博碩士論文 110324021 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:8 、訪客IP:18.224.43.98
姓名 楊昕潼(Shin-Tung Yang)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 利用臨場及不同入射角低掠角小角度X光散射研究對稱型嵌段共聚物與均聚物混摻之表面浮凸薄膜的結構演變:均聚物分散係數之影響
(Structural Evolution in Terraced Films of Block Copolymer/Homopolymer Blends Studied by In-Situ and Angle-Dependence Grazing Incidence Small-Angle X-ray Scattering:Effects of Chain Length Disparity)
相關論文
★ 分子量對嵌段共聚物與均聚物混摻薄膜之梯田表面中表面穿孔及水平圓柱結構的影響:臨場及不同入射角低掠角小角度X光散射研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2026-7-25以後開放)
摘要(中) 本研究使用對稱型嵌段共聚物—聚苯乙烯-b-聚(甲基丙烯酸甲酯)混摻聚苯乙烯均聚物(PS21k-b-PMMA21k/PS6k),在不同的混摻比例、均聚物的分散係數(PDI)和熱回火溫度下,我們可以獲得不同奈米結構。 為了去除表面潤濕層並增加 PS 和 PMMA 之間的對比度,我們使用了氧氣等離子體蝕刻。 並利用光學顯微鏡(OM)、原子力顯微鏡(AFM)、掃描電子顯微鏡(SEM)、掠入射小角 X 射線散射(GISAXS)深入分析薄膜形態。
透過臨場(in-situ)可以探討在熱回火之自組裝行為,在量測不同入射角之方式(angle-dependent)可以研究結構及晶面特徵。透過均聚物PDI的不同,在PDI = 1.05及1.33可以獲得水平圓柱(Parallel cylinders, Cs//)的形貌,但PDI 1.5在70/30的混摻比例下結構會有所改變,並受到溫度的牽制。當溫度230 ℃會在薄膜表面形成單層穿孔層(Perforated layers, PLs //)結構,而內部維持水平圓柱,在270 ℃則會形成完整雙連續螺旋(Bicontinuous Double Gyroids, DG)結構。透過公式擬和水平圓柱的散射峰,能夠量化入射角、臨界角、q⊥方向貢獻以及穿透光與反射光之路徑,準確判斷晶面貢獻以及域間間距,更深入了解薄膜之結構。
摘要(英) We have demonstrated the symmetric weakly separated block copolymer, polystyrene-block-poly(methyl methacrylate)blended with homopolystyrene(PS21k-b-PMMA21k/PS6k). By using different blending ratios, homopolymer’s dispersity(PDI)and annealing temperatures, we obtained several nanostructures. To remove the surface wetting layer and to increase the contrast between PS and PMMA segments, we used oxygen plasma etching. Optical microscopy(OM), atomic force microscopy(AFM), scanning electron microscopy(SEM), grazing-incidence small-angle X-ray scattering(GISAXS)were also used for in-depth morphological analysis of thin films.
Through in-situ GISAXS, the self-assembly behavior during thermal annealing can be investigated. The structures and crystal facet characteristics can be studied by angle-dependent GISAXS. Through quantitative analysis of angle-dependence GISAXS, we found that blend films favor a morphology of parallel cylinders(Cs//)when PS homopolymers of PDI=1.05 and 1.33 were mixed with the PS-b-PMMA at weight fractions of 70/30, 60/40 and 50/50. For PDI=1.5, perforated layers(PLs //) and bicontinuous double gyroids(DG)were obtained in blend films of P(S-b-MMA) and hPS of a weight fraction of 70/30. At 230 ℃, a surface layer of perforations formed on top of parallel cylinders. At 270 ℃, bicontinuous double gyroids formed. By fitting the q-scattering peaks of the horizontal cylinders through the formula, it is possible to quantify the incident angles, critical angles and diffraction spots along the q⊥ direction, thus allowing us to accurately determine the crystal plane contribution and interdomain spacing.
