博碩士論文 110322094 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:98 、訪客IP:3.147.68.146
姓名 黃柏勛(Bo-Xun Huang)  查詢紙本館藏   畢業系所 土木工程學系
論文名稱 結合智慧感測標籤與機器學習方法判別混凝土內部鋼筋鏽蝕可能性之研究
相關論文
★ 應用智慧標籤及數據驅動方法於水接觸結構物之結構評估★ 基於低功耗嵌入式系統及高精度MEMS感測器的智慧鋼索監測系統研發
★ Sensor Code-based Smart Tag Embedded in Concrete for Seepage Sensing Caused by Cracks★ 智慧型居家機器人用於地震後自動巡查及應變處置之研究
★ 利用UAV整合LoRa與磁導喚醒技術的物聯網架構研發★ 基於磁吸附與全向輪技術的鋼結構攀爬機器人開發與驗證
★ 基於微型機器學習的智能避障系統在外牆檢測自主移動機器人中的應用★ 基於ROS的遠端自動多螺栓 檢測機器人系統開發
★ 基於BERT語意分析模型的智慧型BIM資訊搜尋問答系統之研究★ 基於BIM與無線喚醒物聯網裝置之智慧化結構檢測系統開發
★ 利用微型機器學習與微控制器即時檢測室內地磚空心缺陷★ 結合智慧感測標籤與支持向量機快速判定混凝土裂縫位置
★ 應用於鋼結構檢測之高機動型蚇蠖攀爬機器人設計分析及實作驗證★ 混凝土缺陷自動修補機器人之研發
★ 研發具邊緣運算能力之無線振動量測裝置應用於橋梁鋼索特徵頻率偵測★ 應用於攀爬檢測機器人之輕量級即時多目標螺栓缺陷影像檢測系統之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2028-7-24以後開放)
摘要(中) 2019年發生南方澳大橋倒塌事件,是由於吊索系統鏽蝕而導致承載力不足,但鋼筋腐蝕通常發生於結構內部,難以從外部檢測。在該事件發生後,台灣開始強調了檢測鋼筋腐蝕對結構安全的重要性。而這事件也引導出一個問題,台灣社會與經濟的快速發展,都市人口密度上升,且因土地資源有限,無法隨意興建新的建築。為了有效利用土地資源,為結構進行補強,延長建築物壽命成為了一大命題。因此,需要一種快速且方便的檢測方法檢測結構狀況。本研究提出一種基於被動式無線感測技術和機器學習的新型結構檢測方式。利用低成本的感測器將其安裝在結構內部,並利用機器學習技術進行數據分析,來判斷結構中鋼筋是否存在腐蝕問題,實現低成本、快速和省人力的結構檢測。最終研究結果顯示,透過機器學習模型對過濾後的數據進行訓練,其對於鋼筋鏽蝕判別的正確率最高來到90.9 %,Recall也來到了93.3 %,表示對於鋼筋鏽蝕的判斷相當準確。該實驗同時表明,對有無鋼筋鏽蝕的梁進行破壞實驗,其裂縫表現也具有差異,而該差異便是能使梁在產生不同的吸水能力,然後依靠智慧感測標籤感測不同試體之間的水分差距,來完成判別鋼筋鏽蝕。本研究的結果有望提前發現鋼筋腐蝕的徵兆,並為結構補強提供依據,從而提高結構的安全性。相較於傳統的電化學檢測方法,本研究提出的新型檢測方式不僅成本更低,而且更具可行性和實用性。
摘要(英) The collapse of the Nanfang′ao Bridge in 2019 was caused by insufficient load-bearing capacity due to corrosion of the suspension system. However, steel reinforcement corrosion typically occurs within the structure and is difficult to detect externally. Following this incident, Taiwan began to emphasize the importance of detecting steel reinforcement corrosion for structural safety. This event also highlighted a challenge in Taiwan′s rapidly developing society and economy, where urban population density is increasing, and limited land resources restrict the construction of new buildings. In order to effectively utilize land resources and reinforce existing structures to extend their lifespan, a need arises for a fast and convenient method to assess structural conditions.Hence, there is a need for a fast and convenient inspection method for assessing structural conditions. This research proposes a novel structural inspection approach based on passive wireless sensing technology and machine learning. Low-cost sensors are installed inside the