參考文獻 |
1. Ferlay, J., et al., Cancer statistics for the year 2020: An overview. Int J Cancer, 2021.
2. Siegel, R.L., et al., Cancer statistics, 2022. CA Cancer J Clin, 2022. 72(1): p. 7-33.
3. Sun, Y., et al., Review: Microfluidics technologies for blood-based cancer liquid biopsies. Anal Chim Acta, 2018. 1012: p. 10-29.
4. Eberhardt, K., et al., Advantages and limitations of Raman spectroscopy for molecular diagnostics: an update. Expert Rev Mol Diagn, 2015. 15(6): p. 773-87.
5. Lim, M., et al., Liquid Biopsy in Lung Cancer: Clinical Applications of Circulating Biomarkers (CTCs and ctDNA). Micromachines (Basel), 2018. 9(3).
6. Haber, D.A. and V.E. Velculescu, Blood-based analyses of cancer: circulating tumor cells and circulating tumor DNA. Cancer Discov, 2014. 4(6): p. 650-61.
7. Li, S.J., et al., Blood-based liquid biopsy: insights into early detection, prediction, and treatment monitoring of bladder cancer. Cellular & Molecular Biology Letters, 2023. 28(1).
8. Neoh, K.H., et al., Rethinking liquid biopsy: Microfluidic assays for mobile tumor cells in human body fluids. Biomaterials, 2018. 150: p. 112-124.
9. Tadimety, A., et al., Advances in liquid biopsy on-chip for cancer management: Technologies, biomarkers, and clinical analysis. Crit Rev Clin Lab Sci, 2018. 55(3): p. 140-162.
10. Wu, L. and X. Qu, Cancer biomarker detection: recent achievements and challenges. Chem Soc Rev, 2015. 44(10): p. 2963-97.
11. Nagrath, S., et al., Isolation of rare circulating tumour cells in cancer patients by microchip technology. Nature, 2007. 450(7173): p. 1235-9.
12. Riggi, N., M. Aguet, and I. Stamenkovic, Cancer Metastasis: A Reappraisal of Its Underlying Mechanisms and Their Relevance to Treatment. Annu Rev Pathol, 2018. 13: p. 117-140.
13. Descamps, L., D. Le Roy, and A.L. Deman, Microfluidic-Based Technologies for CTC Isolation: A Review of 10 Years of Intense Efforts towards Liquid Biopsy. Int J Mol Sci, 2022. 23(4).
14. Lawrence, R., et al., Circulating tumour cells for early detection of clinically relevant cancer. Nat Rev Clin Oncol, 2023. 20(7): p. 487-500.
15. Zhuo Zhang, S.N., Microfluidics and cancer: are we there yet? 2013.
16. Yu, L., et al., Advances of lab-on-a-chip in isolation, detection and post-processing of circulating tumour cells. Lab Chip, 2013. 13(16): p. 3163-82.
17. Antfolk, M., et al., Label-free single-cell separation and imaging of cancer cells using an integrated microfluidic system. Sci Rep, 2017. 7: p. 46507.
18. Banko, P., et al., Technologies for circulating tumor cell separation from whole blood. J Hematol Oncol, 2019. 12(1): p. 48.
19. Lei, K.F., A Review on Microdevices for Isolating Circulating Tumor Cells. Micromachines (Basel), 2020. 11(5).
20. Ferreira, M.M., V.C. Ramani, and S.S. Jeffrey, Circulating tumor cell technologies. Mol Oncol, 2016. 10(3): p. 374-94.
21. Allard, W.J., et al., Tumor cells circulate in the peripheral blood of all major carcinomas but not in healthy subjects or patients with nonmalignant diseases. Clin Cancer Res, 2004. 10(20): p. 6897-904.
22. Wang, S., et al., Highly efficient capture of circulating tumor cells by using nanostructured silicon substrates with integrated chaotic micromixers. Angew Chem Int Ed Engl, 2011. 50(13): p. 3084-8.
23. Hoshino, K., et al., Microchip-based immunomagnetic detection of circulating tumor cells. Lab Chip, 2011. 11(20): p. 3449-57.
