博碩士論文 110323026 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:67 、訪客IP:3.145.9.174
姓名 吳柏澄(Bo-Cheng Wu)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 離岸風力分機塔架於不同疲勞工況之應力分析及共平面裂縫之疲勞裂縫成長分析
相關論文
★ 三次元量床之虛擬儀器教學與訓練系統之設計與開發★ 駕駛模擬器技術開發及其在駕駛行為研究之應用
★ 電源模組老化因子與加速試驗模型之研究★ 應用駕駛模擬器探討語音防撞警示系統 對駕駛行為之影響
★ 遠距健康監測與復健系統之開發與研究★ 藥柱低週疲勞特性與壽限評估模式之研究
★ 非接觸式電子經緯儀電腦模擬教學系統之研究★ 適應性巡航控制系統對於駕駛績效影響之研究
★ 車輛零組件路況模擬系統之開發研究★ 應用殘障駕駛模擬器探討失衡路況對人體重心影響之研究
★ 聚縮醛(POM)機械性質之射出成型條件最佳化研究★ 駕駛模擬儀之開發驗證及應用於駕駛疲勞之研究
★ 即時眼部狀態偵測系統之研究★ 短玻璃纖維強化聚縮醛射出成型條件最佳化與機械性質之研究
★ 手推輪椅虛擬實境系統開發之研究★ 應用駕駛績效預測車輛碰撞風險之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2025-7-31以後開放)
摘要(中) 本研究探討不同疲勞工況對於塔架應力所造成的影響,以及不同尺寸的共平面裂縫之疲勞裂縫成長評估。以 NREL 5MW OWT 風力機為模型,並考量IEC 61400-3之疲勞工況,包括DLC 2.4 正常發電加上故障、DLC 3.1 啟動、DLC 4.1 關機、DLC 6.4 惰轉及DLC 7.2惰轉加上故障等工況。分析方法整合了 GH-Bladed、ANSYS及MATLAB軟體,風況及海況採用新竹沿岸資料。第一步部分為探討前述疲勞工況對於塔架應力大小及分布的影響,接著再以造成較大受力條件之工況,進一步探討風速、Hs及Tp對塔架應力之影響。第二部分先探討不同的裂縫尺寸及裂縫相距距離對於共平面裂縫之交互因子分布影響,然後以應力分析之結果為基礎,根據BS 7910所制定的失效評估方法,取得失效裂縫尺寸,結合疲勞裂縫成長理論,以得到結構疲勞壽命。
在第一步部分的分析中,在各疲勞工況中,切入(Cut-in)、額定(Rated)及切出(Cut-out)等三種風速的應力分布都顯示,在塔架方位角180度的地方有最大Z軸應力,而其中僅DLC 2.4對塔架造成較大應力,產生Mode I 形式的裂縫成長,其餘工況則都不會使裂縫成長。
而基於DLC 2.4工況所討論的風速、Hs及Tp對Z軸應力的影響,結果發現從切入風速至額定風速的過程中,Z軸應力會越大,而從額定風速至切出風速的過程中,Z軸應力會越小,Hs是值越大,Z軸應力會越大。Tp則是沒有表現出明顯趨勢。
第二部分的分析中,得知共平面裂縫的間距以及裂縫大小,會影響裂縫前緣的應力強度因子及交互因子。裂縫的間距越短或裂縫的尺寸越大,兩個裂縫互相靠近的那側應力強度因子及交互因子會上升。在共平面裂縫之疲勞裂縫成長分析中,對於BS 7910、ASME XI 及 PD 6493三種規範所提出的將共平面裂縫等效為單一裂縫的建議進行比較。結果顯示,以失效評估的觀點來看,PD 6493對於裂縫等效的臨界距離之定義較好,在該規範定義的距離下,共平面裂縫互相影響的現象已幾乎降至沒有。但以疲勞裂縫成長的觀點來看,BS 7910所定義的裂縫等效尺寸較為合適,因為該規範所等效後的裂縫a/c值與共平面裂縫a/c值的差距較小,故在疲勞裂縫成長分析上,會相較於另外兩個規範獲得更佳疲勞壽命結果。
摘要(英) This study explores the influence of different fatigue load cases on the stresses in tower structures and assesses the fatigue crack growth for different sizes of coplanar cracks. The NREL 5MW OWT wind turbine is adopted, and the fatigue load cases defined in the IEC 61400-3 standard including DLC 2.4 (power production plus occurrence of fault), DLC 3.1 (start up), DLC 4.1 (normal shut down), DLC 6.4 (idling), and DLC 7.2 (idling and fault condition) are considered. The analysis method integrates GH-Bladed, ANSYS, and MATLAB software. Wind and sea conditions are based on the data from the Hsinchu coast. The first part of this study