structure, and machine learning techniques are used for data analysis to determine the presence of corrosion in the steel reinforcement, achieving a low-cost, rapid, and labor-saving structural inspection process. The study′s findings indicate that the machine learning model, trained on filtered data, achieves a high accuracy rate of up to 90.9% for identifying steel reinforcement corrosion, with a recall rate of 93.3%, demonstrating accurate corrosion detection.The experiments also show that beams with and without steel reinforcement corrosion exhibit different crack patterns. This difference allows the beams to display varying water absorption abilities, and by using intelligent sensing tags to detect the moisture difference between different specimens, the identification of steel reinforcement corrosion can be accomplished.The results of this study are expected to detect early signs of steel reinforcement corrosion and provide a basis for structural reinforcement, thereby enhancing structural safety. Compared to traditional electrochemical testing methods, the proposed new inspection approach is not only more cost-effective but also more feasible and practical.
關鍵字(中) ★ 鋼筋鏽蝕檢測
★ 無損檢測
★ 3D列印技術
★ RFID
★ ANN
關鍵字(英) ★ steel reinforcement corrosion detection
★ non-destructive testing
★ 3D printing technology
★ RFID
★ artificial neural network (ANN)
論文目次 摘要 I
ABSTRACT II
致謝 IV
目錄 V
圖目錄 IX
表目錄 XIII
一、 緒論 1
1-1 研究背景與動機 1
1-2 研究目的 1
1-3 論文架構 2
二、 文獻回顧 3
2-1 鋼筋腐蝕帶來的影響 3
2-2 現有非破壞性檢測 4
2-3 無線射頻識別技術 6
2-4 機器學習 8
三、 研究方法 10
3-1 系統架構 10
3-2 RFID智慧感測標籤 11
3-3 機器學習 14
3-3-1 人工神經網路簡介 14
3-3-2 架構描述 16
3-3-3 函數說明 17
3-4 模型效果分析方法 24
四、 實驗規劃與設計 27
4-1 實驗設備 27
4-1-1 實驗儀器 27
4-1-2 軟體 29
4-2 數據來源 30
4-2-1 實驗設計 30
4-2-2 實驗設置 34
4-2-3 實驗流程 35
4-3 模型特徵選擇 37
4-4 模型訓練與測試說明 38
五、 成果與討論 44
5-1 實驗成果 44
5-2 利用原始數據訓練模型之成效 47
5-2-1 Case 1之訓練成效 47
5-2-2 Case 2之訓練成效 51
5-2-3 Case 3之訓練成效 55
5-2-4 Case 4之訓練成效 59
5-2-5 以原始數據訓練模型之總結 63
5-3 數據分析 64
5-4 利用過濾後數據訓練之模型成效 67
5-4-1 數據過濾後Case 1之訓練成效: 67
5-4-2 數據過濾後Case 2之訓練成效 71
5-4-3 數據過濾後Case 3之訓練成效 75
5-4-4 數據過濾後Case 4之訓練成效 79
5-4-4 以過濾後數據訓練模型之總結 83
5-5 與相關文獻比較與探討 85
5-6 本研究之限制與未來改善方向 87
六、結論與未來展望 88
6-1 結論 88
6-2 未來建議與展望 89
七、參考文獻 90
參考文獻 1. Fan, L. and X. Shi, Techniques of corrosion monitoring of steel rebar in reinforced concrete structures: A review. Structural Health Monitoring, 2022. 21(4): p. 1879-1905. https://doi.org/10.1177/14759217211030911.
