博碩士論文 110323051 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:21 、訪客IP:3.145.2.158
姓名 林冠宇(Guan-Yu Lin)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 PN 接面輸入電洞以電化學蝕刻 N 型碳化矽之研究
(Inputting the hole Induced by PN Junction to Electrochemically Etch N-type Silicon Carbide)
相關論文
★ 塑膠機殼內部表面處理對電磁波干擾防護研究★ 研磨頭氣壓分配在化學機械研磨晶圓膜厚移除製程上之影響
★ 利用光導效應改善非接觸式電容位移感測器測厚儀之研究★ 石墨材料時變劣化微結構分析
★ 半導體黃光製程中六甲基二矽氮烷 之數量對顯影後圖型之影響★ 可程式控制器機構設計之流程研究
★ 伺服沖床運動曲線與金屬板材成型關聯性分析★ 鋁合金7003與630不銹鋼異質金屬雷射銲接研究
★ 應用銲針尺寸與線徑之推算進行銲線製程第二銲點參數優化與統一之研究★ 複合式類神經網路預測貨櫃船主機油耗
★ 熱力微照射製作絕緣層矽晶材料之研究★ 微波活化對被植入於矽中之氫離子之研究
★ 矽/石英晶圓鍵合之研究★ 奈米尺度薄膜轉移技術
★ 光能切離矽薄膜之研究★ 氮矽基鍵合之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 本研究提出了一種對 N 型碳化矽加速蝕刻的方法,在碳化矽與陽極銅片之間放置了 P 型矽晶圓形成 PN 接面,施加電場後,能夠驅動 P 型矽晶 圓中的主要載流子(電洞)到 N 型碳化矽當中以加速電化學蝕刻。陰極電極為白金片,並且蝕刻液為氫氟酸 (49.5%) 與乙醇 (99.5%) 以體積比 1:1 調製,再分別以不同的摻雜濃度的 P 型矽晶圓對其進行電化學蝕刻。碳化矽在經過電化學蝕刻後會產生分層現象產生薄膜,由 SEM 的圖像可以得知,碳化矽在經過蝕刻後,孔隙率與蝕刻速率會隨著試片摻雜濃度的不同而有所改變。在使用 PN 接面蝕刻碳化矽的實驗中,發現了試片有未產生分層現象的部分,對其表面結構進行分析,發現了蝕刻會傾向於往碳化矽 表面拋光產生的划痕(缺陷)進行,且在 SEM 剖面圖當中得知未分層蝕 刻速度快於已分層的部分。在 I-V 圖中,電壓會有上升的情形,因為在蝕 刻過程中碳化矽表面所產生的薄膜形成了近似電容的效應,導致電流無法 流通造成電阻上升減慢了蝕刻速度,而利用 PN 接面蝕刻可改善此情況。 從 TEM、XRD 可知碳化矽在蝕刻後晶格不會有改變,EDS 可知碳化矽在 蝕刻後元素無太大變化,PL 則顯示出了未分層結構有藍移的情形發生。
摘要(英) This study proposes a method for accelerated etching of N-type silicon carbide. P-type silicon wafer is placed between the silicon carbide and the anode copper plate to form a PN junction. Applying an electric field can drive the primary carrier (holes) in the P-type silicon wafer into the N-type silicon carbide to accelerate electrochemical etching. The cathode electrode is a platinum plate, and the etching solution is a mixture of hydrofluoric acid (49.5%) and ethanol (99.5%) in a volume ratio of 1:1. After electrochemical etching, the silicon carbide undergoes layering to produce a thin film. SEM images showed that the porosity and etching rate of SiC changed with the doping concentration of the samples. The etching rate also increases as the doping concentration of the P-type silicon wafer increases. In the experiment of etching silicon carbide using a PN junction, some parts of the sample did not undergo layering. Analysis of the surface structure revealed that etching tended to occur at scratches (defects) generated by polishing the silicon carbide surface. In the I-V curve, the voltage increases due to the formation of a thin film on the silicon carbide surface during the etching process. However, using a PN junction for etching can improve this situation. TEM and XRD analyses revealed that the crystal lattice of silicon carbide did not change after etching, and EDS showed that there was no significant change in the elements of the silicon carbide after etching. PL revealed a blue shift in the non- layered structure.