focuses on investigating the impact of the aforementioned fatigue load cases on the magnitude and distribution of stresses in the tower structure. The effects of wind speed, significant wave height (Hs), and peak period (Tp) on the tower stresses are explored. The results show that only DLC 2.4 causes greater stress to the tower. The crack growth in Mode I form is generated, and the other load cases do not make the crack growth. Based on the DLC 2.4 condition, it is found that the Z-axis stress will increase during the wind speed from the cut-in to the rated, while the Z-axis stress will decrease during the wind speed from the rated to the cut-out. The greater the Hs value, the greater the Z-axis stress will be. The effect of Tp is not obvious.
In the second part, this study examines the effect of different crack sizes and distances between coplanar cracks on the distribution of the stress intensity factor and interaction factor. The results show that the shorter the spacing of the coplanar cracks or the larger the size of the cracks, the stress intensity factor and the interaction factor will increase on the side where the two cracks are close to each other. In the analysis of fatigue crack growth for coplanar cracks, a comparison of treating coplanar cracks as an equivalent single crack is made among the recommendations provided by BS 7910, ASME XI, and PD 6493. From the failure assessment perspective, PD 6493 provides a better definition of the critical distance for crack equivalence. Under the distance defined by this standard, the phenomenon of coplanar fracture interaction has been almost reduced to none. However, from the viewpoint of view of fatigue crack growth, the equivalent crack size defined by BS 7910 is more appropriate, because the difference between the equivalent crack a/c value and the coplanar crack a/c value is small. Therefore, better fatigue life results can be obtained compared with the other two standards in fatigue crack growth analysis.
關鍵字(中) ★ 離岸風力機
★ 塔架
★ 疲勞工況
★ 交互因子
★ 共平面裂縫
★ 疲勞裂縫成長
關鍵字(英) ★ Offshore wind turbine
★ tower
★ fatigue load cases
★ interaction factors
★ co-planar cracks
★ fatigue crack growth
論文目次 摘要 i
Abstract iii
誌謝 v
目錄 vi
圖目錄 ix
表目錄 xv
符號說明 xvi
第一章、緒論 1
1-1 研究背景與動機 1
