬 > 非對稱環 > 1μm環寬。結果顯示,非對稱環寬結構在保持高階模態抑制的同時,也實現了比1μm環寬更高的本質品質因子,證明了此設計在多模態抑制與本質品質因子之間的良好平衡。此外,本論文也實現透過調整環波導結構,使非對稱環型共振腔接近於臨界耦合。
摘要(英) With the increasing prevalence of AI and data centers, data transmission density has also risen, making silicon photonics an optimal choice. Silicon photonics offer greater bandwidth than electrical signals and are more energy-efficient. In terms of fabrication, due to the physical characteristics of the components, production processes mostly utilize i-line or DUV lithography for mass production. The Wavelength Division Multiplexing (WDM) systems within silicon photonics become crucial for transmitting multiple wavelength signals simultaneously to enhance communication density. Typically, WDM systems in silicon photonics employ Mach-Zehnder interferometers (MZI) or ring resonators as multiplexers or demultiplexers. The ring resonators themselves benefit from high-density integration and narrow linewidths, making them ideal for this study.

This thesis focuses on utilizing asymmetric ring resonators to achieve high-order mode suppression and higher intrinsic quality factor (Qi-factor) structural design. It also verifies how to enhance the coupling coefficient of components without altering the gap between straight waveguides and ring waveguides. Theoretical analysis indicates that narrowing the width of the ring waveguide is the most direct method to achieve better multi-mode suppression, albeit at the cost of increased scattering losses. Conversely, to achieve higher Qi-factors, widening the ring reduces interactions between modes and waveguide sidewalls, though this may induce higher-order modes into the waveguide.

To achieve an optimal balance of performance, this research investigates the impact of asymmetric ring width designs on component performance. The paper initially designs asymmetric ring waveguides ranging from 1μm to 3μm with gradual variation using RSoft FullWAVE FDTD simulations. Uniform ring counterparts are also included for comparison: a 1μm uniform ring width waveguide and a 3μm uniform ring width waveguide, all fabricated using silicon nitride material. Experimental measurements indicate that the trend in intrinsic Q-factor is 3μm uniform ring > Asymmetric > 1μm uniform ring. The results demonstrate that asymmetric ring width structures achieve a higher Qi-factor than 1μm uniform ring designs while maintaining effective suppression of higher-order modes, highlighting a favorable balance between multi-mode suppression and Qi-factor.

Additionally, this thesis also demonstrates that by adjusting the ring waveguide structure, the asymmetric ring resonator can be brought close to critical coupling.
關鍵字(中) ★ 矽光子
★ 非對稱環形共振腔
★ 絕熱環形共振腔
★ 環型諧振器
★ 環形共振腔
★ I-line 步進微影
★ 光波導
★ 積體光學
關鍵字(英) ★ Silicon photonics
★ Asymmetric ring resonator
★ Adiabatic ring resonator
★ I-line stepper lithography
★ Optical waveguide
論文目次 摘要 IV
ABSTRACT V
致謝 VI
目錄 VII
圖目錄 IX
表目錄 XII
第一章 緒論 1
1-1矽積體光路 1
1-2氮化矽波導平台 4
1-3研究動機 5
1-4論文架構 6
第二章 環形共振腔理論與模擬 8
2-1 光波導傳遞機制 8
2-2 環形共振腔之品質因子與群速度色散 9
2-2-1 品質因子與傳輸頻譜 11
2-2-2 光波導群速度色散 13
2-3 模擬工具介紹 17
2-3-1 時域有限差分法(Finite-Difference-Time-Domain, FDTD) 17
2-3-2 有限元素法(Finite Element Method, FEM) 20
2-4 氮化矽波導寬度與波導側壁斜度模態關係 21
2-4-1 氮化矽波導側壁斜度與模態關係 25
2-5 環型共振腔之場型與品質因子模擬 27
2-6 氮化矽環型共振腔之耦合分析 33
2-7 氮化矽環型共振腔之光罩設計 38
第三章 環形共振腔製程與量測 39
3-1 製程開發流程 39
3-2 二氧化矽隔絕製程 40
3-3 薄膜沉積製程 41
3-4 波導元件微影製程 42
3-5 波導元件蝕刻製程 45
第四章 環形共振腔量測分析 47
4-1 穿透頻譜量測架構 47
4-2 環形共振腔本質品質因子及耦合分析 48
4-2-1 包覆層之品質因子影響 48
4-2-2 環波導結構對品質因子及模態的影響 50
4-2-3 環波導結構對耦合係數影響 53
4-2-4 環波導之群速度色散量測 57
第五章 結論與展望 60
參考文獻 61
參考文獻 [1] Siew, S. Y. Li, B. Gao, F. Zheng, H. Y. Zhang, "Review of Silicon Photonics Technology and Platform Development , "Journal of Lightwave Technology., Jul.01, 4374-4389 (2021).