24. Besant, J.D., et al., Velocity valleys enable efficient capture and spatial sorting of nanoparticle-bound cancer cells. Nanoscale, 2015. 7(14): p. 6278-85.
25. Zhang, X., et al., A label-free microfluidic chip for the highly selective isolation of single and cluster CTCs from breast cancer patients. Transl Oncol, 2021. 14(1): p. 100959.
26. Park, E.S., et al., Continuous Flow Deformability-Based Separation of Circulating Tumor Cells Using Microfluidic Ratchets. Small, 2016. 12(14): p. 1909-19.
27. Chen, H., et al., Author Correction: Highly-sensitive capture of circulating tumor cells using micro-ellipse filters. Sci Rep, 2018. 8(1): p. 5269.
28. Liu, Y., et al., A high-throughput liquid biopsy for rapid rare cell separation from large-volume samples. Lab Chip, 2018. 19(1): p. 68-78.
29. Fan, X., et al., A microfluidic chip integrated with a high-density PDMS-based microfiltration membrane for rapid isolation and detection of circulating tumor cells. Biosens Bioelectron, 2015. 71: p. 380-386.
30. Hvichia, G.E., et al., A novel microfluidic platform for size and deformability based separation and the subsequent molecular characterization of viable circulating tumor cells. Int J Cancer, 2016. 138(12): p. 2894-904.
31. Riahi, R., et al., A novel microchannel-based device to capture and analyze circulating tumor cells (CTCs) of breast cancer. Int J Oncol, 2014. 44(6): p. 1870-8.
32. Yagi, S., et al., Development of an automated size-based filtration system for isolation of circulating tumor cells in lung cancer patients. PLoS One, 2017. 12(6): p. e0179744.
33. Loutherback, K., et al., Deterministic separation of cancer cells from blood at 10 mL/min. AIP Adv, 2012. 2(4): p. 42107.
34. Liu, Z., et al., Cascaded filter deterministic lateral displacement microchips for isolation and molecular analysis of circulating tumor cells and fusion cells. Lab Chip, 2021. 21(15): p. 2881-2891.
35. Smith, K.J., et al., Inertial focusing of circulating tumor cells in whole blood at high flow rates using the microfluidic CTCKey device for CTC enrichment. Lab Chip, 2021. 21(18): p. 3559-3572.
36. Zhou, J., et al., Isolation of cells from whole blood using shear-induced diffusion. Sci Rep, 2018. 8(1): p. 9411.
37. Kulasinghe, A., et al., Capture of Circulating Tumour Cell Clusters Using Straight Microfluidic Chips. Cancers (Basel), 2019. 11(1).
38. Hou, H.W., et al., Isolation and retrieval of circulating tumor cells using centrifugal forces. Sci Rep, 2013. 3: p. 1259.
39. Sollier, E., et al., Size-selective collection of circulating tumor cells using Vortex technology. Lab Chip, 2014. 14(1): p. 63-77.
40. Dhar, M., et al., Label-free enumeration, collection and downstream cytological and cytogenetic analysis of circulating tumor cells. Sci Rep, 2016. 6: p. 35474.
41. Di Trapani, M., N. Manaresi, and G. Medoro, DEPArray system: An automatic image-based sorter for isolation of pure circulating tumor cells. Cytometry A, 2018. 93(12): p. 1260-1266.
42. Gupta, V., et al., ApoStream(), a new dielectrophoretic device for antibody independent isolation and recovery of viable cancer cells from blood. Biomicrofluidics, 2012. 6(2): p. 24133.
43. Karthick, S., et al., Acoustic impedance-based size-independent isolation of circulating tumour cells from blood using acoustophoresis. Lab Chip, 2018. 18(24): p. 3802-3813.
44. Jack, R.M., et al., Ultra-Specific Isolation of Circulating Tumor Cells Enables Rare-Cell RNA Profiling. Adv Sci (Weinh), 2016. 3(9): p. 1600063.
45. Fachin, F., et al., Monolithic Chip for High-throughput Blood Cell Depletion to Sort Rare Circulating Tumor Cells. Sci Rep, 2017. 7(1): p. 10936.
