博碩士論文 110323068 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:10 、訪客IP:18.117.154.229
姓名 陳霈祺(Pei-Chi Chen)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 光纖收發器緊湊熱模型
相關論文
★ 溫度調變對二元合金固液介面形態穩定的影響★ 濃度調變對二元合金固液介面形態穩定的影響
★ 圓錐平板型生物反應器週期性流場研究★ 圓錐平板型生物反應器二次週期流場研究
★ 圓錐平板型生物反應器脈動式流場研究★ 濃度調變對單向固化形態穩定的影響
★ 圓錐平板型生物反應器脈動式二次流場研究★ 模擬注流式生物反應器之流場及細胞生長
★ 週期式圓錐平板裝置之設計與量測★ 模擬注流式生物反應器之細胞培養研究
★ 軟骨細胞在組織工程支架之培養研究★ 細胞在組織工程支架之生長與遷移
★ 冷電漿沉積類鑽碳膜之製程模擬分析★ 格狀自動機探討組織工程細胞體外培養研究
★ 細胞在注流式生物反應器之生長研究★ 週期式圓錐平板裝置之流場分析
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 光纖收發器為通訊傳輸系統中重要的電子設備,當前朝向高功率和小型化封裝體積的方向發展,對於大型系統的開發來說,使用簡化的數學模型能夠有效減少計算資源和時間。
本研究針對具有五個發熱源且總消耗功率為25 Watts之光纖收發器QSFP (quad small form-factor pluggable),運用DELPHI (DEvelopment of Libraries of PHysical models for an Integrated design environment)方法學的概念,開發出具有邊界條件獨立性之緊湊熱模型,為光纖收發器建構不同的熱阻網絡拓樸,運用田口法設計出適當的邊界條件集合,再使用商業模擬軟體Simcenter FloTHERM為光纖收發器建立計算流體力學模型,輸出所需的熱數據做為優化緊湊熱模型之依據,最後結合MATLAB編寫緊湊熱模型之優化過程,找出緊湊熱模型中最佳的熱阻值配置。
在本文使用的不同網絡型式之緊湊熱模型中,每個緊湊熱模型皆擁有良好的預測性與邊界條件獨立性,與詳細熱模型比較,發熱源溫度預測之平均相對誤差在2%以內,壁面熱傳量預測之平均相對誤差在8%以內,其中又以先進雙分流型網絡緊湊熱模型之預測能力為最佳,由此可知網絡拓樸的改進能有效改善緊湊熱模型之預測性。其後將緊湊熱模型應用於FloTHERM軟體中,模擬實際應用的環境,在發熱源溫度預測的平均相對誤差為6%左右,壁面熱傳量預測的平均相對誤差為10%左右,但最大相對誤差達到了20%以上,代表本文所開發出的緊湊熱模型仍有進步空間。未來若要將光纖收發器之緊湊熱模型實際應用在系統熱分析上,還須要儘可能地縮小緊湊熱模型的預測誤差,才能更準確地模擬光纖收發器之熱行為。
摘要(英) The fiber optical transceiver is an important electronic device in the communication system. Currently, it is evolving towards high power and miniaturized packaging. For the development of large-scale systems, the simplified model can effectively reduce computational resources and time.
In this study, we focused on the quad small form-factor pluggable (QSFP) optical transceiver, which has five heat sources and a total power dissipation of 25 Watts. We applied the concept of DEvelopment of Libraries of PHysical models for an Integrated design environment (DELPHI) methodology to develop a compact thermal model with boundary condition independence. Different thermal resistance network topologies were constructed for the optical transceiver. Using the Taguchi method, appropriate sets of boundary conditions were designed. The commercial software Simcenter FloTHERM was then used to create a computational fluid dynamics model for the optical transceiver, which provided the thermal data for optimizing the compact thermal model. Finally, the optimization process of the compact thermal model was implemented using MATLAB to find the optimal thermal resistances.
Among the different network topologies of the compact thermal models used in this study, each model exhibits good predictive accuracy and boundary condition independence. The average relative error in predicting heat source temperatures is within 2%, and the average relative error in predicting wall heat flux is within 8%. The advanced double shunted network compact thermal model has the best predictive capability, which indicates that improving the network topology can effectively enhance the predictive accuracy of the compact thermal model. When applying the compact thermal model to the computational fluid dynamics software FloTHERM for simulating realistic environments, the average relative error in predicting heat source temperatures is around 6%, and the average relative error in predicting wall heat flux is around 10%. The maximum relative error exceeds 20%. This indicates that there is still room for improvement in the developed compact thermal model in this study.
In the future, if the compact thermal model of the optical transceiver is to be applied in system-level thermal analysis, it is necessary to minimize the predictive errors of the compact thermal model. This will enable more accurate simulation of the thermal behavior of the optical transceiver.