關鍵字(中) ★ 低掠角小角度X光散射
★ 分散係數
★ 嵌段共聚物
關鍵字(英) ★ GISAXS
★ Disparity
★ Block Copolymer
論文目次 摘要 i
Abstract ii
致謝 iii
目錄 iv
圖目錄 vi
表目錄 xiii
第1章 緒論 1
1-1 前言 1
1-2 嵌段共聚物 3
1-3 塊材系統之自組裝 5
1-4 薄膜系統之自組裝 8
1-4-1 厚度效應 8
1-4-2 表面場作用力 10
1-4-3 空間侷限效應與膜厚相稱性 12
1-5 嵌段共聚物和均聚物之混摻系統 15
1-5-1 均聚物之濃度及分子量對結構變化的影響 17
1-5-2 薄膜層數對結構變化的影響 20
1-6 聚合物分散係數(Polydispersity Index, PDI) 22
1-7 研究背景與動機 24
第2章 實驗 25
2-1 實驗材料 25
2-1-1 高分子材料 25
2-1-2 溶劑 26
2-1-3 基材 26
2-2 實驗儀器 26
2-3 實驗設計與樣品製備 27
2-3-1 基材前處理 27
2-3-2 高分子薄膜製備 27
2-3-3 移除潤濕層之方法—氧氣離子電漿蝕刻 29
2-3-4 低掠角小角度X 光散射樣品in-situ 量測 30
2-4 儀器原理 31
2-4-1 光學顯微鏡(OM) 31
2-4-2 原子力顯微鏡(AFM) 32
2-4-3 掃描式電子顯微鏡(SEM) 34
反射式膜厚儀(Optical interferometer) 37
2-4-4 低掠角小角度X光散射儀(GISAXS) 38
2-4-4-1 圓柱(Cylinders, Cs) 43
2-4-4-2 穿孔層(Perforated Layers, PLs//) 49
2-4-4-3 雙連續螺旋(bicontinuous Double Gyroids, DG) 51
第3章 結果與討論 53
3-1 臨場(in-situ)實驗之特徵峰探討 53
3-1-1 樣品表面之觀察 54
3-1-2 GISAXS 2D圖特徵之探討 56
3-1-3 混摻效應對結構之影響 59
3-1-4 PDI效應對結構之影響 63
3-1-5 截斷棒(Truncation Rods)之晶面擬合 65
3-2 不同入射角(Angle-dependent)實驗之特徵峰探討 68
3-2-1 厚邊效應 69
3-2-2 PDI = 1.05之定性分析 74
3-2-3 PDI = 1.05之定量分析 75
3-2-4 PDI效應 84
3-2-4-1 PDI = 1.33 84
3-2-4-2 PDI = 1.50 87
3-2-5 雙連續螺旋之結構探討 92
第4章 結論 98
第5章 參考文獻 100
第6章 附錄 107
參考文獻 [1] Yang, G. G.; Choi, H. J.; Han, K. H.; Kim, J. H.; Lee, C. W.; Jung, E. I.; Jin, H. M.; Kim, S. O. Block Copolymer Nanopatterning for Nonsemiconductor Device Applications. ACS Applied Materials & Interfaces 2022, 14, 12011-12037.
[2] Fasolka, M. J.; Mayes, A. M. Block Copolymer Thin Films: Physics and Applications. Annual Review of Materials Research 2001, 31, 323-355.
[3] Schacher, F. H.; Rupar, P. A.; Manners, I. Functional Block Copolymers: Nanostructured Materials with Emerging Applications. Angewandte Chemie International Edition 2012, 51, 7898-7921.
[4] Choudhury, S.; Agrawal, M.; Formanek, P.; Jehnichen, D.; Fischer, D.; Krause, B.; Albrecht, V.; Stamm, M.; Ionov, L. Nanoporous Cathodes for High-Energy Li–S Batteries from Gyroid Block Copolymer Templates. ACS Nano 2015, 9, 6147-6157.
[5] Huang, J.; Turner, S. R. Recent Advances in Alternating Copolymers: The Synthesis, Modification, and Applications of Precision Polymers. Polymer 2017, 116, 572-586.
[6] Darling, S. Directing the Self-Assembly of Block Copolymers. Progress in Polymer Science 2007, 32, 1152-1204.
[7] Bates, F. S.; Fredrickson, G. H. Block Copolymer Thermodynamics: Theory and Experiment. Annual Review of Physical Chemistry 1990, 41, 525-557.
[8] Nisticò, R. Block Copolymers for Designing Nanostructured Porous Coatings. Beilstein Journal of Nanotechnology 2018, 9, 2332-2344.
[9] Hu, X.-H.; Xiong, S. Fabrication of Nanodevices through Block Copolymer Self-Assembly. Frontiers in Nanotechnology 2022, 4, 762996.
[10] Matsen, M. W.; Bates, F. S. Origins of Complex Self-Assembly in Block Copolymers. Macromolecules 1996, 29, 7641-7644.
