參考文獻 |
[1] 中華民國大地工程學會,建築物基礎構造設計規範,中華民國大地工程學會(2001)。
[2] 中華民國內政部營建署,建築技術規則,中華民國內政部營建署(2008)。
[3] 李崇正,「離心模型試驗在大地工程之應用」,地工技術,第36集,第76-91頁(1991)。
[4] 李崇正,「模型試驗在大地工程教學的應用」,土木水利,第30卷,第4期,第89-92頁(2003)。
[5] 李錫堤、康耿豪、鄭錦桐、廖啟雯,「921集集大地震之地表破裂及地盤變形現象」,地工技術,第81期,第5-16頁(2000)。
[6] 張徽正、林啟文、陳勉銘、盧詩丁,「臺灣活動斷層分布圖說明書」,經濟部中央地質調查所特刊,第10號(1998)。
[7] 林啟文、劉彥求、周稟珊、林燕慧,「臺灣活動斷層調查的近期發展」,經濟部中央地質調查所彙刊,第34號,第1-40頁(2021)。
[8] 林啟文、陳文山、饒瑞鈞,「台灣活動斷層調查地近期發展」,經濟部中央地質調查所特刊,第18號,第85-110頁(2007)。
[9] 林銘郎、李崇正、黃文正、黃文昭,「活動斷層近地表變形特性研究」,經濟部中央地質調查所報告,第9號,臺北,臺灣(2011)。
[10] 洪汶宜、李崇正、張有毅、黃文昭、黃文正、林銘郎、林燕慧,「以離心模型試驗探討正逆斷層引致的地表變形與剪裂帶發展」,經濟部中央地質調查所特刊,第28號,第129-151頁(2014)。
[11] 盧詩丁、陳柏村、許晉瑋,「臺灣活動斷層研究及未來發展」,大地技師,第15期,第14-25頁(2017)。
[12] 張有毅,「以離心模型試驗及個別元素法評估正斷層和逆斷層錯動地表及地下變形」,博士論文,國立中央大學土木工程學系,桃園,臺灣(2013)。
[13] 張庭傑,「以離心模型模擬正斷層及逆斷層通過複合土層引致的地表變形特性」,碩士論文,國立中央大學土木工程學系,桃園,臺灣(2014)。
[14] 楊宗翰,「具不同上部結構之樁基礎受振行為」,碩士論文,國立中央大學土木工程學系,桃園,臺灣(2014)。
[15] 鍾春富,「逆斷層錯動引致上覆土層變形行為及對結構物影響之研究」,博士論文,國立臺灣大學土木工程學系,臺北,臺灣(2007)。
[16] 鍾承哲,「斷層錯動引致地表構造物與管線位移之模擬」,碩士論文,國立中央大學土木工程學系,桃園,臺灣(2021)。
[17] Ahmadi, M., Moosavi, M., and Jafari, M. K., “Experimental investigation of reverse fault rupture propagation through wet granular soil,” Engineering Geology, Vol. 239, pp. 229-240 (2018).
[18] Ashtiani, M., Ghalandarzadeh, A., and Towhata, I., “Centrifuge modeling of shallow embedded foundations subjected to reverse fault rupture,” Canadian Geotechnical Journal, Vol. 53, No. 3, pp. 505-519 (2016).
[19] Bieniawski, Z. T., “The design process in rock engineering,” Rock Mechanics and Rock Engineering, Vol. 17, pp. 183-190 (1984).
[20] Bjerrum, I., “Allowable Settlement of Structures,” Proceedings of European Conf. on Soil Mech. and Found. Eng., Weisbaden, Germany, Vol. 2, pp. 35-137 (1963).
[21] Bonilla, M. G., “Evaluation of potential surface faulting and other tectonic deformation,” U.S. Geological Survey, Open-File Report 82-732 (1982).
[22] Bransby, M. F., Davies, M. C. R., and Nahas, A. El., “Centrifuge modeling of normal fault-foundation interaction,” Bulletin of Earthquake Engineering, Vol. 6, pp. 585-605 (2008a).
[23] Bransby, M. F., Davies, M. C. R., and Nahas, A. El., “Centrifuge modeling of reverse fault-foundation interaction,” Bulletin of Earthquake Engineering, Vol. 6, pp. 607-628 (2008b).
