博碩士論文 110322036 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:54 、訪客IP:18.116.62.132
姓名 江柏諺(Bo-Yan Jiang)  查詢紙本館藏   畢業系所 土木工程學系
論文名稱 異向性岩石工程行為之實踐:以方位評分調整為例
相關論文
★ 岩坡崩塌行為與臨界斜交角之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 裂隙岩體中存在不連續面,如節理、斷層、層理等,因為不連續面的優選方位,使得力學性質具有高度的方向性,稱為異向性(anisotropy)。構築於裂隙岩體中的工程,其工程行為不僅與裂隙方位有關,同時工程配置方向也會顯著地影響工程行為,如岩石隧道的開挖方向、條形岩石基礎長軸的配置方位、岩坡的斜交角等,稱之為異向性工程行為。裂隙岩體工程行為之異向性早已被列入工程實務的考量之中,例如:RSR、RMR及SMR等均有方位評分之調整。上述方位評分調整具有簡易且良好執行性,廣泛被工程師應用於工程實務上。然而,評分調整的基準可能基於創立者的工程經驗,雖廣為使用,但欠缺學理及實驗驗證。
岩石異向性深具學術研究之旨趣,長期以來吸引眾多學者投入試驗及理論研究。解析解途徑僅能針對理想、簡易的問題求得解析解,難以適用於真實複雜的工程問題。異向性岩石無論是小試體或物理模型試驗,涉及方位因子(如:裂隙傾角??、工程配置角γ),所需試體數量遠超過等向性岩石,在執行上有相當大的困難度。三維數值模擬或可解決解析解及物理模型的難處,但在執行數值模擬時,仍須針對施工程序進行適當的模擬(逐階模擬),方可全面合理地呈現岩石工程異向性行為。


本文採用合成岩體(Synthetic Rock Mass, SRM)架構,利用三維離散元素軟體PFC3D(Particle Flow Code in three Dimension)建立完整岩體模型,並配合離散裂隙網絡(Discrete Fracture Network, DFN),分別建構隧道及基礎合成岩體模型,以更細緻之裂隙傾角(??)及工程配置角(γ),全面探討其對岩石工程異向性行為的影響。本文主要的研究範疇包括:
(1) 利用合成岩體模型探討單階模擬(one-step simulation)與逐階模擬(step-by-step simulation)之合理性及適用性。
(2) 利用合成岩體模型針對更細緻之隧道斜交開挖方向(γ)進行模擬,以全面瞭解開挖方向對隧道穩定性之影響。
(3) 利用數值模擬結果以最佳化之方式,與既有岩石隧道方位評分調整基準進行擬合,驗證或佐證其合理性及正確性。
(4) 利用數值模擬結果建立岩石隧道及岩石基礎方位評分調整之連續方程(Continuous Function, CF)。
本文主要研究成果臚列如下:
(1) 異向性岩石工程行為之模擬,必須採用三維模型並配合施工程序進行逐階模擬,方能合理地完整呈現方位因子(??及γ)對岩石工程之影響。
(2) 數值模擬的數據顯示,低傾角裂隙岩體在某些斜交開挖方向下,其穩定性相當不佳,僅考慮正交開挖及平行開挖的情境,可能遺漏了最不穩定的組合,故斜交開挖情境下之模擬及分析有其必要性。
(3) 本文根據數值模擬的結果,提出岩石隧道及岩石基礎方位評分調整之連續方程。
摘要(英) Fractured rock masses contain discontinuities such as joints, faults, and bedding planes, which may cause their mechanical or engineering behaviors with anisotropies due to the preferred orientations of discontinuities. Nowadays, rating adjustments for orientation in rock engineering practice, such as RSR, RMR, and SMR, provide evaluations of construction quality under various fracture dips (??) and engineering configuration orientations (γ). However, these existing rating adjustments were established based on engineering experiences, which don′t have enough relevant scientific and experimental validations. Additionally, the classifications of ?? and γ in these rating adjustments adopted discrete functions that only provide rough ratings of it. Furthermore, the study of the impact of γ in tunnel excavation is not sufficient, e.g., only three directions of excavation in fractured rock masses were investigated.
