參考文獻 |
1. 網路資料:永續台灣ESG今周刊。2023年6月,取自 https://esg.businesstoday.com.tw/article/category/180692/post/202303270014/%E5%8F%B0%E7%81%A3%E7%AC%AC3%E5%BA%A7%E9%9B%A2%E5%B2%B8%E9%A2%A8%E5%A0%B4%E5%AE%8C%E5%B7%A5%EF%BC%81%E6%B5%B7%E8%83%BD47%E5%BA%A7%E9%A2%A8%E6%A9%9F%E8%BF%8E%E5%95%86%E8%BD%89%EF%BC%8C%E5%8F%B0%E7%81%A3%E9%A2%A8%E9%9B%BB%E5%BB%BA%E7%BD%AE%E7%82%BA%E4%BB%80%E9%BA%BC%E5%BE%88%E5%9B%B0%E9%9B%A3%EF%BC%9F。.
2. 網路資料:4C Offshore。2023年6月,取自https://www.4coffshore.com/windfarms/windspeeds.aspx。.
3. " Wind Turbines - Part 3: Design Requirements for Offshore Wind Turbines, " IEC 61400-3, International Electrotechnical Commission, 2009.
4. "風力發電4年推動計畫" ,經濟部能源局,2017.
5. 網路資料:風力發電單一服務窗口。2023年6月,取自https://www.twtpo.org.tw/offshore_show.aspx?id=963.
6. BS 7910, " Guide to Methods for Assessing the Acceptability of Flaws in Metallic Structures, " British Standard Institution, 2013.
7. ASME, “ Rules for Inservice Inspection of Nuclear Power Plant Components, ” ASME BPVC Section XI, 2010.
8. PD 6493, " Guidance on Methods for Assessing the Acceptability of Flaws in Fusion Welded Structures, " British Standard Institution, 1991.
9. B.C. O′Kelly and M.Arshad M, “ Offshore Wind Turbine Foundations: Analysis and Design, ” Editor C. Ng and L. Ran, Offshore Wind Farms, Woodhead Publishing, pp. 589-610, 2016.
10. 網路資料:維基百科。2023年6月,取自https://zh.wikipedia.org/wiki/%E9%A2%A8%E5%8A%9B%E7%99%BC%E9%9B%BB%E5%BB%A0.
11. “ Wind Turbines - Part 1: Design Requirements, ” IEC 61400-1, International Electrotechnical Commission, 2019.
12. API 579-1/ASME FFS-1, " Fitness-For-Service, " American Petroleum Institute and ASME, 2016.
13. G. Shen and G. Glinka, " Weight Functions for a Surface Semi-Elliptical Crack in a Finite Thickness Plate, " Theoretical and Applied Fracture Mechanics, Vol. 15, pp. 247-255, 1991 .
14. G. Glinka, “ Development of Weight Functions and Computer Integration Procedures for Calculating Stress Intensity Factors around Cracks Subjected to Complex Stress Fields, ” Analytical Services & Materials, Inc. 107 Research Drive, Hampton, VA 23666, USA, 1996.
15. X. J. Zheng, A. kiciak and G. Glinka, ′′ Weight Function and Stress Intensity Factors for Internal Surface Semi-Elliptical Crack in Thick-Walled Cylinder, ′′ Engineering Fracture Mechanics, Vol. 58, No. 3, pp. 207-221, 1997.
16. Q. A. Mai, J. D. Sørensen, and P. Rigo, “ Updating Failure Probability of a Welded Joint in Offshore Wind Turbine Substructures,” The 35th International Conference on Ocean, Offshore and Arctic Engineering Conference, South Korea, June 19-24 , 2016.
17. B. Nageswara Rao, A.R. Acharya, ′′ Failure Assessment on M300 Grade Maraging Steel Cylindrical Pressure Vessels with an Internal Surface Crack, ′′ Pressure Vessels and Piping, Vol. 75, pp. 537-543, 1998.