[24] Bray, J. D., Seed, R. B., Cluff, L. S., and Seed, H. B., “Earthquake fault rupture propagation through soil,” Journal of Geotechnical Engineering, Vol. 120, No. 3, pp.543–561 (1994).
[25] Bray, J. D., Seed, R. B., and Seed, H. B., “Analysis of earthquake fault ruptures propagation through cohesive soil,” Journal of geotechnical engineering, Vol. 120, pp. 562-580 (1994b).
[26] Chen, W. S., Lee, K. J., Lee, L. S., Streig, A. R., Rubin, C. M., Chen, Y. G., Yang, H. C., Chang, H. C., and Lin, C. W., “Paleoseismic evidence for coseismic growth-fold in the 1999 Chichi earthquake and earlier earthquakes, central Taiwan,” Journal of Asian Earth Sciences, Vol 31, pp. 204-213 (2007).
[27] Cole, D. A., and Lade, P. V., “Influence zones in alluvium over dip-slip faults,” Journal of geotechnical engineering, Vol. 110, pp. 599-615 (1984)
[28] Demirci, H. E., Bhattacharya, S., Karamitros, D., and Alexander, N., “Experimental and numerical modelling of buried pipelines crossing reverse faults,” Soil Dynamics and Earthquake Engineering, Vol.114, pp. 198-214 (2018).
[29] ISRM, “Suggested methods for determining tensile strength of rock materials,” International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, Vol. 15 No. 3, pp. 99-103 (1978).
[30] Karamitros, D. K., Bouckovalas, G. D., and Kouretzis, G. P., “Stress analysis of buried steel pipelines at strike-slip fault crossings,” Soil Dynamics and Earthquake Engineering, Vol. 27, pp. 200–211 (2007).
[31] Kelson, K. I., Kang, K. H., Page W.D., Lee, C. T., and Cluff, L. S., “Representative Styles of Deformation along the Chelungpu Fault from the 1999 Chi-Chi (Taiwan) Earthquake: Geomorphic Characteristics and Responses of Man-Made Structures,” Bulletin of the Seismological Society of America, Vol. 91, No. 5, pp. 930-952 (2001).
[32] Kelson, K. I., Harder, L. F., Kishida, T., Ryder, I., “Preliminary Observations of Surface Fault Rupture from the April 11, 2011 Mw6.6 Hamadoori Earthquake, Japan,” Geotechnical Extreme Events Reconnaissance, No. GEER-025D (2011).
[33] Lee, J. W., Hamada, M., Tabuchi, G., and Suzuki, K., “Prediction of fault rupture propagation based on physical tests in sandy soil deposit,” 13th World Conference on Earthquake Engineering, B.C., Canada, Paper No. 119 (2004).
[34] Li, C. Y., Wei, Z. Y., Ye, J. Q., Han, Y. B., and Zheng, W. J., “Amounts and styles of coseismic deformation along the northern segment of surface rupture, of the 2008 Wenchuan Mw 7.9 earthquake, China,” Tectonophysics, Vol. 491, pp. 35-58 (2010).
[35] Lin, M. L., Chung C. F., and Jeng F. S., “Deformation of overburden soil induced by thrust fault slip,” Engineering Geology, Vol. 88, pp. 70-89(2006)
[36] McCalpin, J. P., Paleoseismology, Academic Press, USA, pp.171-207 (2009).
[37] Rizkalla, M., and Read, R. S., “Pipeline geohazards planning, design, construction and operations,” ASME Press, New York, USA, pp. 390-443 (2019).
[38] Soegianto, D. P., “Centrifuge Modelling on Dip-Slip Fault Rupture Propagation in Multiple Soil Strata,” Master Thesis, Department of Civil Engineering, National Central University, Taoyuan, Taiwan (2020).
[39] Takemura, J., Kusakabe, O., and Yao, C., “Development of a fault simulator for soils under large vertical stress in a centrifuge,” ICE, USA, Vol. 20, pp. 118-131 (2020).
[40] Taylor, R. N., “Geotechnical Centrifuge Technology,” CRC Press, USA, pp.19-33 (1994).
[41] Yao, C. F., Takemura, J., Zhang, J. C., “Centrifuge modeling of single pile-shallow foundation interaction in reverse fault,” Soil Dynamic and Earthquake Engineering, Vol. 141, 106538 (2021).
|