This paper provides improved rating adjustments for orientation in tunnel excavation and foundation bearing capacity by analyzing two series of 3D numerical simulations that consist of various ?? and γ. The synthetic rock mass (SRM) framework, using the bonded particle model (BPM) as an intact rock mass coupled with the smooth joint model (SJM) as fracture mechanical behaviors with geometry given by discrete fracture network (DFN), is adopted to construct the 3D synthetic tunnel and foundation rock mass model, respectively, herein. Then, a series of radial displacements of a tunnel under various ?? and γ simulating by step-by-step excavation, and a series of bearing capacity of foundation under various ?? and γ simulating by the bearing capacity test, can be obtained. We optimize the numerical simulation results and existing rock tunnel rating adjustment for orientation to obtain the modified rating adjustment based on the RMR system. Finally, this paper provides the continuous functions of modified rating adjustments for tunnel excavation and bearing capacity, respectively, using multiple regression analysis. According to the simulation and analysis results, the conclusion of this paper can be drawn:
(1) The 3D numerical modeling is necessary for simulating the engineering behaviors of fractured rock due to 3D models can comprehensively present the impacts of ?? and γ on it.
(2) For tunnel excavation simulation, using step-by-step excavation is more reasonable than using one-step excavation, which means that simulating practical engineering problems needed to consider the construction process.
(3) Low-dip fractured rock masses exhibit significant instability under some oblique excavation directions, their radial displacements may exceed the orthogonal and parallel excavation scenarios. Therefore, the rating adjustments for orientation are necessary to consider oblique excavation scenarios.
(4) The proposed continuous functions of modified rating adjustments for tunnel excavation and bearing capacity provide computational convenience and improve the previous rating adjustments′ precision and accuracy.
Illustrative examples of how to employ the proposed rating adjustments are given at the end.
關鍵字(中) ★ 異向性岩體
★ 方位評分調整
★ 連續方程
★ 合成岩體
關鍵字(英) ★ Anisotropic rock mass
★ fractured rock mass
★ rating adjustment for orientation
★ continuous function
★ synthetic rock mass
★ numerical simulation
論文目次 摘要 i
Abstract iv
誌謝 vi
目錄 vii
表目錄 ix
圖目錄 xii
1 第一章 緒論 1
1.1 研究動機 1
1.2 研究目的 8
1.3 研究架構 9
2 第二章 文獻回顧 10
2.1 工程方位因子??、γ 10
2.2 異向性岩石工程之分析方法 15
2.2.1 經驗法則 15
2.2.2 解析解 24
2.2.3 物理模型 27
2.2.4 數值模擬 39
2.2.5 數值問題與挑戰 65
2.3 異向性岩石工程之模擬方法 71
3 第三章 合成岩體隧道及基礎模型建構 77
3.1 合成岩體 77
3.2 建模步驟 85
3.3 合成岩體隧道模型 88