18. S. Yoshimura, J.-S. Lee, G. Yagawa, “ Automated System for Analyzing Stress Intensity Factors of Three-Dimensional Cracks: Its Application to Analyses of Two Dissimilar Semi-Elliptical Surface Cracks in Plate, ” J Press Vessel Technol Trans ASME, Vol. 119, No. 1, pp. 18-26, 1997.
19. H.E. Coules, “ Stress Intensity Interaction Between Dissimilar Semi-Elliptical Surface Cracks, ” International Journal of Pressure Vessels and Piping,Vol. 146, pp. 55-64, 2016.
20. L. Ziegler and M. Muskulus, “ Comparing A Fracture Mechanics Model to The SN-Curve Approach for Jacket-Supported Offshore Wind Turbines: Challenges and Opportunities for Lifetime Prediction, ” ASME 35th International Conference on Ocean, Offshore and Arctic Engineering Conference, South Korea, June 19-24, 2016.
21. J.-F. Wen, Y. Zhan, S.-T. Xuan, “ A Combination Rule for Multiple Surface Cracks Based on Fatigue Crack Growth Life, ” AIMS Materials Science, Vol. 3, No. 4, pp. 1649-1664, 2016.
22. J. T. Tan and B.K. Chen, “ A New Method for Modelling the Coalescence and Growth of Two Coplanar Short Cracks of Varying Lengths in AA7050-T7451 Aluminium Alloy, ” International Journal of Fatigue,Vol. 49, pp. 73-80, 2013.
23. K. Ma, J. Zheng, Z. Hua, “ Hydrogen Assisted Fatigue Life of Cr–Mo Steel Pressure Vessel with Coplanar Cracks Based on Fatigue Crack Growth Analysis, ” International Journal of Hydrogen Energy, Vol. 45, No. 38, pp. 20132-20141, 2020.
24. DNV GL, and Garrad Hassan & Partners Ltd, “ Bladed User Manual Version 4.8, ” 2016.
25. 陳俞凱、陳景林, "以IEC 61400-1 對彰濱風場數據進行風況評估",台灣風能協會學術研討會暨NEPII離岸風力及海洋能源主軸中心成果發表會,國立台灣大學,台灣,2015年12月8日.
26. DNV GL, and Garrad Hassan & Partners Ltd, “ Bladed Theory Manual Version 4.8, ” 2016.
27. 網路資料: Particle Motion in Deep Water。2023年6月,取自https://www.scubageek.com/articles/wwwparticle.html.
28. T. Gentils, L. Wang, and A. Kolios, “ Integrated Structural Optimisation of Offshore Wind Turbine Support Structures Based on Finite Element Analysis and Genetic Algorithm, ” Applied Energy, Vol. 199, pp. 187-204, 2017.
29. 唐榕崧, "複合材料葉片振動行為之研究" ,國立交通大學工學院專班精密與自動化工程學程,碩士論文,2009.
30. 王晟桓、陳世雄, "基於葉素動量理論之水平軸風力發電機葉片空氣動力分析程序",臺灣風能學術研討會,G6-09,國立澎湖科技大學,台灣,2010年12月17日.
31. DNV GL, “ Design of Offshore Wind Turbine Structures,” DNV-OS-J101, 2014.
32. M. B. Fuchs, "The Unit-Load Method, " Structures and Their Analysis: Springer, pp. 85-110, 2016.
33. 網路資料:維基百科。2023年6月,取自https://upload.wikimedia.org/wikipedia/commons/e/e7/Fracture_modes_v2.svg.
34. A. A. Griffith, “ The Phenomena of Rupture and Flow in Solids, ” Philosophical Transactions of the Royal Society of London, Vol. 221, pp. 163-198, 1921.
35. G. R. Irwin, “ Analysis of Stresses and Strains Near the End of a Crack Traversing a Plate, ” Journal of Applied Mechanics, Trans of ASME, Vol. 24, pp. 361-364, 1957.