關鍵字(中) ★ 光纖收發器
★ 緊湊熱模型
★ DELPHI方法學
★ FloTHERM
★ 優化
關鍵字(英) ★ fiber optical transceiver
★ compact thermal model
★ DELPHI methodology
★ FloTHERM
★ optimization
論文目次 摘要 i
Abstract ii
目錄 iv
圖目錄 vi
表目錄 viii
符號表 x
第一章 緒論 1
1.1研究動機 1
1.2文獻回顧 2
1.2.1光纖收發器 2
1.2.2緊湊熱模型 5
1.3研究目的 8
第二章 研究方法 9
2.1模擬軟體 9
2.2.1 Simcenter FloTHERM 9
2.2.2 MATLAB 10
2.2原始模型 10
2.2.1物理模型 10
2.2.2統御方程式 12
2.2.3模擬條件 12
2.2.4風洞設置 13
2.2.5網格獨立性測試 14
2.2.6原始模型模擬結果 15
2.3詳細熱模型 16
2.3.1詳細熱模型設計 16
2.3.2統御方程式 17
2.3.3模擬條件 17
2.3.4雙冷板測試 19
2.4緊湊熱模型 21
2.4.1選擇節點 21
2.4.2建構熱網絡拓樸 24
2.4.3邊界條件集 30
2.4.4目標函數 36
2.4.5優化方法 36
2.4.6緊湊熱模型的應用 37
第三章 結果與討論 39
3.1緊湊熱模型優化結果 39
3.2緊湊熱模型與詳細熱模型的比較 44
3.2.1分流型網絡緊湊熱模型 44
3.2.2雙分流型網絡緊湊熱模型 51
3.2.3先進分流型網絡緊湊熱模型 57
3.2.4先進雙分流型網絡緊湊熱模型 63
3.2.5四種緊湊熱模型的比較 69
3.3緊湊熱模型與原始模型的比較 71
3.3.1強制對流環境 71
3.3.2帶有散熱器的強制對流環境 77
3.3.3帶有擋板及散熱器的強制對流環境 82
第四章 結論與未來展望 88
4.1結論 88
4.2未來展望 90
參考文獻 91
附錄 95
參考文獻 1. Lukasik, S., “Why the Arpanet Was Built,” IEEE Annals of the History of Computing, vol. 33, no. 3, pp. 4-21, 2011.
2. Forouzan, B. A., Data Communications and Networking. McGraw Hill, 2012.
3. Winzer, P. J., Neilson, D. T., and Chraplyvy, A. R.,“Fiber-optic transmission and networking: the previous 20 and the next 20 years.” Optics express, vol. 26, no.18, pp. 24190-24239, 2018.
4. Lehpamer, H., Microwave Transmission Networks. McGraw Hill, 2010.
5. Yuxuan, G., Yue, L., and Penghui, S.,“Research Status of Typical Satellite Communication Systems.” 2021 19th International Conference on Optical Communications and Networks (ICOCN). IEEE, 2021.
6. SFF Committee, “ GBIC (Gigabit Interface Converter),” 1999.
7. SFF Committee, “ SFP (Small Formfactor Pluggable) Transceiver,” 2001.
8. Abe, S., Tobita, K., Shinozaki, T., Arai, K., Takeshita, K., Tanaka, K., & Isono, Y., “Short wave SFF small form factor transceivers,” 2001 Proceedings. 51st Electronic Components and Technology Conference (Cat. No.01CH37220), IEEE, pp. 30-34, 2001.
9. Peng, Z., Guiming, H., and Liwu, Z., “1000Base-T SFP.” Proceedings of the 5th Electronics Packaging Technology Conference (EPTC 2003). IEEE, 2003.
10. SFF Committee, “ Specifications for Enhanced Small Form Factor Pluggable Module SFP+,” 2006.
11. SFF Committee, “ Quad Small Form-factor Pluggable (QSFP) Transceiver Specification,” 2006.
12. Romero, A., and Kipp, S., “Cooling 8× 100GbE switch blades with high power optical modules.” 13th InterSociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems. IEEE, 2012.
13. Hsu, M. C., and Lin, H. W., “Heat dissipation improvement design for QSFP connector.” 2015 10th International Microsystems, Packaging, Assembly and Circuits Technology Conference (IMPACT). IEEE, 2015.
14. Mack, B., and Graham, T., “Thermal specifications for pluggable optics modules.” 2016 32nd Thermal Measurement, Modeling & Management Symposium (SEMI-THERM). IEEE, 2016.