1-2 研究目的 4
1-3 離岸風力機簡介 6
1-3-1 風力機原理 6
1-3-2 離岸風力機機組構造 7
1-4 文獻回顧 9
1-4-1 離岸風力機之設計規定 9
1-4-2 應力強度因子計算 9
1-4-3 裂縫結構之失效評估分析 10
1-4-4 共平面缺陷之交互影響分析 11
1-4-5 塔架銲道疲勞裂縫成長分析 11
第二章、理論說明 13
2-1 軟體說明 13
2-1-1 GH-Bladed 13
2-1-2 MATLAB 13
2-1-3 ANSYS 14
2-2 風力機外部條件 14
2-2-1 風況條件 15
2-2-1-1 風速分布 15
2-2-1-2 十分鐘平均風速 16
2-2-1-3 風切係數 16
2-2-1-4 紊流強度 17
2-2-1-5 極端陣風 18
2-2-2 海況條件 18
2-2-2-1 波浪 18
2-2-2-2 洋流 21
2-2-2-3 潮汐水位 22
2-3 離岸風力機負載 23
2-3-1 慣性與重力負載 24
2-3-2 氣動力負載 25
2-3-2-1 葉片 25
2-3-2-2 塔架 29
2-3-3 水動力負載 29
2-3-4 負載歷程輸出 30
2-4 單位負載法 30
2-5 疲勞裂縫成長 30
2-5-1 破壞力學 30
2-5-1-1線彈性破壞力學(Linear Elastic Fracture Mechanics, LEFM) 31
2-5-2 疲勞裂縫成長曲線 34
2-5-3 疲勞裂縫成長壽命 36
2-5-4 疲勞裂縫起始 36
2-6 循環計數 38
第三章、離岸風力機在疲勞工況下之塔架應力分析 41
3-1 研究方法 42
3-1-1 離岸風力機型號與規格 42
3-1-2 建構 NREL 5MW OWT 模型 45
3-1-2-1 GH-Bladed建構NREL 5MW OWT模型 45
3-1-2-2 ANSYS Workbench建構NREL 5MW OWT模型 48
3-1-3 NREL 5MW OWT 設計工況 51
3-1-3-1 DLC 2.4 正常發電加故障之工況 52
3-1-3-2 DLC 3.1 啟動之工況與DLC 4.1 正常停機之工況 56
3-1-3-3 DLC 6.4 惰轉之工況與DLC 7.2 惰轉加上故障之工況 57
3-1-3-4 極端運轉陣風(Extreme Operating Gust, EOG) 59
3-1-3-5 輸入GH-Bladed 之工況參數統整 60
3-1-4 GH-Bladed 塔架負載轉換 61
3-2 疲勞工況對於塔架應力之影響 64
3-2-1 單位負載法驗證 64
3-2-2 工況對於塔架疲勞之影響 65
3-2-2-1 疲勞裂縫成長 65
3-2-2-2 疲勞裂縫起始 80
3-2-3 塔架應力分析結果 85
3-2-3-1 DLC 2.4 塔架方位角之正向應力分布 85
3-2-3-2 DLC 2.4 風速對於正向應力之影響 85
3-2-3-3 DLC 2.4 Hs及Tp對於正向應力之影響 86
3-2-3-4 Pitch Rate 對於正向應力之影響 88
第四章、共平面裂縫之交互因子及疲勞裂縫成長分析 90
4-1 研究方法 91
4-1-1 裂縫位置、形狀及尺寸 91
4-1-2 塔架裂縫之失效評估方法 94
4-1-2-1 失效評估曲線 95
4-1-2-2 待評估點 98
4-1-3 共平面裂縫交互因子分析 101
4-1-4 共平面裂縫疲勞成長分析 105
4-1-4-1 共平面裂縫等效方法 106
4-1-4-2 應力強度因子計算 107
4-1-4-3 疲勞裂縫成長壽命預測 112
4-2 共平面裂縫成長及交互因子分析結果討論 114
4-2-1 ANSYS 計算應力強度因子之準確性驗證 114
4-2-2 共平面裂縫之交互因子計算驗證 116
4-2-3 共平面裂縫之應力強度因子及交互因子分析結果 117
4-2-3-1 相同大小之起始裂縫 118
4-2-3-2 不同大小之起始裂縫 132
4-2-3-3 不同規範等效出的裂縫之應力強度因子與交互因子差異 142
4-2-4 共平面裂縫成長壽命預測結果 143
第五章、結論與未來研究方向 149
5-1 結論 149
5-2 未來研究方向 150
參考文獻 151
參考文獻 1. 網路資料:永續台灣ESG今周刊。2023年6月,取自 https://esg.businesstoday.com.tw/article/category/180692/post/202303270014/%E5%8F%B0%E7%81%A3%E7%AC%AC3%E5%BA%A7%E9%9B%A2%E5%B2%B8%E9%A2%A8%E5%A0%B4%E5%AE%8C%E5%B7%A5%EF%BC%81%E6%B5%B7%E8%83%BD47%E5%BA%A7%E9%A2%A8%E6%A9%9F%E8%BF%8E%E5%95%86%E8%BD%89%EF%BC%8C%E5%8F%B0%E7%81%A3%E9%A2%A8%E9%9B%BB%E5%BB%BA%E7%BD%AE%E7%82%BA%E4%BB%80%E9%BA%BC%E5%BE%88%E5%9B%B0%E9%9B%A3%EF%BC%9F。.
