博碩士論文 110323010 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:22 、訪客IP:3.141.6.24
姓名 顏廷育(Ting-Yu Yen)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 基於PVT數據應用實驗設計法優化射出成型參數對PP試片體積收縮率的影響
(Optimization of injection molding parameters effecting on volumetric shrinkage of PP specimen using design of experiment based on PVT data)
相關論文
★ 田口分析法驗證射出參數對光碟機面板翹曲變形量之研究★ 聚丙烯射出成型品表面具抗沾黏特性之研究
★ 光學鏡片之有限元素網格品質探討暨模仁全方位體積收縮補償法之研究★ 從模流到結構的集成分析光學鏡片之模仁變形研究
★ 應用反應曲面法進行鏡筒真圓度之射出成型參數優化★ 冠狀動脈三維重建之初步架構
★ Zienkiewicz動態多孔彈性力學模型之穩定性探討★ 外加磁場輔助射出成型對於導電高分子複合材料的磁性纖維配向與導電度之實驗與模擬
★ 骨板與骨釘之參數模型應用於股骨骨折術前規劃★ 光學鏡片模具之異型水路最佳化設計
★ 傳統骨板與解剖骨板對於固定Sanders II-B型跟骨骨折力學分析★ 以線性迴歸分析驗證射出成型縫合角與抗拉強度呈正相關
★ 異形水路模具設計對於金屬粉末射出成型槍機卡榫影響之研究★ 槍機卡榫模流分析參數最佳化之研究
★ 聚碳酸酯與碳纖維複合材料之射出參數對於縫合線強度之研究★ 運用田口方法分析ABS塑膠材料之射出成型參數對拉伸強度的影響
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2025-11-1以後開放)
摘要(中) 塑膠的收縮性質對射出成型的產品尺寸穩定性有重要的影響,熔膠的體積變化主要源自於冷卻過程中的溫度與壓力效應。本研究透過模內感測系統,擷取半結晶塑料聚丙烯(PP)於成型過程中的溫度與壓力數據,再利用壓力-比容-溫度(PVT)關係方程轉換成比容值,由比容的變異程度與均勻性組成收縮性質的指標。接續藉由調整射出成型的製程參數優化成品品質,本研究採用實驗設計法,建構一個基於統計原理的參數最佳化流程,首先以二水準田口方法篩選顯著因子,再利用三水準田口方法與二階反應曲面法中的中央合成設計與Box-Behnken設計建構迴歸模型,預測最佳化製程參數。研究結果顯示料溫與保壓階段的效應對PP塑件的收縮性質影響最為顯著,而田口方法不能考慮每個因子之間的交互作用,導致其優化能力不及反應曲面法,此外,雖然中央合成設計與Box-Behnken設計於本實驗案例預測出相同的最佳化製程參數,但中央合成設計的預測誤差較低,顯示出較好的預測能力。相較於參數設定之初始條件,二階反應曲面法降低試片15.82%的體積收縮率;三水準田口法降低試片9.69%的體積收縮率,同時,改善了比容的均勻性,實現優化成品品質的目標。
摘要(英) The shrinkage of plastic has a significant impact on the dimensional stability of products manufactured through injection molding. The volumetric variation of the molten plastic primarily is caused by temperature and pressure effects during the cooling process. In this study, an in-mold sensing system was utilized to capture temperature and pressure data of semi-crystalline polypropylene (PP) during the injection molding process. The data were then converted into specific volume values using the pressure-volume-temperature (PVT) relationship equation. The changeability and uniformity of the specific volume were employed as indicators for characterizing the shrinkage properties. Subsequently, the quality of the products was optimized by adjusting the process parameters for injection molding. The design of experiments was employed to construct a procedure for optimizing parameter based on statistical principles. Initially, the significant factors were screened using the two-level Taguchi method. Regression models were then developed using the three-level Taguchi method and the second-order response surface methodology such as central composite design and Box-Behnken design, respectively, to predict the optimal process parameters. This research findings demonstrated that the effects of melt temperature and packing pressure stages had the most significant influence on the shrinkage of PP specimens. However, the interaction between individual factors is often not fully considered in Taguchi, the Taguchi method exhibited lower optimization capability compared to the response surface methodology. Although both the central composite design and Box-Behnken design predicted the same optimal process parameters in this experimental case, the central composite design exhibited lower prediction errors which indicated better predictive capability. Compared to the initial conditions of the parameter settings, the second-order response surface methodology reduced the volume shrinkage rate of the specimens by 15.82%, while the three-level Taguchi method reduced it by 9.69%. Additionally, the uniformity of specific
iii
volume was improved; thereby the goal of optimizing the quality of the products was achieved.