2. Mehta, P.K. and P.J. Monteiro, Concrete: microstructure, properties, and materials. 2014: McGraw-Hill Education. https://www.accessengineeringlibrary.com/binary/mheaeworks/a8a2d82a09d997cb/a23447d5355b9c16fe749ac698b56fbf08584d3422a5d81c9281c54449cc825a/book-summary.pdf.
3. Ballim, Y., J. Reid, and A. Kemp, Deflection of RC beams under simultaneous load and steel corrosion. Magazine of Concrete Research, 2001. 53(3): p. 171-181. https://doi.org/10.1680/macr.2001.53.3.171.
4. Ballim, Y. and J. Reid, Reinforcement corrosion and the deflection of RC beams––an experimental critique of current test methods. Cement and concrete composites, 2003. 25(6): p. 625-632. https://doi.org/10.1016/S0958-9465(02)00076-8.
5. Du, Y., L.A. Clark, and A.H. Chan, Impact of reinforcement corrosion on ductile behavior of reinforced concrete beams. ACI Structural Journal, 2007. 104(3): p. 285. https://www.proquest.com/openview/3e90fc759bf0a5b1f6355fd045eb6835/1?pq-origsite=gscholar&cbl=36963.
6. El Maaddawy, T., K. Soudki, and T. Topper, Long-term performance of corrosion-damaged reinforced concrete beams. ACI Structural Journal, 2005. 102(5): p. 649. https://www.academia.edu/download/54915538/Long-Term_Performance_of_Corrosion-Damaged.pdf.
7. Zhang, W., H. Zhang, X. Gu, and W. Liu, Structural behavior of corroded reinforced concrete beams under sustained loading. Construction and building materials, 2018. 174: p. 675-683. https://doi.org/10.1016/j.conbuildmat.2018.04.145.
8. Nasser, H., C. Van Steen, L. Vandewalle, and E. Verstrynge, An experimental assessment of corrosion damage and bending capacity reduction of singly reinforced concrete beams subjected to accelerated corrosion. Construction and Building Materials, 2021. 286: p. 122773. https://doi.org/10.1016/j.conbuildmat.2021.122773.
9. Val, D.V., Deterioration of strength of RC beams due to corrosion and its influence on beam reliability. Journal of Structural Engineering, 2007. 133(9): p. 1297-1306. https://doi.org/10.1061/(ASCE)0733-9445(2007)133:9(1297).
10. Song, L., Z. Fan, and J. Hou, Experimental and analytical investigation of the fatigue flexural behavior of corroded reinforced concrete beams. International Journal of Concrete Structures and Materials, 2019. 13: p. 1-14. https://doi.org/10.1186/s40069-019-0340-5.
11. Zhu, W., R. François, D. Coronelli, and D. Cleland, Effect of corrosion of reinforcement on the mechanical behaviour of highly corroded RC beams. Engineering Structures, 2013. 56: p. 544-554. https://doi.org/10.1016/j.engstruct.2013.04.017.
12. Coronelli, D. and P. Gambarova, Structural assessment of corroded reinforced concrete beams: modeling guidelines. Journal of structural engineering, 2004. 130(8): p. 1214-1224. https://doi.org/10.1061/(ASCE)0733-9445(2004)130:8(1214).
13. Taheri, S., A review on five key sensors for monitoring of concrete structures. Construction and Building Materials, 2019. 204: p. 492-509. https://doi.org/10.1016/j.conbuildmat.2019.01.172.
14. Kwon, H., C. Joh, and W.J. Chin, 3D Internal Visualization of Concrete Structure Using Multifaceted Data for Ultrasonic Array Pulse-Echo Tomography. Sensors, 2021. 21(19): p. 6681. https://doi.org/10.3390/s21196681.
15. Ongpeng, J.M.C., A.W.C. Oreta, and S. Hirose, Investigation on the sensitivity of ultrasonic test applied to reinforced concrete beams using neural network. Applied Sciences, 2018. 8(3): p. 405. https://doi.org/10.3390/app8030405.