46. Gorges, T.M., et al., Circulating tumour cells escape from EpCAM-based detection due to epithelial-to-mesenchymal transition. BMC Cancer, 2012. 12: p. 178.
47. Yu, M., et al., Circulating breast tumor cells exhibit dynamic changes in epithelial and mesenchymal composition. Science, 2013. 339(6119): p. 580-4.
48. Farace, F., et al., A direct comparison of CellSearch and ISET for circulating tumour-cell detection in patients with metastatic carcinomas. Br J Cancer, 2011. 105(6): p. 847-53.
49. Drucker, A., et al., Comparative performance of different methods for circulating tumor cell enrichment in metastatic breast cancer patients. PLoS One, 2020. 15(8): p. e0237308.
50. Taneda, S., Experimental Investigation of the Wake behind a Sphere at Low Reynolds Numbers. Journal of the Physical Society of Japan, 1956. 11(10): p. 1104-1108.
51. Mule, G.M. and A.A. Kulkarni, Effect of object shape on the flow past microstructures in small channel. Fluid Dynamics Research, 2021. 53(1).
52. Gunda, N.S.K., et al., Measurement of pressure drop and flow resistance in microchannels with integrated micropillars. Microfluidics and Nanofluidics, 2012. 14(3-4): p. 711-721.
53. Jung, J., et al., The flow field around a micropillar confined in a microchannel. International Journal of Heat and Fluid Flow, 2012. 36: p. 118-132.
54. Lima, R., et al., In vitro blood flow in a rectangular PDMS microchannel: experimental observations using a confocal micro-PIV system. Biomed Microdevices, 2008. 10(2): p. 153-67.
55. Leble, V., et al., Asymmetry of red blood cell motions in a microchannel with a diverging and converging bifurcation. Biomicrofluidics, 2011. 5(4): p. 44120-4412015.
56. Kim, J., J.F. Antaki, and M. Massoudi, Computational study of blood flow in microchannels. Journal of Computational and Applied Mathematics, 2016. 292: p. 174-187.
57. Moreau, W.M., Semiconductor Lithography. 1988.
58. Guckenberger, D.J., et al., Micromilling: a method for ultra-rapid prototyping of plastic microfluidic devices. Lab Chip, 2015. 15(11): p. 2364-78.
59. Balázs, B.Z., et al., A review on micro-milling: recent advances and future trends. The International Journal of Advanced Manufacturing Technology, 2020. 112(3-4): p. 655-684.
60. Javidanbardan, A., et al., A Systematic Approach for Developing 3D High-Quality PDMS Microfluidic Chips Based on Micromilling Technology. Micromachines (Basel), 2021. 13(1).
61. Lashkaripour, A., R. Silva, and D. Densmore, Desktop micromilled microfluidics. Microfluidics and Nanofluidics, 2018. 22(3).
62. Reichenbach, I.G., et al., Micromachining of PMMA—manufacturing of burr-free structures with single-edge ultra-small micro end mills. The International Journal of Advanced Manufacturing Technology, 2018. 96(9-12): p. 3665-3677.
63. Behroodi, E., et al., A combined 3D printing/CNC micro-milling method to fabricate a large-scale microfluidic device with the small size 3D architectures: an application for tumor spheroid production. Sci Rep, 2020. 10(1): p. 22171.
64. Mesquita, P., L. Gong, and Y. Lin, Low-cost microfluidics: Towards affordable environmental monitoring and assessment. Frontiers in Lab on a Chip Technologies, 2022. 1.
65. Lux, A., et al., Real-Time Detection of Tumor Cells during Capture on a Filter Element Significantly Enhancing Detection Rate. Biosensors (Basel), 2021. 11(9).
66. Boya, M., et al., High throughput, label-free isolation of circulating tumor cell clusters in meshed microwells. Nat Commun, 2022. 13(1): p. 3385.
67. Ruan, Q., et al., Single-Cell Digital Microfluidic Mass Spectrometry Platform for Efficient and Multiplex Genotyping of Circulating Tumor Cells. Anal Chem, 2022. 94(2): p. 1108-1117.