關鍵字(中) ★ 射出成型
★ PVT
★ 田口方法
★ 中央合成設計
★ Box-Behnken設計
★ 體積收縮率
★ 比容均勻性
關鍵字(英) ★ Injection Molding
★ PVT
★ Taguchi Method
★ Central Composite Design
★ Box-Behnken Design
★ Volume Shrinkage
★ Specific Volume Uniformity
論文目次 摘要 ........................................................................................................................ i
Abstract ................................................................................................................ ii
目錄 ........................................................................................................................ v
圖目錄 ................................................................................................................. vii
表目錄 .................................................................................................................. ix
1 第一章 緒論 ..................................................................................................... 1
1-1 前言 ........................................................................................................ 1
1-2 文獻回顧 ................................................................................................ 2
1-3 研究動機與目的 ................................................................................... 5
1-4 研究架構 ................................................................................................ 6
2 第二章 基本原理與理論模式 ......................................................................... 7
2-1 射出成型原理........................................................................................ 7
2-2 塑件之收縮、翹曲特性 ....................................................................... 8
2-2-1 比容計算公式 .......................................................................... 10
2-2-2 收縮性質量化公式 .................................................................. 11
2-3 實驗設計法 .......................................................................................... 13
2-4 田口方法 .............................................................................................. 13
2-4-1 田口式直交表 .......................................................................... 13
2-4-2 訊噪比分析 .............................................................................. 14
2-4-3 變異數分析 .............................................................................. 15
2-5 反應曲面法 .......................................................................................... 17
2-6 Box-Cox轉換 ....................................................................................... 20
3 第三章 研究方法 ........................................................................................... 21
3-1 實驗材料 .............................................................................................. 21
3-2 實驗設備 .............................................................................................. 23
3-3 量測設備 .............................................................................................. 29
3-4 比容讀取方法...................................................................................... 33
3-5 製程參數規劃...................................................................................... 35
3-6 實驗設計 .............................................................................................. 38
4 第四章 結果與討論 ....................................................................................... 44
4-1 篩選因子實驗結果 ............................................................................. 44
4-2 參數最佳化實驗結果 ......................................................................... 46
4-2-1 中央合成設計 .......................................................................... 47
4-2-2 Box-Behnken設計 .................................................................... 53
4-2-3 田口法L27(35) .......................................................................... 59
4-3 最佳化實驗結果比較 ......................................................................... 65
5 第五章 結論與未來展望 ............................................................................... 68
5-1 結論 ...................................................................................................... 68
5-2 未來展望 .............................................................................................. 69
6 參考文獻 ......................................................................................................... 70
參考文獻 [1] P. Marwedel, Embedded system design: embedded systems foundations of cyber-physical systems, and the internet of things. Springer Nature, 2021.
[2] H. Oktem, T. Erzurumlu, and I. Uzman, "Application of Taguchi optimization technique in determining plastic injection molding process parameters for a thin-shell part," Materials & design, vol. 28, no. 4, pp. 1271-1278, 2007.
[3] H. Karbasi and H. Reiser, "Smart mold: Real-time in-cavity data acquisition," in First Annual Technical Showcase & Third Annual Workshop, Canada, 2006: Citeseer.
[4] K. Visvanathan and K. Balasubramaniam, "Ultrasonic torsional guided wave sensor for flow front monitoring inside molds," Review of Scientific Instruments, vol. 78, no. 1, p. 015110, 2007.
[5] T. Ageyeva, S. Horváth, and J. G. Kovács, "In-mold sensors for injection molding: On the way to industry 4.0," Sensors, vol. 19, no. 16, p. 3551, 2019.
[6] J. F. Tressler, S. Alkoy, and R. E. Newnham, "Piezoelectric sensors and sensor materials," Journal of electroceramics, vol. 2, pp. 257-272, 1998.