36. M. Chiesa, “ Linking Advanced Fracture Models to Structural Analysis, ” The Norwegian University of Science and Technology, Faculty of Mechanical Engineering, Department of Applied Mechanics, Thermodynamics and Fluiddynamics, 2001.
37. Z. Zhuang,Z. Liu, B. CHeng, “ Fundamental Linear Elastic Fracture Mechanics, ” in Extended Finite Element Method, pp. 13-31, 2014.
38. G. R. Liu, N. Nourbakhshnia, Y.W. Zhang, “ A Novel Singular ES-FEM Method for Simulating Singular Stress Fields Near the Crack Tips for Linear Fracture Problems, ” Engineering Fracture Mechanics, Vol. 78, No. 6, pp. 863-876, 2011.
39. A. O. Ayhan, A. C. Kaya, “ Fracture Analysis of Cracks in Orthotropic Materials Using ANSYS, ” Proceedings of the ASME Turbo Expo 2006: Power for Land, Sea, and Air. Vol. 5: Marine, Microturbines and Small Turbomachinery, Oil and Gas Applications, Structures and Dynamics, Parts A and B. Barcelona, Spain. May 8–11, pp. 873-881, ASME, 2006.
40. S. R. Lampman, “ ASM Handbook: Vol. 19, Fatigue and Fracture, ” ASM International, 1996.
41. P. C. Paris and F. Erdogan, “ A Critical Analysis of Crack Propagation Law, ” Journal of Basic Engineering, Vol. 85, pp. 528-534, 1963.
42. E. Ghafoori & M. Motavalli, “ A Retrofit Theory to Prevent Fatigue Crack Initiation in Aging Riveted Bridges Using Carbon Fiber-Reinforced Polymer Materials, ” Polymers (Basel), Vol. 8, No. 8, 2016.
43. M. Matsuishi and T. Endo, " Fatigue of Metals Subjected to Varying Stress, " Japan Society of Mechanical Engineers, Fukuoka, Japan, Vol. 68, No. 2, pp. 37-40, 1968.
44. " Standard Practices for Cycle Counting in Fatigue Analysis, " ASTM International, 2017.
45. J. A. Bannantine, J. Comer, and J. L. Handrock. " Fundamentals of Metal Fatigue Analysis((Book)), " Research supported by the University of Illinois. Englewood Cliffs, NJ, Prentice Hall, 1990.
46. R. Sunder, S.A.S. & T.A. Bhaskaran, “ Cycle Counting for Fatigue Crack Growth Analysis, ’’ International Journal of Fatigue,Vol. 6, No. 3, pp. 147-156, 1984.
47. J. Jonkman, S. Butterfield, W. Musial, and G. Scott, “ Definition of a 5-MW Reference Wind Turbine for Offshore System Development, ” National Renewable Energy Laboratory, Golden,” CO, Technical Report No. NREL/TP-500-38060, 2009.
48. 黃宣凱,"離岸風力機塔架疲勞裂縫成長分析",國立中央大學機械工程學系,碩士論文,2022。.
49. U. F. Gamiz, E. Zulueta, A. Boyano, J. A. R. Hernanz, and J. M. L. Guede, “ Microtab Design and Implementation on a 5MW Wind Turbine, ” Applied Sciences, Vol. 7, No. 6, pp. 536-553, 2017.
50. J. Jonkman and W. Musial, “ Offshore Code Comparison Collaboration (OC3) for IEA Wind Task 23 Offshore Wind Technology and Deployment,” National Renewable Energy Laboratory, Golden, ” CO, Technical Report No. NREL/TP-5000-48191, 2010.
51. S. Aasen, A. M. Page, K. S. Skau, and T. A Nygaard, “ Effect of the Foundation Modelling on the Fatigue Lifetime of a Monopile-based Offshore Wind Turbine, ” Wind Energy Science Discussions, Vol. 2, pp. 361-376, 2016.
52. 洪浚傑,"離岸風力機負載分析與結構應力分析",國立中央大學機械工程學系,碩士論文,2019.