68. Zhang, X., et al., Dual-Multivalent-Aptamer-Conjugated Nanoprobes for Superefficient Discerning of Single Circulating Tumor Cells in a Microfluidic Chip with Inductively Coupled Plasma Mass Spectrometry Detection. ACS Appl Mater Interfaces, 2021. 13(36): p. 43668-43675.
69. Ruiz-Rodriguez, A.J., et al., Deep Phenotypic Characterisation of CTCs by Combination of Microfluidic Isolation (IsoFlux) and Imaging Flow Cytometry (ImageStream). Cancers (Basel), 2021. 13(24).
70. Ghazani, A.A., et al., Sensitive and direct detection of circulating tumor cells by multimarker micro-nuclear magnetic resonance. Neoplasia, 2012. 14(5): p. 388-95.
71. Rossi, D., et al., New Trends in Precision Medicine: A Pilot Study of Pure Light Scattering Analysis as a Useful Tool for Non-Small Cell Lung Cancer (NSCLC) Diagnosis. J Pers Med, 2021. 11(10).
72. Wang, J., et al., SERS and fluorescence detection of circulating tumor cells (CTCs) with specific capture-release mode based on multifunctional gold nanomaterials and dual-selective recognition. Anal Chim Acta, 2021. 1141: p. 206-213.
73. Pallaoro, A., et al., Rapid identification by surface-enhanced Raman spectroscopy of cancer cells at low concentrations flowing in a microfluidic channel. ACS Nano, 2015. 9(4): p. 4328-36.
74. Shanmugasundaram, K.B., et al., Toward precision oncology: SERS microfluidic systems for multiplex biomarker analysis in liquid biopsy. Materials Advances, 2022. 3(3): p. 1459-1471.
75. Langer, J., et al., Present and Future of Surface-Enhanced Raman Scattering. ACS Nano, 2020. 14(1): p. 28-117.
76. Zong, C., et al., Surface-Enhanced Raman Spectroscopy for Bioanalysis: Reliability and Challenges. Chem Rev, 2018. 118(10): p. 4946-4980.
77. Gao, R., et al., Wash-free magnetic immunoassay of the PSA cancer marker using SERS and droplet microfluidics. Lab Chip, 2016. 16(6): p. 1022-9.
78. Cho, H.Y., et al., Selective isolation and noninvasive analysis of circulating cancer stem cells through Raman imaging. Biosens Bioelectron, 2018. 102: p. 372-382.
79. Zhang, Y., et al., Combining Multiplex SERS Nanovectors and Multivariate Analysis for In Situ Profiling of Circulating Tumor Cell Phenotype Using a Microfluidic Chip. Small, 2018. 14(20): p. e1704433.
80. Restaino, S.M. and I.M. White, Real-time multiplexed PCR using surface enhanced Raman spectroscopy in a thermoplastic chip. Lab Chip, 2018. 18(5): p. 832-839.
81. Kaminska, A., et al., Detection of Hepatitis B virus antigen from human blood: SERS immunoassay in a microfluidic system. Biosens Bioelectron, 2015. 66: p. 461-7.
82. Fei, J., et al., Pharmacokinetics-on-a-Chip Using Label-Free SERS Technique for Programmable Dual-Drug Analysis. ACS Sens, 2017. 2(6): p. 773-780.
83. Andreou, C., et al., Rapid detection of drugs of abuse in saliva using surface enhanced Raman spectroscopy and microfluidics. ACS Nano, 2013. 7(8): p. 7157-64.
84. Salemmilani, R., M. Moskovits, and C.D. Meinhart, Microfluidic analysis of fentanyl-laced heroin samples by surface-enhanced Raman spectroscopy in a hydrophobic medium. Analyst, 2019. 144(9): p. 3080-3087.
85. Rodríguez-Lorenzo, L., et al., Gold Nanostars for the Detection of Foodborne Pathogens via Surface-Enhanced Raman Scattering Combined with Microfluidics. ACS Applied Nano Materials, 2019. 2(10): p. 6081-6086.
86. Pu, H.B., W. Xiao, and D.W. Sun, SERS-microfluidic systems: A potential platform for rapid analysis of food contaminants. Trends in Food Science & Technology, 2017. 70: p. 114-126.