關鍵字(中) ★ 碳化矽
★ 電化學蝕刻
★ PN接面
★ 多孔結構
關鍵字(英) ★ Silicon carbide
★ Electrochemical etching
★ PN junction
★ Porous structure
論文目次 摘要 ....................................................................................................................... i Abstract ...............................................................................................................ii
致謝 .....................................................................................................................iii
第一章 緒論........................................................................................................1
1-1 前言 ............................................................................................................ 1
1-2 研究動機與目的 ........................................................................................ 2
第二章 原理與文獻回顧....................................................................................3
2-1 蝕刻種類 .................................................................................................... 3
2-1-1 乾蝕刻................................................................................................. 3
2-1-2 濕蝕刻................................................................................................. 5
2-1-3 電化學蝕刻......................................................................................... 6
2-2 接面與電化學蝕刻之關係 ........................................................................ 7
2-2-1 蕭特基接面......................................................................................... 7
2-2-2 PN 接面............................................................................................... 9
第三章 實驗方法及步驟..................................................................................11
3-1 試片準備 .................................................................................................. 11
3-2 試片清洗 .................................................................................................. 12
3-3 實驗流程 .................................................................................................. 14
3-3-1 實驗準備及參數設定....................................................................... 14
3-3-2 電化學蝕刻槽及設備....................................................................... 14
3-3-3 蝕刻溶液調配................................................................................... 16
3-4 分析儀器介紹 .......................................................................................... 17
3-4-1表面輪廓儀 (StylusProfilometer)...................................................17
3-4-2 超高解析冷場發射掃描式電子顯微鏡 (Ultrahigh Resolution Cold Field Emission Scanning Electron Microscope, CFE-SEM)...................... 18
3-4-3 高解析掃描穿透式電子顯微鏡 (High Resolution Scanning Transmission Electron Microscope,HR-STEM)......................................... 19
3-4-4原子力顯微鏡 (AtomicForceMicroscope,AFM)..........................20
3-4-5 X 射線衍射儀 (X-ray Diffractometer ,XRD).................................. 21
3-4-6光激發螢光頻譜 (Photoluminescence,PL).....................................22
第四章 結果與討論..........................................................................................23
4-1 電化學蝕刻碳化矽基板 .......................................................................... 23
4-2 分層後的 SEM 碳化矽表面結構 ............................................................ 26
4-3 分層後不同摻雜濃度的蝕刻速度 .......................................................... 29
4-4 未分層區域分析 ..................................................................................... 32
4-4-1 試片表面樣貌.................................................................................. 32
4-4-2 表面顯微結構................................................................................... 33
4-4-3 未分層區域蝕刻速度....................................................................... 35
4-4-4 電壓-電流時間關係圖 ..................................................................... 37
4-5 PN 接面蝕刻剖面結構的變化 ................................................................ 39
4-6 蕭特基效應與 PN 接面的蝕刻結果分析與討論 .................................. 41
4-7 TEM 結果分析 ......................................................................................... 42
4-8 XRD 結果分析 ......................................................................................... 45
4-9 EDS 結果分析.......................................................................................... 46
4-10 PL 分析結果與討論............................................................................... 47
第五章 結論與未來展望..................................................................................48
5-1 結論 ......................................................................................................... 48
5-2 未來展望 ................................................................................................. 49
參考文獻 ............................................................................................................ 50
參考文獻 〔1〕Zhuang, D. and Edgar, J.H. Wet Etching of GaN, AlN, and SiC: A Review. Materials Science and Engineering, R: Reports, 48, 1 (2005).
〔2〕Zhao F, Islam M.M and Huang C.F. Single-Crystal SiC Resonators by Photoelectrochemical Etching. Materials Science Forum, Vol. 717-720 529-532 (2012).
〔3〕Yigang Huang, Fei Tang, Zheng Guo, Xiaohao Wang. Accelerated ICP Etching of 6H-SiC by Femtosecond Laser Modification. Applied Surface Science, 488 853–864 (2019).
〔4〕K Wang, A Chelnokov, S Rowson, P Garoche and J-M Lourtioz. Focused- Ion-Beam Etching in Macroporous Silicon to Realize Three-Dimensional Photonic Crystals. Journal of Physics D: Applied Physics, 33 L119–L123 (2000).
〔5〕Shor JS, Grimberg I, Weiss BZ, Kurtz AD. Direct Observation of Porous SiC Formed by Anodization in HF. Applied Physics Letters, 62(22):2836- 8 (1993).
〔6〕W. Y. Tsai, P. C. Gao, B. Daffos, P. L. Taberna, C. R. Perez, Y. Gogotsi, F. Favier, and P. Simon. Ordered Mesoporous Silicon Carbide-Derived Carbon for High-Power Supercapacitors. Electrochemistry Communications, vol. 34, pp. 109 (2013).
〔7〕G. Korotcenkov and B. K. Cho. Porous Semiconductors: Advanced Material for Gas Sensor Applications, Critical Reviews in Solid State and Materials Sciences, 35:1, 1-37 (2010).
〔8〕Rittenhouse T L, Bohn P W and Adesida I. Structural and Spectroscopic Characterization of Porous Silicon Carbide Formed by Pt-Assisted Electroless Chemical Etching. Solid State Commun, 126 245–50 (2003).
〔9〕Liu Y, Lin W, Lin Z, Xiu Y and Wong C.P. A Combined Etching Process Toward Robust Superhydrophobic SiC Surfaces. Nanotechnology 23 255703 (2012).