2. 網路資料:4C Offshore。2023年6月,取自https://www.4coffshore.com/windfarms/windspeeds.aspx。.
3. " Wind Turbines - Part 3: Design Requirements for Offshore Wind Turbines, " IEC 61400-3, International Electrotechnical Commission, 2009.
4. "風力發電4年推動計畫" ,經濟部能源局,2017.
5. 網路資料:風力發電單一服務窗口。2023年6月,取自https://www.twtpo.org.tw/offshore_show.aspx?id=963.
6. BS 7910, " Guide to Methods for Assessing the Acceptability of Flaws in Metallic Structures, " British Standard Institution, 2013.
7. ASME, “ Rules for Inservice Inspection of Nuclear Power Plant Components, ” ASME BPVC Section XI, 2010.
8. PD 6493, " Guidance on Methods for Assessing the Acceptability of Flaws in Fusion Welded Structures, " British Standard Institution, 1991.
9. B.C. O′Kelly and M.Arshad M, “ Offshore Wind Turbine Foundations: Analysis and Design, ” Editor C. Ng and L. Ran, Offshore Wind Farms, Woodhead Publishing, pp. 589-610, 2016.
10. 網路資料:維基百科。2023年6月,取自https://zh.wikipedia.org/wiki/%E9%A2%A8%E5%8A%9B%E7%99%BC%E9%9B%BB%E5%BB%A0.
11. “ Wind Turbines - Part 1: Design Requirements, ” IEC 61400-1, International Electrotechnical Commission, 2019.
12. API 579-1/ASME FFS-1, " Fitness-For-Service, " American Petroleum Institute and ASME, 2016.
13. G. Shen and G. Glinka, " Weight Functions for a Surface Semi-Elliptical Crack in a Finite Thickness Plate, " Theoretical and Applied Fracture Mechanics, Vol. 15, pp. 247-255, 1991 .
14. G. Glinka, “ Development of Weight Functions and Computer Integration Procedures for Calculating Stress Intensity Factors around Cracks Subjected to Complex Stress Fields, ” Analytical Services & Materials, Inc. 107 Research Drive, Hampton, VA 23666, USA, 1996.
15. X. J. Zheng, A. kiciak and G. Glinka, ′′ Weight Function and Stress Intensity Factors for Internal Surface Semi-Elliptical Crack in Thick-Walled Cylinder, ′′ Engineering Fracture Mechanics, Vol. 58, No. 3, pp. 207-221, 1997.
16. Q. A. Mai, J. D. Sørensen, and P. Rigo, “ Updating Failure Probability of a Welded Joint in Offshore Wind Turbine Substructures,” The 35th International Conference on Ocean, Offshore and Arctic Engineering Conference, South Korea, June 19-24 , 2016.
17. B. Nageswara Rao, A.R. Acharya, ′′ Failure Assessment on M300 Grade Maraging Steel Cylindrical Pressure Vessels with an Internal Surface Crack, ′′ Pressure Vessels and Piping, Vol. 75, pp. 537-543, 1998.
18. S. Yoshimura, J.-S. Lee, G. Yagawa, “ Automated System for Analyzing Stress Intensity Factors of Three-Dimensional Cracks: Its Application to Analyses of Two Dissimilar Semi-Elliptical Surface Cracks in Plate, ” J Press Vessel Technol Trans ASME, Vol. 119, No. 1, pp. 18-26, 1997.
