博碩士論文 110323081 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:32 、訪客IP:18.191.174.5
姓名 蔡鎮鴻(Chen-Hung Tsai)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 高親水性聚醚醚酮-羥基磷灰石複合材料之椎間融合器的FDM列印路徑規劃及製造
(FDM Printing Path Planning and Fabrication for Highly Hydrophilic PEEK-HA Interbody Cage)
相關論文
★ 雙光子光致聚合微製造系統之研發★ 雙光子光致聚合五軸微製造系統之雷射加工路徑生成研究
★ 椎弓根螺釘定位演算法及導引夾治具自動化設計流程開發★ 雙光子聚合微製造技術以能量均勻橢圓體為基之曝光時間最佳化研究
★ 雙光子光致聚合微製造以弦高誤差為基之切層演算法★ 雙光子光致聚合微製造技術以螺旋線雷射掃描路徑增強微結構強度研究
★ 雙光子聚合微製造技術之三維結構 製造品質改進研究★ 利用二維多重圖像建構三維三角網格模型的生成與品質改進
★ 組織工程用冷凍成型製造系統 之自動化製作流程開發★ 自動相機校正與二維影像輪廓萃取研究
★ 基於雙光子光致聚合技術之四軸微製造系統製作高深寬比結構之研究★ 冷凍成型積層製造之機台設計與組織工程支架製作參數調校研究
★ 基於二維影像輪廓重建三維模型技術之多視角相機群組空間座標系統整合★ 應用於大型物體三維模型重建之多重二維校正板相機校正流程開發
★ 組織工程用冷凍成型積層製造之固態水支撐結構生成研究★ 聚醚醚酮之積層製造系統開發
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2029-7-1以後開放)
摘要(中) 椎間融合器是一種用於治療脊椎問題的醫療植入物,通常用於脊椎間的融合手術,以穩定脊椎體並促進骨頭的生長。近年來,聚醚醚酮(Polyetheretherketone, PEEK)作為一種高性能工程聚合物,因其優異的機械強度和生物相容性,被廣泛應用於椎間融合器的製造中。由於PEEK與皮質骨具有相似的彈性模量,因此它特別適合用於人體植入物的製造。然而,由於PEEK的生物惰性,其表面生物活性較差,這限制了其在骨整合和細胞黏附方面的性能。
為了提高PEEK椎間融合器的生物活性,本研究採用熔融沉積成型技術製作PEEK椎間融合器,並通過列印路徑的規劃進行表面改質。在表面改質過程中,將羥基磷灰石(Hydroxyapatite, HA)添加到PEEK椎間融合器的表面,以增強其生物活性。透過多噴頭積層製造系統,將PEEK與PEEK-HA進行交互列印,使PEEK椎間融合器表面覆蓋一層PEEK-HA。接著,通過拉伸實驗分析表面改質後的機械強度變化,並進行親水性實驗以了解改質方法對親水性之影響。結果顯示,表面親水性隨著HA之比重增加而提升,最高可提升54.1%,能夠有效改善表面生物活性。
摘要(英) Interbody cages are medical implants used to treat spinal problems, typically employed in spinal fusion surgeries to stabilize vertebral bodies and promote bone growth. In recent years, Polyetheretherketone (PEEK), a high-performance engineering polymer, has been widely used in the manufacturing of interbody cages due to its excellent mechanical strength and biocompatibility. Because PEEK has a similar elastic modulus to cortical bone, it is particularly suitable for manufacturing implants for the human body. However, due to PEEK′s biological inertness, its surface bioactivity is relatively poor, limiting its performance in terms of bone integration and cell adhesion.
To enhance the bioactivity of PEEK interbody cages, this study employed the technique of fused deposition modeling to manufacture PEEK interbody cages and performed surface modification through printing path planning. During the surface modification process, hydroxyapatite (HA) was added to the surface of PEEK interbody cages to enhance their bioactivity. Using a multi-nozzle layering system, PEEK and PEEK-HA were alternately printed, with a layer of PEEK-HA covering the surface of PEEK interbody cages. Subsequently, mechanical strength changes after surface modification were analyzed through tensile experiments, and hydrophilicity experiments were performed to understand the impact of the modification method on hydrophilicity. The results showed that surface hydrophilicity increased with the proportion of HA, achieving a maximum improvement of 54.1%, effectively enhancing surface bioactivity.