87. Wang, G., et al., Surface-enhanced Raman scattering in nanoliter droplets: towards high-sensitivity detection of mercury (II) ions. Anal Bioanal Chem, 2009. 394(7): p. 1827-32.
88. Panneerselvam, R., et al., Microfluidics and surface-enhanced Raman spectroscopy, a win-win combination? Lab Chip, 2022. 22(4): p. 665-682.
89. Lu, H., et al., Mixing Assisted "Hot Spots" Occupying SERS Strategy for Highly Sensitive In Situ Study. Anal Chem, 2018. 90(7): p. 4535-4543.
90. Kaminska, A., et al., Detection of Circulating Tumor Cells Using Membrane-Based SERS Platform: A New Diagnostic Approach for ′Liquid Biopsy′. Nanomaterials (Basel), 2019. 9(3).
91. Park, J.E., et al., Efficient Capture and Raman Analysis of Circulating Tumor Cells by Nano-Undulated AgNPs-rGO Composite SERS Substrates. Sensors (Basel), 2020. 20(18).
92. Tsao, S.C., et al., Characterising the phenotypic evolution of circulating tumour cells during treatment. Nat Commun, 2018. 9(1): p. 1482.
93. Guerrini, L. and R.A. Alvarez-Puebla, Surface-Enhanced Raman Spectroscopy in Cancer Diagnosis, Prognosis and Monitoring. Cancers (Basel), 2019. 11(6).
94. Yarbakht, M., et al., Simultaneous isolation and detection of single breast cancer cells using surface-enhanced Raman spectroscopy. Talanta, 2018. 186: p. 44-52.
95. He, M., et al., Octahedral silver oxide nanoparticles enabling remarkable SERS activity for detecting circulating tumor cells. Sci China Life Sci, 2022. 65(3): p. 561-571.
96. Chu, Y., et al., Attomolar-Level Ultrasensitive and Multiplex microRNA Detection Enabled by a Nanomaterial Locally Assembled Microfluidic Biochip for Cancer Diagnosis. Anal Chem, 2021. 93(12): p. 5129-5136.
97. Wee, E.J., et al., Simple, Sensitive and Accurate Multiplex Detection of Clinically Important Melanoma DNA Mutations in Circulating Tumour DNA with SERS Nanotags. Theranostics, 2016. 6(10): p. 1506-13.
98. Reza, K.K., et al., In Situ Single Cell Proteomics Reveals Circulating Tumor Cell Heterogeneity during Treatment. ACS Nano, 2021. 15(7): p. 11231-11243.
99. Willner, M.R., et al., Surface-Enhanced Raman Scattering Based Microfluidics for Single-Cell Analysis. Anal Chem, 2018. 90(20): p. 12004-12010.
100. Lin, J., J. Zheng, and A. Wu, An efficient strategy for circulating tumor cell detection: surface-enhanced Raman spectroscopy. J Mater Chem B, 2020. 8(16): p. 3316-3326.
101. Jahn, I.J., et al., Surface-enhanced Raman spectroscopy and microfluidic platforms: challenges, solutions and potential applications. Analyst, 2017. 142(7): p. 1022-1047.
102. Guo, J.C., et al., Preparation and application of microfluidic SERS substrate: Challenges and future perspectives. Journal of Materials Science & Technology, 2020. 37: p. 96-103.
103. Kim, D.J., et al., Metal Nanoparticle-Loaded Microgels with Selective Permeability for Direct Detection of Small Molecules in Biological Fluids. Chemistry of Materials, 2016. 28(5): p. 1559-1565.
104. Liu, B., et al., Detection of Pesticides in Fruits by Surface-Enhanced Raman Spectroscopy Coupled with Gold Nanostructures. Food and Bioprocess Technology, 2012. 6(3): p. 710-718.
105. Wang, D., et al., Facile Preparation of Ag-NP-Deposited HRGB-SERS Substrate for Detection of Polycyclic Aromatic Hydrocarbons in Water. Chemosensors, 2022. 10(10).
106. Guerrini, L., et al., Cancer characterization and diagnosis with SERS-encoded particles. Cancer Nanotechnology, 2017. 8(1).
107. Ge, K., Y. Hu, and G. Li, Recent Progress on Solid Substrates for Surface-Enhanced Raman Spectroscopy Analysis. Biosensors (Basel), 2022. 12(11).