3.3.1 完整岩體參數設定 88
3.3.2 隧道模型建構及開挖模擬 91
3.3.3 數據採計範圍及分析方法 99
3.4 合成岩體基礎模型 103
3.4.1 完整岩體參數設定 103
3.4.2 基礎模型建構及加載模擬 105
4 第四章 岩石隧道之方位評分調整方程 110
4.1 開挖引致之位移場及徑向位移 111
4.2 連續數值轉換非連續評分系統 118
4.3 隧道方位因子細緻化 124
4.3.1 γ對隧道穩定性之影響 124
4.3.2 ??對隧道穩定之敏感性 128
4.4 岩石隧道離散分級TDC 134
4.5 岩石隧道連續方程TCF 141
5 第五章 岩石基礎之方位評分調整方程 150
5.1 ??、γ對承載力之影響 150
5.2 κ對承載力之影響 156
5.3 岩石基礎離散分級FDC 162
5.4 岩石基礎連續方程FCF 166
6 第六章 結論 174
附錄 177
參考文獻 185
參考文獻 田永銘、盧育辰、黃致維、黃森暉、裴文彬,任光正、黃清修、劉芊妤、張靖民、江柏諺、陳彥樺(2023)「裂隙岩體隧道、岩坡與基礎之異向性工程行為」,科技部專題研究計畫期末報告,MOST 109-2221-E-008-015-MY3。
任光正(2022),「裂隙岩體之基礎承載力異向性與變異性」,碩士論文,國立中央大學土木工程學系,中壢。
行政院農委會(2010),「水土保持技術規範」。
張靖民(2024),「隧道開挖方向對裂隙岩體穩定性之影響」,碩士論文,國立中央大學土木工程學系,中壢。
黃致維(2020),「利用合成岩體模擬橫向等向性岩體之基礎承載力」,碩士論文,國立國立中央大學土木工程學系,桃園。
黃清修(2023),「邊界條件對不同斜交角之岩坡崩塌行為影響」,碩士論文,國立中央大學土木工程學系,中壢。
黃森暉(2022),「從順向坡至逆向坡之崩塌行為模擬」,碩士論文,國立中央大學土木工程學系,中壢。
裴文斌(2022),「Effect of Excavation Direction on Stability of Tunnels in Transversely Isotropic Rock Mass」,博士論文,國立中央大學土木工程學系,中壢。
劉芊妤(2024),「岩坡崩塌行為與臨界斜交角之研究」,碩士論文,國立中央大學土木工程學系,中壢。
劉家豪(2019),「橫向等向性合成岩體之力學行為及其變異性」,碩士論文,國立中央大學土木工程學系,中壢。
潘國樑(2007),「工程地質學導論」,科技圖書,第224頁。
盧育辰(2009),「以UDEC模擬互層材料之力學行為」,碩士論文,國立中央大學土木工程學系,中壢。
Barton, N., Lien, R. and Lunde, J. (1974) “Engineering Classification of Rock Masses for the Design of Tunnel Support,” Rock Mechanics, Vol. 6, pp.189-236.
Basarir, H., Genis, M., & Ozarslan, A. (2010). “The analysis of radial displacements occurring near the face of a circular opening in weak rock mass,” International Journal of Rock Mechanics and Mining Sciences, Vol. 47, No. 5, pp.771-783.
Bieniawski, Z.T. (1979) “The Geomechanics Classification in Rock Engineering Application,” Proceeding 4th International Congress on Rock Mechanics, Montreux, pp.41-48.
Bieniawski, Z.T., (1989) “Engineering Rock Mass Classifications: A Complete Manual for Engineers and Geologists in Mining, Civil, and Petroleum Engineering, ” A Wiley-interscience publication, American.
Chaloulos, Y. K., Papadimitriou, A. G., & Dafalias, Y. F. (2019). “Fabric effects on strip footing loading of anisotropic sand,” Journal of Geotechnical and Geoenvironmental Engineering, Vol.145, No.10, 04019068.
Chen, C. H., Ke, C. C., Wang, C.-L. (2009) “A back-propagation network for the assessment of susceptibility to rock slope failure in the eastern portion of the Southern Cross-Island Highway in Taiwan,” Environmental Geology, Vol. 57, No. 4, pp. 723-733.
Chen, J., Guo, X., Sun, R., Rajesh, S., Jiang, S., & Xue, J. (2021). “Physical and numerical modelling of strip footing on geogrid reinforced transparent sand. ” Geotextiles and Geomembranes, Vol.49, No.2, pp.399-412.
Cundall, P. A., and Strack, O. D. (1979) “A discrete numerical model for granular assemblies,” Géotechnique, Vol.29, No.1, pp.47-65.