關鍵字(中) ★ 椎間融合器
★ 聚醚醚酮
★ 積層製造技術
★ 熔融沉積成型
★ 表面改質
★ 羥基磷灰石
★ 親水性
關鍵字(英) ★ Interbody cages
★ Polyetheretherketone
★ Additive Manufacturing
★ Fused Deposition Modeling
★ Surface Modification
★ Hydroxyapatite
★ Hydrophilicity
論文目次 摘要 i
ABSTRACT ii
致謝 iii
目錄 iv
圖目錄 vi
表目錄 x
第一章 緒論 1
1-1 前言 1
1-2 文獻回顧 2
1-3 研究動機與目的 11
1-4 論文架構 12
第二章 理論說明 13
2-1 椎間融合器之介紹 13
2-2 聚醚醚酮之材料性質 16
2-3 積層製造技術 19
2-4 聚醚醚酮之表面改質 22
2-5 羥基磷灰石之材料性質及應用 25
2-6 G-code指令之介紹 26
第三章 研究方法 28
3-1 製程材料 30
3-2 擠出模組架設 32
3-3 PEEK-HA之線材製備 34
3-4 PEEK-HA表面列印路徑之規劃 39
3-5 試片及椎間融合器之製作流程 48
3-6 拉伸實驗 50
3-7 親水性實驗 52
第四章 實驗結果與討論 54
4-1 FDM系統擠出線寬驗證與校準 54
4-2 PEEK-HA複合線材擠出結果 57
4-3 FDM列印參數分析 58
4-4 表面改質列印結果分析 64
4-5 表面型態結果分析 69
4-6 親水性結果 73
第五章 結論與未來展望 77
5-1 結論 77
5-2 未來展望 77
參考文獻 79
參考文獻 [1] O. Diegel, "10.02 - Additive Manufacturing: an Overview", Comprehensive Materials Processing, Vol. 10, pp. 3-18, 2014.
[2] A. Roschli, K. T. Gaul, A. M. Boulger, B. K. Post, P. C. Chesser, L. J. Love, F. Blue, M. Borish, "Designing for Big Area Additive Manufacturing", Additive Manufacturing, Vol. 25, pp. 275-285, 2019.
[3] M. Cabraja, S. Oezdemir, D. Koeppen, S. Kroppenstedt, "Anterior Cervical Discectomy and Fusion:Comparison of Titanium and Polyetheretherketone Cages", BMC Musculoskeletal Disorders, Vol. 13, 172, 2012.
[4] Y. C. Yao, P. H. Chou, H. H. Lin, S. T. Wang, M. C. Chang, "Outcome of Ti/PEEK Versus PEEK Cages in Minimally Invasive Transforaminal Lumbar Interbody Fusion", Global Spine Journal, Vol. 13, pp. 472-478, 2023.
[5] R. Ma, S. C. Tang, H. L. Tan, W. T. Lin, Y. G. Wang, J. Wei, L. M. Zhao, T. T. Tang, "Preparation, Characterization, and in Vitro Osteoblast Functions of a Nano-Hydroxyapatite/Polyetheretherketone Biocomposite as Orthopedic Implant Material", International Journal of Nanomedicine, Vol. 18, pp. 3949-3961, 2014.
[6] R. Ma, Z. F. Yu, S. C. Tang, Y. K. Pan, J. Wei, T. T. Tang, "Osseointegration of Nanohydroxyapatite- or Nano-calcium Silicate-Incorporated Polyetheretherketone Bioactive Composites in Vivo", International Journal of Nanomedicine, Vol. 11, pp. 6023-6033, 2016.
[7] J. Ma, Z. J. Li, Y. Z. B. Xue, X. Y. Liang, Z. J. Tan, B. Tang, "Novel PEEK/nHA Composites Fabricated by Hot-Pressing of 3D Braided PEEK Matrix", Advanced Composites and Hybrid Materials, Vol. 3, pp.156-166, 2020.