19. H.E. Coules, “ Stress Intensity Interaction Between Dissimilar Semi-Elliptical Surface Cracks, ” International Journal of Pressure Vessels and Piping,Vol. 146, pp. 55-64, 2016.
20. L. Ziegler and M. Muskulus, “ Comparing A Fracture Mechanics Model to The SN-Curve Approach for Jacket-Supported Offshore Wind Turbines: Challenges and Opportunities for Lifetime Prediction, ” ASME 35th International Conference on Ocean, Offshore and Arctic Engineering Conference, South Korea, June 19-24, 2016.
21. J.-F. Wen, Y. Zhan, S.-T. Xuan, “ A Combination Rule for Multiple Surface Cracks Based on Fatigue Crack Growth Life, ” AIMS Materials Science, Vol. 3, No. 4, pp. 1649-1664, 2016.
22. J. T. Tan and B.K. Chen, “ A New Method for Modelling the Coalescence and Growth of Two Coplanar Short Cracks of Varying Lengths in AA7050-T7451 Aluminium Alloy, ” International Journal of Fatigue,Vol. 49, pp. 73-80, 2013.
23. K. Ma, J. Zheng, Z. Hua, “ Hydrogen Assisted Fatigue Life of Cr–Mo Steel Pressure Vessel with Coplanar Cracks Based on Fatigue Crack Growth Analysis, ” International Journal of Hydrogen Energy, Vol. 45, No. 38, pp. 20132-20141, 2020.
24. DNV GL, and Garrad Hassan & Partners Ltd, “ Bladed User Manual Version 4.8, ” 2016.
25. 陳俞凱、陳景林, "以IEC 61400-1 對彰濱風場數據進行風況評估",台灣風能協會學術研討會暨NEPII離岸風力及海洋能源主軸中心成果發表會,國立台灣大學,台灣,2015年12月8日.
26. DNV GL, and Garrad Hassan & Partners Ltd, “ Bladed Theory Manual Version 4.8, ” 2016.
27. 網路資料: Particle Motion in Deep Water。2023年6月,取自https://www.scubageek.com/articles/wwwparticle.html.
28. T. Gentils, L. Wang, and A. Kolios, “ Integrated Structural Optimisation of Offshore Wind Turbine Support Structures Based on Finite Element Analysis and Genetic Algorithm, ” Applied Energy, Vol. 199, pp. 187-204, 2017.
29. 唐榕崧, "複合材料葉片振動行為之研究" ,國立交通大學工學院專班精密與自動化工程學程,碩士論文,2009.
30. 王晟桓、陳世雄, "基於葉素動量理論之水平軸風力發電機葉片空氣動力分析程序",臺灣風能學術研討會,G6-09,國立澎湖科技大學,台灣,2010年12月17日.
31. DNV GL, “ Design of Offshore Wind Turbine Structures,” DNV-OS-J101, 2014.
32. M. B. Fuchs, "The Unit-Load Method, " Structures and Their Analysis: Springer, pp. 85-110, 2016.
33. 網路資料:維基百科。2023年6月,取自https://upload.wikimedia.org/wikipedia/commons/e/e7/Fracture_modes_v2.svg.
34. A. A. Griffith, “ The Phenomena of Rupture and Flow in Solids, ” Philosophical Transactions of the Royal Society of London, Vol. 221, pp. 163-198, 1921.
35. G. R. Irwin, “ Analysis of Stresses and Strains Near the End of a Crack Traversing a Plate, ” Journal of Applied Mechanics, Trans of ASME, Vol. 24, pp. 361-364, 1957.
36. M. Chiesa, “ Linking Advanced Fracture Models to Structural Analysis, ” The Norwegian University of Science and Technology, Faculty of Mechanical Engineering, Department of Applied Mechanics, Thermodynamics and Fluiddynamics, 2001.