[2] Bashir, Janibul Peter, Eldhose Sarangi, Smruti R. , "A Survey of On-Chip Optical Interconnects , "Acm Computing Surveys., Jan.28, 34 (2019).
[3] Cho, H Kapur, P Saraswat, KC, "Power comparison between high-speed electrical and optical interconnects for interchip communication, "Journal of Lightwave Technology., June.09, 2021-2033 (2004).
[4] N. Savage, "Linking with light [high-speed optical interconnects] , "IEEE., August., 32 – 36 (2002).
[5] Stojanovic, Vladimir Ram, Rajeev J. Popovic, "Monolithic silicon-photonic platforms in state-of-the-art CMOS SOI processes Invited, "Optics Express.,May.14, (2018).
[6] Yao, Chunhui Chen, Minjia Yan, Ting Ming, "Broadband picometer-scale resolution on-chip spectrometer with reconfigurable photonics, "Light-Science & Applications., Jun.25, 156 (2023).
[7] Archana Kaushalram1,Gopalkrishna Hegde,Srinivas Talabattula, "Mode hybridization analysis in thin flm lithium niobate strip multimode waveguides, "Scientific Reports., October.07, 16692 (2020).
[8] Meisam Bahadori,Mahdi Nikdast,Member, "Universal Design of Waveguide Bends in Silicon-on-Insulator Photonics Platform, "IEEE., July.01, 3044 – 3054 (2019).
[9] Pei-Hsun Wang,Nien-Lin Hou,Kung-Lin Ho, "Dispersion Engineering of Waveguide Microresonators by the Design of Atomic Layer Deposition, "Photonics., April.09, 428 (2023).
[10] Jared C. Mikkelsen,Wesley D. Sacher,Joyce K. S. Poon, "Adiabatically widened silicon microrings for improved variation tolerance, "Optics Express., April.15, 9659-9666 (2014).
[11] Youngseop Lee1,Hao F. Zhang1,Cheng Sun, "Highly sensitive ultrasound detection using nanofabricated polymer micro-ring resonators, "Nano Convergence., June.20,30 (2023).
[12] Chin-Hui Chen, Cheng Li, Rui Bai, "DWDM silicon photonic transceivers for optical interconnect, "IEEE., June.01,52-53 (2015).
[13] Po Dong1, Wei Qian1, Hong Liang, "Low power and compact reconfigurable multiplexing devices based on silicon microring resonators, " Optics Express., May.10, 9852-9858 (2010).
[14] Myungjin Shin, Y. Ban, B. Yu, "A Linear Equivalent Circuit Model for Depletion-Type Silicon Microring Modulators, "IEEE., Jan.27, 1140-1145 (2017).
[15] David Patel, Venkat Veerasubramanian, Samir Ghosh, "High-speed compact silicon photonic Michelson interferometric modulator, " Optics Express., Nov.03, 26794-26808 (2014).
[16] Fangchen Hu, Yuguang Zhang, Hongguang Zhang, "300-Gbps optical interconnection using neural-network based silicon microring modulator, "Communications Engineering., Sep.23, 67 (2023).
[17] Hasitha Jayatilleka, Harel Frish, Ranjeet Kumar, "Post-Fabrication Trimming of Silicon Photonic Ring Resonators at Wafer-Scale, " Journal of lightwave technology., May.25, 5083-5088 (2021).
[18] Padmaraju, K, Bergman, K, "Resolving the thermal challenges for silicon microring resonator devices, " Nanophotonics .,Aug.01, 269-281 (2014).
[19] Jie Sun, Ranjeet Kumar, Meer Sakib, "A 128 Gb/s PAM4 Silicon Microring Modulator With Integrated Thermo-Optic Resonance Tuning, " Journal of Lightwave Technology., Oct.36, 110-115 (2018).
[20] S. Y. Siew, B. Li, F. Gao, H. Y. Zheng, "Review of Silicon Photonics Technology and Platform Development, " Journal of Lightwave Technology., Jul.01, 4374-4389 (2021).
[21] H. H. Li, "Refractive index of silicon and germanium and its wavelength and temperature derivatives, "AIP Publishing., Jul.01, 561–658 (1980).