[8] K. W. Chan, C. Z. Liao, H. M. Wong, K. W. K. Yeung, S. C. Tjong, "Preparation of Polyetheretherketone Composites with Nanohydroxyapatite Rods and Carbon Nanofibers Having High Strength, Good Biocompatibility and Excellent Thermal Stability", RSC Advances, Vol. 6, pp. 19417-19429, 2016.
[9] F. Manzoor, A. Golbang, S. Jindal, D. Dixon, A. McIlhagger, E. Harkin-Jones, D. Crawford, E. Mancuso, "3D Printed PEEK/HA Composites for Bone Tissue Engineering Applications: Effect of Material Formulation on Mechanical Performance and Bioactive Potential", Journal of the Mechanical Behavior of Biomedical Materials, Vol. 121, 104601, 2021.
[10] W. J. Li, L. Sang, X. G. Jian, J. Y. Wang, "Influence of Sanding and Plasma Treatment on Shear Bond Strength of 3D-Printed PEI, PEEK and PEEK/CF", International Journal of Adhesion and Adhesives, Vol. 100, 102614, 2020.
[11] 陳宥叡,「提高熔融沉積成型技術列印PEEK試片之親水性研究」,碩士論文,國立中央大學,民國 110 年。
[12] 邱昱穎,「使用壓錠法製作之 PLA/HA 複合線材進行 3D 列印 PEEK 試片之表面改質研究」,碩士論文,國立中央大學,民國 113 年。
[13] Stryker:Products / Tritanium C Anterior Cervical Cage , Available at:https://www.stryker.com/us/en/spine/products/tritanium-c.html
[14] B. Braun:Products / Aesculap CeSpace® PEEK Cervical interbody fusion cage , Available at:https://www.bbraun.com/en.html
[15] Centinel Spine:Products / STALIF C-Ti Anterior Cervical Integrated Interbody System , Available at:https://www.centinelspine.com/stalif_c-ti.php
[16] T. E. Attwood, P. C. Dawson, J. L. Freeman, L. R. J. Hoy, J. B. Rose, P. A. Staniland, "Synthesis and Properties of Polyaryletherketones", Polymer, Vol. 22, pp. 1096-1103, 1981.
[17] S. M. Kurtz, J. N. Devine, "PEEK Biomaterials in Trauma, Orthopedic, and Spinal Implants", Biomaterials, Vol. 28, pp. 4845-4869, 2007.
[18] S. Lovald, S. M. Kurtz, "Chapter 15 - Applications of Polyetheretherketone in Trauma, Arthroscopy, and Cranial Defect Repair", PEEK Biomaterials Handbook, Oxford: William Andrew Publishing, pp.243-260, 2012.
[19] S. Arpit, S. Jyotsana, "PEEK: A Prodigious Material in Dentistry", DentalReach, 2021.
[20] S. M. Kurtz, "Chapter 6 - Chemical and Radiation Stability of PEEK", PEEK Biomaterials Handbook, Oxford: William Andrew Publishing, pp. 75-79, 2012.
[21] J. M. Toth, "Chapter 7 - Biocompatibility of Polyaryletheretherketone Polymers", PEEK Biomaterials Handbook, Oxford: William Andrew Publishing, pp. 81-92, 2012.
[22] O. S. Carneiro, A. F. Silva, R. Gomes, "Fused Deposition Modeling with Polypropylene", Materials & Design, Vol. 83, pp. 768-776, 2015.
[23] M. Leary, "Chapter 1 - Introduction to AM", Design for Additive Manufacturing, Elsevier, pp. 1-6, 2020.
[24] R. Ma, T. T. Tang, "Current Strategies to Improve the Bioactivity of PEEK", International Journal of Molecular Sciences, Vol. 15, pp. 5426-5445, 2014.
[25] S. W. Ha, M. Kirch, F. Birchler, K. L. Eckert, J. Mayer, E. Wintermantel, C. Sittig, I. Pfund-Klingenfuss, M. Textor, N. D. Spencer, M. Guecheva, H. Vonmont, "Surface Activation of Polyetheretherketone (PEEK) and Formation of Calcium Phosphate Coatings by Precipitation", Journal of Materials Science-Materials in Medicine, Vol. 8, pp. 683-690, 1997.