16. Nitka, M. and J. Tejchman, A three-dimensional meso-scale approach to concrete fracture based on combined DEM with X-ray μCT images. Cement and Concrete Research, 2018. 107: p. 11-29. https://doi.org/10.1016/j.cemconres.2018.02.006.
17. Alhede, A., J. Dijkstra, S. Robuschi, A. Tengattini, and K. Lundgren, A two-stage study of steel corrosion and internal cracking revealed by multimodal tomography. Construction and Building Materials, 2023. 394: p. 132187. https://doi.org/10.1016/j.conbuildmat.2023.132187.
18. De Filippo, M., S. Asadiabadi, N. Ko, and H. Sun, Concept of computer vision based algorithm for detecting thermal anomalies in reinforced concrete structures. Multidisciplinary Digital Publishing Institute Proceedings, 2019. 27(1): p. 18. https://doi.org/10.3390/proceedings2019027018.
19. Senin, S., R. Hamid, J. Ahmad, M. Rosli, A. Yusuff, R. Rohim, K.A. Ghani, and S.M. Noor. Damage detection of artificial corroded rebars and quantification using non-destructive methods on reinforced concrete structure. in Journal of Physics: Conference Series. 2019. IOP Publishing. https://doi.org/10.1088/1742-6596/1349/1/012044.
20. Fu, C., J. Huang, Z. Dong, W. Yan, and X.-L. Gu, Experimental and numerical study of an electromagnetic sensor for non-destructive evaluation of steel corrosion in concrete. Sensors and Actuators A: Physical, 2020. 315: p. 112371. https://doi.org/10.1016/j.sna.2020.112371.
21. Zhang, H., X. Ma, H. Jiang, K. Tong, Y. Zheng, and J. Zhou, Grading evaluation of overall corrosion degree of corroded RC beams via SMFL technique. Structural Control and Health Monitoring, 2023. 2023. https://doi.org/10.1155/2023/6672823.
22. Gkantou, M., M. Muradov, G.S. Kamaris, K. Hashim, W. Atherton, and P. Kot, Novel electromagnetic sensors embedded in reinforced concrete beams for crack detection. Sensors, 2019. 19(23): p. 5175. https://doi.org/10.3390/s19235175.
23. Li, Z., Z. Jin, P. Wang, and T. Zhao, Corrosion mechanism of reinforced bars inside concrete and relevant monitoring or detection apparatus: A review. Construction and Building Materials, 2021. 279: p. 122432. https://doi.org/10.1016/j.conbuildmat.2021.122432.
24. Meng, Z. and Z. Li, RFID tag as a sensor-a review on the innovative designs and applications. Measurement science review, 2016. 16(6): p. 305-315. https://doi.org/10.1515/msr-2016-0039.
25. Zhang, J., G.Y. Tian, A.M. Marindra, A.I. Sunny, and A.B. Zhao, A review of passive RFID tag antenna-based sensors and systems for structural health monitoring applications. Sensors, 2017. 17(2): p. 265. https://doi.org/10.3390/s17020265.
26. Halabe, U.B., K. Maser, and E. Kausel, Propagation characteristics of electromagnetic waves in concrete. 1989, Massachusetts Inst of Tech Cambridge Dept of Civil Engineering.
27. Jiang, S. and S.V. Georgakopoulos. Optimum wireless power transmission through reinforced concrete structure. in 2011 IEEE International Conference on RFID. 2011. IEEE. https://doi.org/10.1109/RFID.2011.5764636.
28. Jiang, S., S.V. Georgakopoulos, and O. Jonah. Power transmission for sensors embedded in reinforced concrete structures. in Proceedings of the 2012 IEEE International Symposium on Antennas and Propagation. 2012. IEEE. https://doi.org/10.1109/APS.2012.6348425.
29. Bartholmai, M., S. Johann, M. Kammermeier, M. Müller, and C. Strangfeld. Transmission characteristics of RFID sensor systems embedded in concrete. in 2016 IEEE SENSORS. 2016. IEEE. https://doi.org/10.1109/ICSENS.2016.7808920.