[11] Swann, J. M.; Topham, P. D. Design and Application of Nanoscale Actuators Using Block-Copolymers. Polymers 2010, 2, 454-469.
[12] Khandpur, A. K.; Foerster, S.; Bates, F. S.; Hamley, I. W.; Ryan, A. J.; Bras, W.; Almdal, K.; Mortensen, K. Polyisoprene-Polystyrene Diblock Copolymer Phase Diagram near the Order-Disorder Transition. Macromolecules 1995, 28, 8796-8806.
[13] Li, C.; Li, Q.; Kaneti, Y. V.; Hou, D.; Yamauchi, Y.; Mai, Y. Self-Assembly of Block Copolymers Towards Mesoporous Materials for Energy Storage and Conversion Systems. Chemical Society Reviews 2020, 49, 4681-4736.
[14] Knoll, A.; Horvat, A.; Lyakhova, K.; Krausch, G.; Sevink, G.; Zvelindovsky, A.; Magerle, R. Phase Behavior in Thin Films of Cylinder-Forming Block Copolymers. Physical Review Letters 2002, 89, 035501.
[15] Stein, G.; Cochran, E. W.; Katsov, K.; Fredrickson, G.; Kramer, E.; Li, X.; Wang, J. Symmetry Breaking of in-Plane Order in Confined Copolymer Mesophases. Physical Review Letters 2007, 98, 158302.
[16] Horvat, A.; Lyakhova, K.; Sevink, G.; Zvelindovsky, A.; Magerle, R. Phase Behavior in Thin Films of Cylinder-Forming Aba Block Copolymers: Mesoscale Modeling. The Journal of Chemical Physics 2004, 120, 1117-1126.
[17] Lyakhova, K.; Sevink, G.; Zvelindovsky, A.; Horvat, A.; Magerle, R. Role of Dissimilar Interfaces in Thin Films of Cylinder-Forming Block Copolymers. The Journal of Chemical Physics 2004, 120, 1127-1137.
[18] Hamley, I. Ordering in Thin Films of Block Copolymers: Fundamentals to Potential Applications. Progress in Polymer Science 2009, 34, 1161-1210.
[19] Hu, H.; Gopinadhan, M.; Osuji, C. O. Directed Self-Assembly of Block Copolymers: A Tutorial Review of Strategies for Enabling Nanotechnology with Soft Matter. Soft Matter 2014, 10, 3867-3889.
[20] Maher, M. J.; Self, J. L.; Stasiak, P.; Blachut, G.; Ellison, C. J.; Matsen, M. W.; Bates, C. M.; Willson, C. G. Structure, Stability, and Reorganization of 0.5 L 0 Topography in Block Copolymer Thin Films. ACS Nano 2016, 10, 10152-10160.
[21] Kim, S.; Bates, C. M.; Thio, A.; Cushen, J. D.; Ellison, C. J.; Willson, C. G.; Bates, F. S. Consequences of Surface Neutralization in Diblock Copolymer Thin Films. ACS Nano 2013, 7, 9905-9919.
[22] Tanaka, H.; Hasegawa, H.; Hashimoto, T. Ordered Structure in Mixtures of a Block Copolymer and Homopolymers. 1. Solubilization of Low Molecular Weight Homopolymers. Macromolecules 1991, 24, 240-251.
[23] Choi, C.; Ahn, S.; Kim, J. K., Diverse Morphologies of Block Copolymers by Blending with Homo (and Co) Polymers. ACS Publications 2020, 53, 4577-4580.
[24] Stuen, K. O.; Thomas, C. S.; Liu, G.; Ferrier, N.; Nealey, P. F. Dimensional Scaling of Cylinders in Thin Films of Block Copolymer− Homopolymer Ternary Blends. Macromolecules 2009, 42, 5139-5145.
[25] Lin, Y.-H.; Shiu, C.-C.; Chen, T.-L.; Chen, H.-L.; Tsai, J.-C. Solubilization Behavior of Homopolymer in Its Blend with the Block Copolymer Displaying the Feature of Lower Critical Ordering Transition. Polymers 2021, 13, 3415.
[26] Winey, K. I.; Thomas, E. L.; Fetters, L. J. Ordered Morphologies in Binary Blends of Diblock Copolymer and Homopolymer and Characterization of Their Intermaterial Dividing Surfaces. The Journal of Chemical Physics 1991, 95, 9367-9375.
[27] Mishra, V.; Hur, S.-m.; Cochran, E. W.; Stein, G. E.; Fredrickson, G. H.; Kramer, E. J. Symmetry Transition in Thin Films of Diblock Copolymer/Homopolymer Blends. Macromolecules 2010, 43, 1942-1949.