15. Chesterfield, R., Goli, P., Querelle-Halverson, S., Sullivan, E., Hoyt, Z., Olson, K., Bre, M., Aranyosi, A., Doan, S., Le, V., “High-Durability Coating for Improved Thermal Management of Pluggable Optical Modules.” Optical Fiber Communication Conference. Optica Publishing Group, 2020.
16. Dogruoz, B., Giobbio, G., Nowell, M., Nering, R., Tsai, A., Aranyosi, A., Maki, J., Ali, H., Kapuscinski, C., Shah, V., Sommers, S., Daou, F., Daou, H., Best, B., and Cheng, N., “ Optimizing QSFP-DD Systems to Achieve at Least 25 Watt Thermal Port Performance.” QSFP-DD MSA, 2021.
17. Raghupathy, A. P., Boundary-condition-independent reduced-order modeling for thermal analysis of complex electronics packages. University of Cincinnati, 2009.
18. JEDEC Standard JESD15-1, “Compact Thermal Model Overview.” 2008.
19. Bar-Cohen, A., Elperin, T. and Eliasi, R. “θjc Characterisation of Chip Packages—Justification, Limitations, and Future.” CHMT Trans, IEEE, vol. 12, pp. 724-731, 1989.
20. Bar-Cohen, A., and Krueger, W. B., ”Determination of the weighted-average case temperature for a single chip package.” Cooling of Electronic systems, pp. 789-809, 1994.
21. JEDEC Standard JESD15-3, “Two-Resistor Compact Thermal Model Guideline.” 2008.
22. Shidore, S., and Lee, T. Y. T., “A comparative study of the performance of compact model topologies and their implementation in CFD for a plastic ball grid array package.” J. Electron. Packag. vol. 123, no. 13, pp. 232-237, 2001.

23. JEDEC Standard JESD15-4, “DELPHI Compact Thermal Model Guideline.” 2008.
24. Lasance, C. J. M., Vinke, H, and Rosten, H., “Thermal Characterization of Electronic Devices with Boundary Condition Independent Compact Models,” IEEE Transactions on Components, Packaging and Manufacturing Technology – Part A, vol. 18, no.4, 1995.
25. Lasance, C. J. M., “Two benchmarks to facilitate the study of compact thermal modeling phenomena.” IEEE Transactions on Components and Packaging Technologies. vol. 24, no.4, pp. 559-565, 2001.
26. Lasance, C. J. M., Den Hertog, D. and Stehouwer, P., “Creation and evaluation of compact models for thermal characterisation using dedicated optimisation software.” Fifteenth Annual IEEE Semiconductor Thermal Measurement and Management Symposium (Cat. No. 99CH36306). IEEE, 1999.
27. Aranyosi, A., Ortega, A., Evans, J., Tarter, T., Pursel, J., and Radhakrishnan, J., “Development of compact thermal models for advanced electronic packaging: Methodology and experimental validation for a single-chip CPGA package.” ITHERM 2000. The Seventh Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (Cat. No. 00CH37069). vol. 1, IEEE, 2000.
28. Aranyosi, A., Ortega, A., Griffin, R. A., West, S., and Edwards, D. R., “Compact thermal models of packages used in conduction cooled applications.” IEEE Transactions on Components and Packaging Technologies. vol. 23, no.3, pp. 470-480, 2000.
29. Assouad, Y., Gatfosse, F., and Gautier, T., “Transient Characterization and Modeling of Ceramic Packages,” Proc. 2nd THERMINIC Int. Workshop Thermal Investigations IC’s Microstruc. 1995.
30. Chen, H., Lu, Y., Gao, Y., Zhang, H., and Chen, Z., “The performance of compact thermal models for LED package.” Thermochimica Acta, vol. 488, no. 1-2, pp. 33-38, 2009.
31. Bar-Cohen, A., Encyclopedia Of Thermal Packaging, Set 2: Thermal Packaging Tools (A 4-volume Set). World Scientific, 2014.
32. Lasance, C. J. M., “The influence of various common assumptions on the boundary-condition-independence of compact thermal models.” IEEE Transactions on Components and Packaging Technologies, vol. 27, no. 3, pp. 523-529, 2004.
33. Murshed, S. M. S., “Introductory chapter: electronics cooling—An overview.” Electronics Cooling, pp.1-11, 2016.
34. Nocedal, J. and Wright, S. J., Numerical Optimization, Second Edition, Springer Verlag, 2006.
35. Schittkowski, K., “NLQPL: A FORTRAN-Subroutine Solving Constrained Nonlinear Programming Problems,” Annals of Operations Research, vol. 5, pp 485-500, 1985.
36. 陳彥瑋:〈運用田口法於光纖收發器之散熱分析〉。碩士論文,國立中央大學,民國111年。
指導教授 鍾志昂 審核日期 2023-7-25
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明