37. Z. Zhuang,Z. Liu, B. CHeng, “ Fundamental Linear Elastic Fracture Mechanics, ” in Extended Finite Element Method, pp. 13-31, 2014.
38. G. R. Liu, N. Nourbakhshnia, Y.W. Zhang, “ A Novel Singular ES-FEM Method for Simulating Singular Stress Fields Near the Crack Tips for Linear Fracture Problems, ” Engineering Fracture Mechanics, Vol. 78, No. 6, pp. 863-876, 2011.
39. A. O. Ayhan, A. C. Kaya, “ Fracture Analysis of Cracks in Orthotropic Materials Using ANSYS, ” Proceedings of the ASME Turbo Expo 2006: Power for Land, Sea, and Air. Vol. 5: Marine, Microturbines and Small Turbomachinery, Oil and Gas Applications, Structures and Dynamics, Parts A and B. Barcelona, Spain. May 8–11, pp. 873-881, ASME, 2006.
40. S. R. Lampman, “ ASM Handbook: Vol. 19, Fatigue and Fracture, ” ASM International, 1996.
41. P. C. Paris and F. Erdogan, “ A Critical Analysis of Crack Propagation Law, ” Journal of Basic Engineering, Vol. 85, pp. 528-534, 1963.
42. E. Ghafoori & M. Motavalli, “ A Retrofit Theory to Prevent Fatigue Crack Initiation in Aging Riveted Bridges Using Carbon Fiber-Reinforced Polymer Materials, ” Polymers (Basel), Vol. 8, No. 8, 2016.
43. M. Matsuishi and T. Endo, " Fatigue of Metals Subjected to Varying Stress, " Japan Society of Mechanical Engineers, Fukuoka, Japan, Vol. 68, No. 2, pp. 37-40, 1968.
44. " Standard Practices for Cycle Counting in Fatigue Analysis, " ASTM International, 2017.
45. J. A. Bannantine, J. Comer, and J. L. Handrock. " Fundamentals of Metal Fatigue Analysis((Book)), " Research supported by the University of Illinois. Englewood Cliffs, NJ, Prentice Hall, 1990.
46. R. Sunder, S.A.S. & T.A. Bhaskaran, “ Cycle Counting for Fatigue Crack Growth Analysis, ’’ International Journal of Fatigue,Vol. 6, No. 3, pp. 147-156, 1984.
47. J. Jonkman, S. Butterfield, W. Musial, and G. Scott, “ Definition of a 5-MW Reference Wind Turbine for Offshore System Development, ” National Renewable Energy Laboratory, Golden,” CO, Technical Report No. NREL/TP-500-38060, 2009.
48. 黃宣凱,"離岸風力機塔架疲勞裂縫成長分析",國立中央大學機械工程學系,碩士論文,2022。.
49. U. F. Gamiz, E. Zulueta, A. Boyano, J. A. R. Hernanz, and J. M. L. Guede, “ Microtab Design and Implementation on a 5MW Wind Turbine, ” Applied Sciences, Vol. 7, No. 6, pp. 536-553, 2017.
50. J. Jonkman and W. Musial, “ Offshore Code Comparison Collaboration (OC3) for IEA Wind Task 23 Offshore Wind Technology and Deployment,” National Renewable Energy Laboratory, Golden, ” CO, Technical Report No. NREL/TP-5000-48191, 2010.
51. S. Aasen, A. M. Page, K. S. Skau, and T. A Nygaard, “ Effect of the Foundation Modelling on the Fatigue Lifetime of a Monopile-based Offshore Wind Turbine, ” Wind Energy Science Discussions, Vol. 2, pp. 361-376, 2016.
52. 洪浚傑,"離岸風力機負載分析與結構應力分析",國立中央大學機械工程學系,碩士論文,2019.
53. 劉岳群,"離岸風力機塔架在正常發電下之疲勞分析",國立中央大學機械工程學系,碩士論文,2020.