30. Strangfeld, C., S. Johann, and M. Bartholmai, Smart RFID sensors embedded in building structures for early damage detection and long-term monitoring. Sensors, 2019. 19(24): p. 5514. https://doi.org/10.3390/s19245514.
31. Lin, T.-H., A. Putranto, and Y.-T. Wang, Smart sensor tags for seepage sensing protected by 3D-printed case for embedding in concrete structures. Construction and Building Materials, 2021. 284: p. 122784. https://doi.org/10.1016/j.conbuildmat.2021.122784.
32. Gunjic, D., J. Walk, M. Fischerf, and T. Ussmueller. Realization of a Passive UHF RFID Sensor Platform for the Detection of Damages on a Concrete Reinforcement. in 2022 52nd European Microwave Conference (EuMC). 2022. IEEE. https://doi.org/10.23919/EuMC54642.2022.9924348.
33. Bruciati, B., S. Jang, and P. Fils, RFID-based crack detection of ultra high-performance concrete retrofitted beams. Sensors, 2019. 19(7): p. 1573. https://doi.org/10.3390/s19071573.
34. Dey, S., R. Bhattacharyya, S.E. Sarma, and N.C. Karmakar, A Novel “Smart Skin” Sensor for Chipless RFID-Based Structural Health Monitoring Applications. IEEE Internet of Things Journal, 2020. 8(5): p. 3955-3971. https://doi.org/10.1109/JIOT.2020.3026729.
35. Mijwil, M.M., K.K. Hiran, R. Doshi, and O.J. Unogwu, Advancing Construction with IoT and RFID Technology in Civil Engineering: A Technology Review. Al-Salam Journal for Engineering and Technology, 2023. 2(2): p. 54-62. https://doi.org/10.55145/ajest.2023.02.02.007.
36. Jain, A.K., J. Mao, and K.M. Mohiuddin, Artificial neural networks: A tutorial. Computer, 1996. 29(3): p. 31-44. https://doi.org/10.1109/2.485891.
37. Werbos, P., Beyond regression: New tools for prediction and analysis in the behavioral sciences. PhD thesis, Committee on Applied Mathematics, Harvard University, Cambridge, MA, 1974. https://cir.nii.ac.jp/crid/1571135649638605440.
38. Asteris, P.G. and V.G. Mokos, Concrete compressive strength using artificial neural networks. Neural Computing and Applications, 2020. 32(15): p. 11807-11826. https://doi.org/10.1007/s00521-019-04663-2.
39. Naderpour, H., A.H. Rafiean, and P. Fakharian, Compressive strength prediction of environmentally friendly concrete using artificial neural networks. Journal of Building Engineering, 2018. 16: p. 213-219. https://doi.org/10.1016/j.jobe.2018.01.007.
40. Majlesi, A., H.K. Koodiani, O.T. de Rincon, A. Montoya, V. Millano, A.A. Torres-Acosta, and B.C.R. Troconis, Artificial neural network model to estimate the long-term carbonation depth of concrete exposed to natural environments. Journal of Building Engineering, 2023. 74: p. 106545. https://doi.org/10.1016/j.jobe.2023.106545.
41. Xu, Y. and R. Jin, Measurement of reinforcement corrosion in concrete adopting ultrasonic tests and artificial neural network. Construction and Building Materials, 2018. 177: p. 125-133. https://doi.org/10.1016/j.conbuildmat.2018.05.124.
42. Hinton, G.E., N. Srivastava, A. Krizhevsky, I. Sutskever, and R.R. Salakhutdinov, Improving neural networks by preventing co-adaptation of feature detectors. arXiv preprint arXiv:1207.0580, 2012. https://doi.org/10.48550/arXiv.1207.0580.
指導教授 林子軒(Tzu-Hsuan Lin) 審核日期 2023-7-25
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明