53. 劉岳群,"離岸風力機塔架在正常發電下之疲勞分析",國立中央大學機械工程學系,碩士論文,2020.
54. 施忠賢,"彰工II塔架結構計算書",施忠賢結構計師事務所,2010.
55. I. Pidgurskyi, M. Stashkiv, and M. Pidgurskyi, " Investigation of the Coalescence of Twin Coplanar Semi-Elliptical Fatigue Cracks in Structural Steel Elements Under Cyclic Loading, " Machines. Technologies. Materials. Vol. 15, No. 8, pp.316-318, 2021.
56. 楊子霆,"大型風力機塔架延壽評估",國立中央大學機械工程學系,碩士論文,2018.
57. 經濟部標準檢驗局,′′GH-Bladed訓練手冊′′,DNV-GL Bladed 負載模擬及性能分析軟體訓練課程,2017.
58. 崔海平,"離岸風電場址風況、海洋參數及負載分析技術研究",金屬工業研究發展中心研究報告,台灣,2018.
59. A. Glisic, G. T. Ferraz, and P. Schaumann, " Influence of wave load variations on offshore wind turbine structures, " Wind Energy Harvesting, pp. 306-309, 2017.
60. E. -T. Yousif, " Pitch Angle Control of Variable Speed Wind Turbine, " American J. of Engineering and Applied Sciences,Vol.1, No. 2, pp. 118-120, 2008.
61. S. T. Navalkar, J. W. van Wingerden, and G.A.M. van Kuik, " Individual Blade Pitch for Yaw Control, " Journal of Physics: Conference Series,Vol. 524, 2014.
62. M. Eduard, and C. P. Butterfield. " Pitch-Controlled Variable-Speed Wind Turbine Generation, " IEEE transactions on Industry Applications, Vol. 37, No. 1, pp.240-246, 2001.
63. " Guideline for the Certification of Wind Turbines, " Germanischer Lloyd, Hamburg, 2010.
64. 周聖勳,"離岸風力機塔架之開機負載及失效評估分析",國立中央大學機械工程學系,碩士論文,2021.
65. N. Stavridou, E. Efthymiou, and C. C. Baniotopoulos, “ Welded Connections of Wind Turbine Towers under Fatigue Loading: Finite Element Analysis and Comparative Study, ” American Journal of Engineering and Applied Sciences, Vol. 8, No. 4, pp. 489-503, 2015.
66. 馬尼,"平板與薄管中半橢圓形裂縫疲勞成長的數值模擬",國立虎尾科技大學飛機工程系航空與電子科技碩士班,碩士論文,2019.
67. P. Amirafshari, F. Brenan, A. Kolios, “ A Fracture Mechanics Framework for Optimising Design and Inspection of Offshore Wind Turbine Support Structures Against Fatigue Failure, ” Wind Energy Science, Vol. 6, No. 3, pp. 677-699, 2021.
68. AWS, “ Structural Welding Code—Steel, ” AWS D1.1/D1.1M, 2006.
69. ASME, “ Rules for Construction of Pressure Vessels, ” ASME BPVC Section VIII, 2017.
70. A. M. Alshoaibi, “ Comprehensive Comparisons of Two-and Three-Dimensional Numerical Estimation of Stress Intensity Factors and Crack Propagation in Linear Elastic Analysis, ” International Journal of Integrated Engineering, Vol. 11, No. 6, pp. 45-52, 2019.
71. ASTM E647-15e1, “ Standard TEST Method for Measurement of Fatigue Crack Growth Rates, ” ASTM International, West Conshohocken, PA, 2015.
72. C. M. Suh, K. B. Yoon, N. S. Hwang, “ A Simulation of the Behaviour of Multi-Surface Fatigue Cracks in Type 304 Stainless Steel Plate, ” Fatigue & Fracture of Engineering Materials & Structure, Vol. 18, No. 4, pp. 515-525, 1995. |