[7] S. Biehl, N. Paetsch, E. Meyer-Kornblum, and G. Brauer, "Wear resistenat thin film sensor system for industrial applications," Int. J. Instrum. Meas, vol. 1, pp. 6-11, 2016.
[8] S. Carter, A. Ned, J. Chivers, and A. Bemis, "Selecting piezoresistive vs. piezoelectric pressure transducers," Kulite Semiconductor Products, Inc, 2016.
[9] G. Tuncol, M. Danisman, A. Kaynar, and E. M. Sozer, "Constraints on monitoring resin flow in the resin transfer molding (RTM) process by using thermocouple sensors," Composites Part A: Applied Science and Manufacturing, vol. 38, no. 5, pp. 1363-1386, 2007.
[10] D. O. Kazmer, S. P. Johnston, R. X. Gao, and Z. Fan, "Feasibility analysis of an in-mold multivariate sensor," International Polymer Processing, vol. 26, no. 1, pp. 63-72, 2011.
[11] S. Johnston, G. Mendible, R. Gao, and D. Kazmer, "Estimation of bulk melt-temperature from in-mold thermal sensors for injection molding, part a: Method," International Polymer Processing, vol. 30, no. 4, pp. 460-466, 2015.
[12] J. Wang, P. Xie, W. Yang, and Y. Ding, "Online pressure–volume–temperature measurements of polypropylene using a testing mold to simulate the injection‐molding process," Journal of Applied Polymer Science, vol. 118, no. 1, pp. 200-208, 2010.
[13] W. Michaeli and A. Schreiber, "Online control of the injection molding process based on process variables," Advances in Polymer Technology: Journal of the Polymer Processing Institute, vol. 28, no. 2, pp. 65-76, 2009.
[14] R.-Y. Chang, Y.-C. Hsieh, and C.-H. Hsu, "On the pvT and thermal shrinkage for the injection molding of a plastic lens," Journal of reinforced plastics and composites, vol. 18, no. 3, pp. 261-270, 1999.
[15] Y. H. Chang, T. H. Wei, S. C. Chen, and Y. F. Lou, "The investigation on PVT control method establishment for scientific injection molding parameter setting and its quality control," Polymer Engineering & Science, vol. 60, no. 11, pp. 2895-2907, 2020.
[16] L. Galantucci and R. Spina, "Evaluation of filling conditions of injection moulding by integrating numerical simulations and experimental tests," Journal of materials processing technology, vol. 141, no. 2, pp. 266-275, 2003.
[17] G. Gong, J. C. Chen, and G. Guo, "Enhancing tensile strength of injection molded fiber reinforced composites using the Taguchi-based six sigma approach," The International Journal of Advanced Manufacturing Technology, vol. 91, pp. 3385-3393, 2017.
[18] C.-C. Chen, P.-L. Su, and Y.-C. Lin, "Analysis and modeling of effective parameters for dimension shrinkage variation of injection molded part with thin shell feature using response surface methodology," The International Journal of Advanced Manufacturing Technology, vol. 45, no. 11-12, p. 1087, 2009.
[19] F. Gao, W. I. Patterson, and M. R. Kamal, "Cavity pressure dynamics and self‐tuning control for filling and packing phases of thermoplastics injection molding," Polymer Engineering & Science, vol. 36, no. 9, pp. 1272-1285, 1996.
[20] J. Wang and Q. Mao, "A novel process control methodology based on the PVT behavior of polymer for injection molding," Advances in Polymer Technology, vol. 32, no. S1, pp. E474-E485, 2013.
[21] E. Oliaei et al., "Warpage and shrinkage optimization of injection-molded plastic spoon parts for biodegradable polymers using Taguchi, ANOVA and artificial neural network methods," Journal of Materials Science & Technology, vol. 32, no. 8, pp. 710-720, 2016.
[22] T. C. Chang and E. Faison III, "Shrinkage behavior and optimization of injection molded parts studied by the Taguchi method," Polymer Engineering & Science, vol. 41, no. 5, pp. 703-710, 2001.
[23] X. Wang, G. Zhao, and G. Wang, "Research on the reduction of sink mark and warpage of the molded part in rapid heat cycle molding process," Materials & Design, vol. 47, pp. 779-792, 2013.