〔10〕 Joseph S. Shor and Anthony D. Kurtz. Photoelectrochemical Etching of 6H‐SiC. Journal of The Electrochemical Society, 141 778 (1994).
〔11〕 ByJu′s Classes. Difference between Isotropic and Anisotropic. Available at: https://byjus.com/chemistry/difference-between-isotropic- and-anisotropic/ [Accessed 2nd December, 2021] (2021).
〔12〕 Southwest Centers for Microsystems Education. Etch Overview for Microsystems. Available at: https://www.google.com/url?sa=t&source=web&rct=j&url=https://nanosc ale.unl.edu/pdf/Etching_Overview_LM_PG.pdf&ved=2ahUKEwja6- O3us30AhVI6qQKHSMcAPsQFnoECC4QAQ&usg=AOvV aw2ZhDgFe yqTKPvFBZaX9rIc [Accessed 1st December, 2021] (2021).
〔13〕 Kiihamäki J, Kattelus H, Karttunen J, Franssila S. Depth and Profile Control in Plasma Etched MEMS Structures. Sens Actuators 82:234–238 Google Scholar (2000).
〔14〕 Jaeger, Richard C. "Lithography". Introduction to Microelectronic Fabrication (2nd ed.). Upper Saddle River: Prentice Hall, ISBN 978-0- 201-44494-0 (2000).
〔15〕 Gad-el-Hak M. The MEMS Handbook. CRC Press LLC, Boca Raton. Available at:
https://scholar.google.com/scholar_lookup?title=The%20MEMS%20Han
dbook&publication_year=2002&author=Gad-el-Hak%2CM [Accessed
2nd December, 2021] (2002).
〔16〕 P. Allongue, V. Costa‐Kieling , H. Gerischer. Etching of Silicon in
NaOH Solutions: II. Electrochemical Studies of n‐Si (111) and (100) and Mechanism of the Dissolution. Journal of The Electrochemical Society, 140(4):1018 (1993).
〔17〕 R. T. Tung. Schottky-Barrier Formation at Single-Crystal Metal- Semiconductor Interfaces. Physical Review Journals, Lett. 52, 461 – Published 6 February (1984).
〔18〕 X. Badel, J. Linnros, and P. Kleimann. Electrochemical Etching of n- Type Silicon Based on Carrier Injection from a Back Side p-n Junction. Electrochemical and Solid-State Letters, 6 (6) C79-C81 (2003).
〔20〕 Gael Gautier, Frederic Cayrel, Marie Capelle, Jérome Billoué, Xi Song and Jean-Francois Michaud. Room Light Anodic Etching of Highly Doped n-type 4H-SiC in High-Concentration HF Electrolytes: Difference between C and Si Crystalline Faces. Nanoscale Research Letters, 7:367 (2012).
〔22〕 Nicole Gleichmann. SEM vs TEM. Available at: https://www.technologynetworks.com/analysis/articles/sem-vs-tem- 331262. (2020).
〔19〕 Jia-Chuan Lin, Wei-Lun Chen and Wei-Chih Tsai. Photoluminescence from n-type Porous Silicon Layer Enhanced by a Forward-Biased np- Junction. Optics Express, Vol. 14, No. 21 (2006).
〔21〕 Goldstein, J., et al. Scanning Electron Microscopy and X-ray Microanalysis, 3rd ed., Plenum Press, New York (2003).
〔23〕 Iver Lauermann, Rüdiger Memming , Dieter Meissner. Electrochemical Properties of Silicon Carbide. Journal of The Electrochemical Society, 144(1):73 (1997).
〔24〕 Omiya T, Tanaka A, Shimomura M. Morphological Study on Porous Silicon Carbide Membrane Fabricated by Double-Step Electrochemical Etching. Japanese Journal of Applied Physics, 51 (2012).
〔25〕 Wang S, Huang Q, Guo R, Xu J, Lin H, Cao J. Study on the Layering Phenomenon of SiC Porous Layer Fabricated by Constant Current Electrochemical Etching. Nanotechnology, 31(20):205702 (2020).
〔26〕 Tuan Anh Cao , Truc Quynh Ngan Luong. Green Synthesis of a Carbon-Rich Layer on the Surface of SiC at Room Temperature by Anodic Etching in Dilute Hydrofluoric Acid/Ethylene Glycol Solution. Green Process Synth (2016).
〔27〕 M. Elwenspoekl, U.Lindberg, H. Kokl and L. Smith. Wet Chemical Etching Mechanism of Silicon. IEEE (1994).
〔28〕 Anh Tuan Cao, Quynh Ngan Truc Luong, and Cao Tran Dao. Influence of the Anodic Etching Current Density on the Morphology of the Porous SiC Layer. AIP Advances 4, 037105 (2014).
指導教授 李天錫 審核日期 2023-6-14
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明