[26] J. Khoury, I. Selezneva, S. Pestov, V. Tarassov, A. Ermakov, A. Mikheev, M. Lazov, S. R. Kirkpatrick, D. Shashkov, A. Smolkov, "Surface Bioactivation of PEEK by Neutral Atom Beam Technology", Bioactive Materials, Vol. 4, pp. 132-141, 2019.
[27] J. H. Lee, H. L. Jang, K. M. Lee, H. R. Baek, K. Jin, K. S. Hong, J. H. Noh, H. K. Lee, "In Vitro and in Vivo Evaluation of the Bioactivity of Hydroxyapatite-Coated Polyetheretherketone Biocomposites Created by Cold Spray Technology", Acta Biomaterialia, Vol. 9, pp. 6177-6187, 2013.
[28] X. M. Wang, F. Feng, M. A. Klecka, M. D. Mordasky, J. K. Garofano, T. El-Wardany, A. Nardi, V. K. Champagne, "Characterization and Modeling of the Bonding Process in Cold Spray Additive Manufacturing", ScienceDirect, Vol. 8, pp. 149-162, 2015.
[29] N. A. S. Mohd Pu′ad, R. H. Abdul Haq, H. Mohd Noh, H. Z. Abdullah, M. I. Idris, T. C. Lee, "Synthesis Method of Hydroxyapatite: a Review", Materials Today: Proceedings, Vol. 29, pp. 233-239, 2020.
[30] A. Szcześ, L. Hołysz, E. Chibowski, "Synthesis of Hydroxyapatite for Biomedical Applications", Advances in Colloid and Interface Science, Vol. 249, pp. 321-330, 2017.
[31] Himed:Products/Hydroxyapatite(HA) , Available at: https://www.himed.com/hydroxyapatite
[32] 3D4MAKERS:Products / Luvocom® 3F PEEK 9581 Filament , Available at:https://www.3d4makers.com
[33] Victrex 450P:Products / PEEK 450P , Available at:https://www.victrex.com/en/downloads/datasheets/victrex-peek-450p
[34] SIGMA-ALDRICH:Products / Hydroxyapatite , Available at:https://www.sigmaaldrich.com/TW/en/product/sial/04238
[35] E3D:Products / V6 Hemera XS Direct Kit , Available at:https://e3d-online.com/products/hemera-xs-direct-kit
[36] Filabot:Machines / EX2 Extruder / Filabot EX2 Extruder Setup , Available at:https://www.filabot.com/collections/ex2-extruder/products/ex2-bundle
[37] 吳柏論,「利用熔融沉積成型技術列印聚醚醚酮模型之機械性質改善與表面改質研究」,碩士論文,國立中央大學,民國 108 年。
[38] DataPhysics Instruments GmbH:Machines / OCA 15EC , Available at:https://www.dataphysics-instruments.com/products/oca/?gad_source=1&gclid=CjwKCAjw0YGyBhByEiwAQmBEWj7QzAxwzNVl6fNIg80vLapZXaHgx4kcNVy4pP8U4rLgua0bE-ieEBoC4YwQAvD_BwE
[39] M. F. Arif, S. Kumar, K. M. Varadarajan, W. J. Cantwell, "Performance of Biocompatible PEEK Processed by Fused Deposition Additive Manufacturing", Materials & Design, Vol. 146, pp. 249-259, 2018.
[40] P. Wang, B. Zou, H. C. Xiao, S. L. Ding, C. Z. Huang, "Effects of Printing Parameters of Fused Deposition Modeling on Mechanical Properties, Surface Quality, and Microstructure of PEEK", Journal of Materials Processing Technology, Vol. 271, pp. 62-74, 2019.
[41] N. Bouropoulos, A. Stampolakis, D. E. Mouzakis, "Dynamic Mechanical Properties of Calcium Alginate-Hydroxyapatite Nanocomposite Hydrogels", Science of Advanced Materials, Vol. 2, pp. 239-242, 2010.
指導教授 廖昭仰(Chao-Yaug Liao) 審核日期 2024-7-10
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明