108. Zhou, Q. and T. Kim, Review of microfluidic approaches for surface-enhanced Raman scattering. Sensors and Actuators B-Chemical, 2016. 227: p. 504-514.
109. Huang, J.A., et al., SERS-Enabled Lab-on-a-Chip Systems. Advanced Optical Materials, 2015. 3(5): p. 618-633.
110. Martins, N.C.T., et al., Inkjet Printing of Ag and Polystyrene Nanoparticle Emulsions for the One-Step Fabrication of Hydrophobic Paper-Based Surface-Enhanced Raman Scattering Substrates. ACS Applied Nano Materials, 2021. 4(5): p. 4484-4495.
111. Li, J., et al., Nitrogen-Doped Titanium Monoxide Flexible Membrane for a Low-Cost, Biocompatible, and Durable Raman Scattering Substrate. Anal Chem, 2021. 93(37): p. 12776-12785.
112. Lim, S.H., et al., Individually Silica‐Embedded Gold Nanorod Superlattice for High Thermal and Solvent Stability and Recyclable SERS Application. Advanced Materials Interfaces, 2019. 6(21).
113. Castro-Grijalba, A., et al., SERS-Based Molecularly Imprinted Plasmonic Sensor for Highly Sensitive PAH Detection. ACS Sens, 2020. 5(3): p. 693-702.
114. Das, D., S. Senapati, and K.K. Nanda, “Rinse, Repeat”: An Efficient and Reusable SERS and Catalytic Platform Fabricated by Controlled Deposition of Silver Nanoparticles on Cellulose Paper. ACS Sustainable Chemistry & Engineering, 2019. 7(16): p. 14089-14101.
115. Gao, Y., et al., Superhydrophobic 3D Forest‐Like Ag Microball/Nanodendrite Hierarchical Structure as SERS Sensor for Rapid Droplets Detection. Advanced Materials Interfaces, 2019. 6(8).
116. Tang, J., et al., Seed-Mediated Electroless Deposition of Gold Nanoparticles for Highly Uniform and Efficient SERS Enhancement. Nanomaterials (Basel), 2019. 9(2).
117. Krishnan, J.N., et al., Electroless deposition of SERS active Au-nanostructures on variety of metallic substrates. Biochip Journal, 2013. 7(4): p. 375-385.
118. Tsao, C.W., et al., Surface-enhanced Raman scattering (SERS) spectroscopy on localized silver nanoparticle-decorated porous silicon substrate. Analyst, 2021. 146(24): p. 7645-7652.
119. Xu, D., et al., Droplet-Confined Electroless Deposition of Silver Nanoparticles on Ordered Superhydrophobic Structures for High Uniform SERS Measurements. ACS Appl Mater Interfaces, 2017. 9(25): p. 21548-21553.
120. Sahin, O., M. Ashokkumar, and P.M. Ajayan, Micro- and nanopatterning of biomaterial surfaces, in Fundamental Biomaterials: Metals. 2018. p. 67-78.
121. Fogh, J. and G. Trempe, New Human Tumor Cell Lines, in Human Tumor Cells in Vitro. 1975. p. 115-159.
122. Martinez-Maqueda, D., B. Miralles, and I. Recio, HT29 Cell Line, in The Impact of Food Bioactives on Health: in vitro and ex vivo models, K. Verhoeckx, et al., Editors. 2015: Cham (CH). p. 113-24.
123. Bento, D.A., A study of the blood flow behaviour in microchannel networks. 2021.
124. Haddadi, H., et al., Suspension flow past a cylinder: particle interactions with recirculating wakes. Journal of Fluid Mechanics, 2014. 760.
125. Zdravkovich, M.M., Conceptual Overview of Laminar and Turbulent Flows Past Smooth and Rough Circular-Cylinders. Journal of Wind Engineering and Industrial Aerodynamics, 1990. 33(1-2): p. 53-62.
126. Fore, S., et al., Raman spectroscopy of individual monocytes reveals that single-beam optical trapping of mononuclear cells occurs by their nucleus. J Opt, 2011. 13(4): p. 44021. |