[22] Lin Zhang, Anuradha M. Agarwal, Lionel C. Kimerling, "Nonlinear Group IV photonics based on silicon and germanium: from near-infrared to mid-infrared, "Nanophotonics., Aug.01, 247-268 (2014).
[23] Kazuhiro Ikeda, Keijiro Suzuki, Ryotaro Konoike, "Large-scale silicon photonics switch based on 45-nm CMOS technology, "Optics communications., Jul.01, 125677 (2020).
[24] Günther Roelkens, Dries Van Thourhout, "Interfacing Silicon Nanophotonic Integrated Circuits and Single-Mode Optical Fibers with Diffraction Gratings, "Springer international publishing AG., Jan.01, 71-94 (2010).
[25] Amy SK Tong,Doris KT Ng,Roshan Kanhirakkottil, "Material characterization of silicon dioxide cladding for photonic devices, "SPIE., Mar.15,12887 (2024).
[26] Hongpeng Shang, Degui Sun, Peng Yu, "Investigation for Sidewall Roughness Caused Optical Scattering Loss of Silicon-on-Insulator Waveguides with Confocal Laser Scanning Microscopy, " MDPI., Mar.04,236 (2020).
[27] Anton Buchberger, Jozef Pulko, Deborah Morecroft, "Modelling Propagation Loss of PECVD Silicon Nitride Strip Waveguides: Evaluation and Assessment of Width Dependency, "IEEE., Oct.29, (2021).
[28] Nobuo Suzuki, "FDTD Analysis of Two-Photon Absorption and Free-Carrier Absorption in Si High-Index-Contrast Waveguides, "Journal of Lightwave Technology., Sep.04, 2495 – 2501 (2007).
[29] Sebastian Romero-García, Florian Merget, Frank Zhong, Hod Finkelstein, "Silicon nitride CMOS-compatible platform for integrated photonics applications at visible wavelengths, " Optics Express.,Jun.17, 14036-14046 (2013).
[30] Frederic Gardes, Afrooz Shooa, Greta De Paoli , "A Review of Capabilities and Scope for Hybrid Integration Offered by Silicon-Nitride-Based Photonic Integrated Circuits, "MDPI.,Jun.01,4227 (2022).
[31] Lin Zhang, Anuradha M. Agarwal, Lionel C. Kimerling , "Generation of two-cycle pulses and octave-spanning frequency combs in a dispersion-flattened micro-resonator , "Optics letters., Dec.01, 5122-5125 (2013).
[32] Deshui Yu, Frank Vollmer, Pascal Del’Haye , "Proposal for a hybrid clock system consisting of passive and active optical clocks and a fully stabilized microcomb , " Optics Express.,Feb.13, 6228-6240 (2023).
[33] Anthony Rizzo, Stuart Daudlin, Asher Novick, "Petabit-Scale Silicon Photonic Interconnects With Integrated Kerr Frequency Combs, "IEEE journal of selected topics in quantum electronics.,Jan., (2023).
[34] Stanley Cheung, Yuan Yuan, Yiwei Peng, "Demonstration of a 17 × 25 Gb/s Heterogeneous III-V/Si DWDM Transmitter Based on (De-) Interleaved Quantum Dot Optical Frequency Combs, "IEEE., Jan.27, 1140-1145 (2017).
[35] Hasitha Jayatilleka, Kyle Murray, Michael Caverley, "Crosstalk in SOI Microring Resonator-Based Filters, " IEEE., Sep.18, 2886-2896 (2015).
[36] Jinan Nijem, Alex Naiman, Roy Zektzer, "High-Q and high finesse silicon microring resonator, "Optics Express., Feb.26, 7896-7906 (2024).
[37] Kuan Pei Yap, AndrÉ Delage, Jean Lapointe, "Correlation of Scattering Loss, Sidewall Roughness and Waveguide Width in Silicon-on-Insulator (SOI) Ridge Waveguides, "Journal of Lightwave Technology., April.28, 3999 - 4008 (2009).
[38] Guozhen Liang, Heqing Huang, Aseema Mohanty, "Robust, efficient, micrometre-scale phase modulators at visible wavelengths, "nature photonics., Nov.30, 908-913 (2021).
[39] Ruifei Li, Linjie Zhou, Jingya Xie, "Optimization of adiabatic microring resonators with few-mode and high-Q resonances, "Applied Optics., Nov.30, 10207-10212 (2015).
[40] Jinan Nijem, Alex Naiman, Roy Zektzer, "High-Q and high finesse silicon microring resonator, "Optics Express., Feb.20, 7896-7906 (2024).