[24] S. Tang, Y. Tan, S. Sapuan, S. Sulaiman, N. Ismail, and R. Samin, "The use of Taguchi method in the design of plastic injection mould for reducing
warpage," Journal of Materials Processing Technology, vol. 182, no. 1-3, pp. 418-426, 2007.
[25] R. Chang, C. Chen, and K. Su, "Modifying the tait equation with cooling‐rate effects to predict the pressure–volume–temperature behaviors of amorphous polymers: Modeling and experiments," Polymer Engineering & Science, vol. 36, no. 13, pp. 1789-1795, 1996.
[26] Moldex3D Help. Available online. https://www.moldex3d.com/moldex3d-help/ (accessed 21 March 2023).
[27] C. D. Greene and D. F. Heaney, "The PVT effect on the final sintered dimensions of powder injection molded components," Materials & design, vol. 28, no. 1, pp. 95-100, 2007.
[28] 李輝煌, 田口方法-品質設計的原理與實務. 高立圖書有限公司, 2011.
[29] B. G. Tabachnick and L. S. Fidell, Experimental designs using ANOVA. Thomson/Brooks/Cole Belmont, CA, 2007.
[30] N. Bradley, "The response surface methodology," Indiana University South Bend, 2007.
[31] 林李旺, 突破品質水準: 實驗設計與田口方法之實務應用. 全華圖書, 2013.
[32] H. F. Giles Jr and J. R. Wagner Jr, Extrusion: The Definitive Processing Guide and Handbook. William Andrew: Norwich, NY, USA, 2013.
[33] G. E. Box and D. R. Cox, "An analysis of transformations," Journal of the Royal Statistical Society: Series B (Methodological), vol. 26, no. 2, pp. 211-243, 1964.
[34] C. Steele. "See How Easily You Can Do a Box-Cox Transformation in Regression." Available online. https://blog.minitab.com/en/statistics-and-quality-improvement/see-how-easily-you-can-do-a-box-cox-transformation-in-regression (accessed 2023).
[35] 台中精機. "台中精機射出成型機規格資訊." Available online. https://www.victortaichung.com/injection-machines/tw/vsp-60-e.htm (accessed 24 March, 2023).
[36] 晏邦電機工業有限公司. "料斗乾燥機(HD/IHD/DHD)." Available online. https://www.yannbang.com/hopper-dryer-tw (accessed 24 March, 2023).
[37] 潤輝科技有限公司. "AO系列油式溫度控制機規格表." Available online. http://www.a1-max.com.tw/product/detail1.html#spec (accessed 24 March, 2023).
[38] Futaba雙葉株式會社. "樹脂溫度傳感器 嵌入式安裝型 EPSSZT." Available online. https://premium.ipros.jp/futaba/product/detail/2000411098/ (accessed 30 May, 2023).
[39] Futaba雙葉株式會社. "壓力傳感器按鈕式SSB系列." Available online. https://premium.ipros.jp/futaba/product/detail/2000410951/ (accessed 30 May, 2023).
[40] 張榮語, 射出成型模具設計操作實務(第三冊). 高立圖書有限公司, 1995.
[41] J.-Y. Chen, P.-H. Hung, and M.-S. Huang, "Determination of process parameters based on cavity pressure characteristics to enhance quality uniformity in injection molding," International Journal of Heat and Mass Transfer, vol. 180, p. 121788, 2021.
[42] J. Zolgharnein, A. Shahmoradi, and J. B. Ghasemi, "Comparative study of Box–Behnken, central composite, and Doehlert matrix for multivariate optimization of Pb (II) adsorption onto Robinia tree leaves," Journal of Chemometrics, vol. 27, no. 1-2, pp. 12-20, 2013.
[43] J. Wang, C. Hopmann, M. Schmitz, T. Hohlweck, and J. Wipperfürth, "Modeling of pvT behavior of semi-crystalline polymer based on the two-domain Tait equation of state for injection molding," Materials & Design, vol. 183, p. 108149, 2019.
[44] M. Fernández, M. E. Muñoz, A. Santamaría, S. Syrjälä, and J. Aho, "Determining the pressure dependency of the viscosity using PVT data: A practical alternative for thermoplastics," Polymer Testing, vol. 28, no. 1, pp. 109-113, 2009.
指導教授 鍾禎元(Chen-Yuan Chung) 審核日期 2023-7-25
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明