54. 施忠賢,"彰工II塔架結構計算書",施忠賢結構計師事務所,2010.
55. I. Pidgurskyi, M. Stashkiv, and M. Pidgurskyi, " Investigation of the Coalescence of Twin Coplanar Semi-Elliptical Fatigue Cracks in Structural Steel Elements Under Cyclic Loading, " Machines. Technologies. Materials. Vol. 15, No. 8, pp.316-318, 2021.
56. 楊子霆,"大型風力機塔架延壽評估",國立中央大學機械工程學系,碩士論文,2018.
57. 經濟部標準檢驗局,′′GH-Bladed訓練手冊′′,DNV-GL Bladed 負載模擬及性能分析軟體訓練課程,2017.
58. 崔海平,"離岸風電場址風況、海洋參數及負載分析技術研究",金屬工業研究發展中心研究報告,台灣,2018.
59. A. Glisic, G. T. Ferraz, and P. Schaumann, " Influence of wave load variations on offshore wind turbine structures, " Wind Energy Harvesting, pp. 306-309, 2017.
60. E. -T. Yousif, " Pitch Angle Control of Variable Speed Wind Turbine, " American J. of Engineering and Applied Sciences,Vol.1, No. 2, pp. 118-120, 2008.
61. S. T. Navalkar, J. W. van Wingerden, and G.A.M. van Kuik, " Individual Blade Pitch for Yaw Control, " Journal of Physics: Conference Series,Vol. 524, 2014.
62. M. Eduard, and C. P. Butterfield. " Pitch-Controlled Variable-Speed Wind Turbine Generation, " IEEE transactions on Industry Applications, Vol. 37, No. 1, pp.240-246, 2001.
63. " Guideline for the Certification of Wind Turbines, " Germanischer Lloyd, Hamburg, 2010.
64. 周聖勳,"離岸風力機塔架之開機負載及失效評估分析",國立中央大學機械工程學系,碩士論文,2021.
65. N. Stavridou, E. Efthymiou, and C. C. Baniotopoulos, “ Welded Connections of Wind Turbine Towers under Fatigue Loading: Finite Element Analysis and Comparative Study, ” American Journal of Engineering and Applied Sciences, Vol. 8, No. 4, pp. 489-503, 2015.
66. 馬尼,"平板與薄管中半橢圓形裂縫疲勞成長的數值模擬",國立虎尾科技大學飛機工程系航空與電子科技碩士班,碩士論文,2019.
67. P. Amirafshari, F. Brenan, A. Kolios, “ A Fracture Mechanics Framework for Optimising Design and Inspection of Offshore Wind Turbine Support Structures Against Fatigue Failure, ” Wind Energy Science, Vol. 6, No. 3, pp. 677-699, 2021.
68. AWS, “ Structural Welding Code—Steel, ” AWS D1.1/D1.1M, 2006.
69. ASME, “ Rules for Construction of Pressure Vessels, ” ASME BPVC Section VIII, 2017.
70. A. M. Alshoaibi, “ Comprehensive Comparisons of Two-and Three-Dimensional Numerical Estimation of Stress Intensity Factors and Crack Propagation in Linear Elastic Analysis, ” International Journal of Integrated Engineering, Vol. 11, No. 6, pp. 45-52, 2019.
71. ASTM E647-15e1, “ Standard TEST Method for Measurement of Fatigue Crack Growth Rates, ” ASTM International, West Conshohocken, PA, 2015.
72. C. M. Suh, K. B. Yoon, N. S. Hwang, “ A Simulation of the Behaviour of Multi-Surface Fatigue Cracks in Type 304 Stainless Steel Plate, ” Fatigue & Fracture of Engineering Materials & Structure, Vol. 18, No. 4, pp. 515-525, 1995.
指導教授 黃俊仁(Jiun-Ren Hwang) 審核日期 2023-7-25
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明