[41] Zhan Su, Ehsan S. Hosseini, Erman Timurdogan, "Reduced wafer-scale frequency variation in adiabatic microring resonators, "IEEE., Aug.28, (2014).
[42] Jared C. Mikkelsen, Wesley D. Sacher, Joyce K. S. Poon, "Adiabatically widened silicon microrings for improved variation tolerance, "Optics Express., Apr.15, 9659-9666 (2014).
[43] Graham T. Reed, Andrew P. Knights, "Silicon Photonics: An Introduction, "John Wiley & Sons, Ltd., Jan.23, 12-14 (2004).
[44] Edwin Edser A.R.C.S., Edgar Senior, "The diffraction of light from a dense to a rarer medium, when the angle of incidence exceeds its critical value, "Philosophical Magazine., Apr.15, 346-352 (2009).
[45] Wim Bogaerts, Peter De Heyn, Thomas Van Vaerenbergh, "Silicon microring resonators, "Laser & photonics reviews.,Jan., 47-73 (2012).
[46] Shijun Xiao, Maroof H. Khan, Hao Shen and Minghao, "Modeling and measurement of losses in silicon-on-insulator resonators and bends, " Optics Express., Aug.20, 10553-10561 (2007).
[47] Iosif Demirtzioglou, Cosimo Lacava, Kyle R. H. Bottrill, "Frequency comb generation in a silicon ring resonator modulator, " Optics Express.,Jan.22, 790-796 (2018).
[48] Clifford R. Pollock and Michal Lipson, "Integrated Photonics, " Springer New York., NY, Nov.30, 125-144 (2013).
[49] "https://www.fiberoptics4sale.com/blogs/wave-optics/phase-velocity-group-velocity-and-dispersion"
[50] S. Fujii and T. Tanabe, "Dispersion engineering and measurement of whispering gallery mode microresonator for Kerr frequency comb generation, " Nanophotonics., May. 01, 1087-1104 (2020).
[51] Xiaoxiao Xue*, Minghao Qi, and Andrew M. Weiner, "Normal-dispersion microresonator Kerr frequency combs, " Nanophotonics., June. 17, 244–262 (2016).
[52] Heming Wang, Yu-Kun Lu, Lue Wu, Dong Yoon Oh, "Dirac solitons in optical microresonators, " Science & Applications volume., December. 23, 205 (2020).
[53] K.S. Yee, "Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media, " IEEE Trans. Antennas Propagat., AP-14, 302 (1966).
[54] R. L. Courant, "Variational methods for the solution of problems of equilibrium and vibration, " Bull. Am. Math. Soc., vol. 49, 1–23 (1943).
[55] Olaf T. A. Janssen, "Rigorous simulations of emitting and non-emitting nano-optical structures, " Ipskamp., Nov-9, (2010).
[56] Hasitha Jayatilleka, Kyle Murray, Michael Caverley, "Crosstalk in SOI Microring Resonator-Based Filters, "Journal of Lightwave Technology., June. 15, 2886 – 2896 (2016).
[57] D. Dai, J. Bowers, "Novel concept for ultracompact polarization splitter-rotator based on silicon nanowires, " Optics Express., May. 23, 10940-10949 (2011).
[58] Martin Sinclair, Kevin Gallacher, Marc Sorel, "1.4 million Q factor Si3N4 micro-ring resonator at 780 nm wavelength for chip-scale atomic systems, "Optics Express., Jan. 29, 4010-4020 (2020).
[59] Zhaoyi Li, Zuowen Fan, Jingjie Zhou, "Process Development of Low-Loss LPCVD Silicon Nitride Waveguides on 8-Inch Wafer, "MDPI., Mar.13, 3660 (2022).
[60] Kevin Luke, Yoshitomo Okawachi, Michael R. E. Lamont, "Broadband mid-infrared frequency comb generation in a Si3N4 microresonator, "Optics Letters., Oct.19, 4823-4826 (2015).
[61] Po Dong, Ting-Chen Hu, Tsung-Yang Liow, "Novel integration technique for silicon/III-V hybrid laser, "Optics Express., Oct.21, 26854-26861 (2014).
[62] Xingchen Ji, Samantha Roberts, Mateus Corato-Zanarella, "Methods to achieve ultra-high quality factorsilicon nitride resonators, "APL Photonics., Jul.12, 071101 (2021).
[63] Gerhard K. Ackermann, Jürgen Eichler, "Holography. A Practical Approach, "Wiley-VCH.,Jun.01, 298 (2007).
指導教授 王培勳(Pei-Hsun Wang) 審核日期 2024-7-29
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明