Do, N. A., Dias, D., Tran, T. T., Dao, V. D., & Nguyen, P. N. (2019). “Behavior of noncircular tunnels excavated in stratified rock masses–Case of underground coal mines.” Journal of Rock Mechanics and Geotechnical Engineering, Vol.11, No.1, pp.99-110.
Dhiman, R.K., Thakur, M. (2022) “Graphical charts for onsite Continuous Slope Mass Rating (CoSMR) classification using strike parallelism and joint dip or plunge of intersection” Engineering Geology, Vol. 298.
Fang, Q., Wang, G., Yu, F., Du, J. (2021) “Analytical algorithm for longitudinal deformation profile of a deep tunnel,” Journal of Rock Mechanics and Geotechnical Engineering, Vol.13, pp.845-854.
Feng, X., Jiang, Q., Zhang, X., & Zhang, H. (2019) “Shaking Table Model Test on the Dynamic Response of Anti-dip Rock Slope,” Geotechnical and Geological Engineering, Vol.37, pp.1211-1221.
Gaziev, E. and Erlikhman, S. (1971) “Stresses and strains in anisotropic foundations.” Proc. Symp. on Rock Fracture, ISRM, Nacy, Paper II–1.
Goodman, R.E. (1980) “Introduction to Rock Mechanics” John Wiley & Sons Ltd., New York.
Hoek, E., Bray, J.W. (1981). “Rock Slope Engineering” The Institution of Mining and Metallurgy, London.
Itasca Consulting Group Inc. PFC3D (Particle Flow Code in 3 dimensions) (2019), Version 6.0, MN 55401.
Ivars, D. M., Pierce, M. E., Darcel, C., Reyes-Montes, J., Potyondy, D. O., Young, R. P., & Cundall, P. A. (2011). “The synthetic rock mass approach for jointed rock mass modelling. ” International Journal of Rock Mechanics and Mining Sciences, Vol.48, No.2, pp.219-244.
Javid, A. H., Fahimifar, A., & Imani, M. (2015). “Numerical investigation on the bearing capacity of two interfering strip footings resting on a rock mass. ” Computers and Geotechnics, Vol.69, pp.514-528.
Jia, P., & Tang, C. (2008). “Numerical study on failure mechanism of tunnel in jointed rock mass. ” Tunnelling and Underground Space Technology, Vol.23, No.5, pp.500-507.
Lei, Q., Latham, J.-P., & Tsang, C.-F. (2017). “The use of discrete fracture networks for modelling coupled geomechanical and hydrological behaviour of fractured rocks. ” Computers and Geotechnics, Vol.85, pp.151-176.
Lin, Q. B., Cao, P., Meng, J. J., Cao, R. H., & Zhao, Z. Y. (2020). “Strength and failure characteristics of jointed rock mass with double circular holes under uniaxial compression: Insights from discrete element method modelling. ” Theoretical and Applied Fracture Mechanics, Vol.109, Article 102692.
Naqvi, M., Zaid, M., Sadique, M., & Alam, M. (2017). “Dynamic analysis of rock tunnels considering joint dip angle: a finite element approach. ” 13th international conference on vibration problems.
Ning, Y., Zhang, G., Tang, H., Shen, W., & Shen, P. (2019). “Process Analysis of Toppling Failure on Anti-Dip Rock Slopes Under Seismic Load in Southwest China,” Rock Mechanics and Rock Engineering, Vol.52, pp.4439–4455.
Pierce, M., Mas Ivars, D., & Sainsbury, B. (2009). “Use of synthetic rock masses (SRM) to investigate jointed rock mass strength and deformation behavior. ” Proceedings of the International Conference on Rock Joints and Jointed Rock Masses,
Potyondy, D. O., & Cundall, P. A. (2004). “A bonded-particle model for rock. ” International Journal of Rock Mechanics and Mining Sciences, Vol.41, No.8, pp1329-1364.
Romana, M. (1985) “New Adjustment Ratings for Application of Bieniawski Classification to Slopes,” Proceedings of the International Symposium on the Role of Rock Mechanics in Excavations for Mining and Civil Works, International Society of Rock Mechanics, Zacatecas, 49-53.
Romer, C., and Ferentinou, M. (2019) “Numerical investigations of Rock Bridge effect on open pit slope stability,” Journal of Rock Mechanics and Geotechnical Engineering, Vol. 11, No. 6, pp. 1184–1200.
Sagong, M., Park, D., Yoo, J., & Lee, J. S. (2011). “Experimental and numerical analyses of an opening in a jointed rock mass under biaxial compression. ” International Journal of Rock Mechanics and Mining Sciences, Vol.48, No.7, 1055-1067.
Sarfarazi, V., Abharian, S., & Ghorbani, A. (2021). “Physical test and PFC modelling of rock pillar failure containing two neighboring joints and one hole. ” Smart Struct. Syst, Vol.27, pp.123-137.
Scholtès, L., and Donzé, F.V. (2012) “Modelling progressive failure in fractured rock masses using a 3D discrete element method,” International Journal of Rock Mechanics and Mining Sciences, Vol.52, pp.18-30.
Sutcliffe, D., Yu, H., & Sloan, S. (2004). “Lower bound solutions for bearing capacity of jointed rock. ” Computers and Geotechnics, Vol.31,No.1, pp.23-36.
Tomás, R., Delgado, J., Seracuteon, J.B. (2007) “Modification of slope mass rating (SMR) by continuous functions” International Journal Of Rock Mechanics andMining Sciences, Vol.44, No.7, pp.1062-1069.
Wang, C., Tannant, D.D., and Lilly, P.A. (2003) “Numerical Analysis of the stability of heavily jointed rock slopes using PFC2D,” International Journal of Rock Mechanics and Mining Sciences, Vol. 40, No. 3, pp. 415–424.
Wang, L., Zhu, Z., Zhu, S., & Wu, J. (2023). “A Case Study on Tunnel Excavation Stability of Columnar Jointed Rock Masses with Different Dip Angles in the Baihetan Diversion Tunnel. ” Symmetry, Vol.15, No.6, 1232.
Wyllie, Duncan C., Mah, Christopher W. (2004)., “Rock Slope Engineering” Taylor & Francis e-Library, London.
Yang, S.-Q., Chen, M., Fang, G., Wang, Y.-C., Meng, B., Li, Y.-H., & Jing, H.-W. (2018). “Physical experiment and numerical modelling of tunnel excavation in slanted upper-soft and lower-hard strata. ” Tunnelling and Underground Space Technology, Vol.82, pp.248-264.
Yang, S.-Q., Yin, P.-F., Zhang, Y.-C., Chen, M., Zhou, X.-P., Jing, H.-W., & Zhang, Q.-Y. (2019). “Failure behavior and crack evolution mechanism of a non-persistent jointed rock mass containing a circular hole. ” International Journal of Rock Mechanics and Mining Sciences, Vol.114, pp.101-121.
Yang, X., Jing, H., & Chen, K. (2016). “Numerical simulations of failure behavior around a circular opening in a non-persistently jointed rock mass under biaxial compression.” International Journal of Mining Science and Technology, Vol.26, No.4, pp.729-738.
Zhang, H., Chen, C., Zheng, Y., Yu, Q., & Zhang, W. (2020). “Centrifuge modeling of layered rock slopes susceptible to block-flexure toppling failure. ” Bulletin of Engineering Geology and the Environment, Vol.79, pp.3815-3831.
Zhang, Y., Yu, H., Zhu, H., & Zhu, Y. (2022). “Study on Excavation Damage Characteristics of Surrounding Rock in Deeply Buried Tunnels by Particle Flow Code Simulation.” Sustainability, Vol.14, No.24.
指導教授 田永銘 盧育辰 審核日期 2024-7-30
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明