[28] Lynd, N. A.; Hillmyer, M. A. Influence of Polydispersity on the Self-Assembly of Diblock Copolymers. Macromolecules 2005, 38, 8803-8810.
[29] Oschmann, B.; Lawrence, J.; Schulze, M. W.; Ren, J. M.; Anastasaki, A.; Luo, Y.; Nothling, M. D.; Pester, C. W.; Delaney, K. T.; Connal, L. A. Effects of Tailored Dispersity on the Self-Assembly of Dimethylsiloxane–Methyl Methacrylate Block Co-Oligomers. ACS Macro Letters 2017, 6, 668-673.
[30] Hong, J.-W.; Chang, J.-H.; Hung, H.-H.; Liao, Y.-P.; Jian, Y.-Q.; Chang, I. C.-Y.; Huang, T.-Y.; Nelson, A.; Lin, I.-M.; Chiang, Y.-W. Chain Length Effects of Added Homopolymers on the Phase Behavior in Blend Films of a Symmetric, Weakly Segregated Polystyrene-Block-Poly (Methyl Methacrylate). Macromolecules 2022, 55, 2130-2147.
[31] Hong, J.-W.; Chang, J.-H.; Chang, I. C.-Y.; Sun, Y.-S. Phase Behavior in Thin Films of Weakly Segregated Block Copolymer/Homopolymer Blends. Soft Matter 2021, 17, 9189-9197.
[32] Hong, J.-W.; Jian, Y.-Q.; Liao, Y.-P.; Hung, H.-H.; Huang, T.-Y.; Nelson, A.; Tsao, I.-Y.; Wu, C.-M.; Sun, Y.-S. Distributions of Deuterated Polystyrene Chains in Perforated Layers of Blend Films of a Symmetric Polystyrene-Block-Poly (Methyl Methacrylate). Langmuir 2021, 37, 13046-13058.
[33] 簡怡晴, 對稱型嵌段共聚物與均聚物混摻薄膜自組裝行為與相型態. 國立中央大學, 化學工程與材料工程學系碩士論文, 2022.
[34] Stein, G. E.; Laws, T. S.; Verduzco, R. Tailoring the Attraction of Polymers toward Surfaces. Macromolecules 2019, 52, 4787-4802.
[35] Ting, Y.-H.; Liu, C.-C.; Park, S.-M.; Jiang, H.; Nealey, P. F.; Wendt, A. E. Surface Roughening of Polystyrene and Poly (Methyl Methacrylate) in Ar/O2 Plasma Etching. Polymers 2010, 2, 649-663.
[36] Olympus, Https://Www.Olympus-Lifescience.Com/En/Microscope-Resource/Primer/Java/Microscopy/Transmitted/.
[37] Nguyen-Tri, P.; Ghassemi, P.; Carriere, P.; Nanda, S.; Assadi, A. A.; Nguyen, D. D. Recent Applications of Advanced Atomic Force Microscopy in Polymer Science: A Review. Polymers 2020, 12, 1142.
[38] Maver, U.; Maver, T.; Peršin, Z.; Mozetič, M.; Vesel, A.; Gaberšček, M.; Stana-Kleinschek, K., Polymer Characterization with the Atomic Force Microscope. Polymer Science 2013, 4.
[39] Inkson, B. J., Scanning Electron Microscopy (Sem) and Transmission Electron Microscopy (Tem) for Materials Characterization. In Materials Characterization Using Nondestructive Evaluation (Nde) Methods 2016, 17-43.
[40] Sharma, S. K.; Verma, D. S.; Khan, L. U.; Kumar, S.; Khan, S. B. Handbook of Materials Characterization 2018.
[41] 孫亞賢, 劉峻佑, 簡士偉. 低略角小角度x光散射原理及在高分子薄膜結構之應用. 科技新知 2013, 34, 61-70.
[42] Yoneda, Y. Anomalous Surface Reflection of X Rays. Physical Review 1963, 131, 2010.
[43] Nist Center for Neutron Research, Https://Www.Ncnr.Nist.Gov/Resources/Activation/.
[44] Lee, B.; Park, I.; Yoon, J.; Park, S.; Kim, J.; Kim, K.-W.; Chang, T.; Ree, M. Structural Analysis of Block Copolymer Thin Films with Grazing Incidence Small-Angle X-Ray Scattering. Macromolecules 2005, 38, 4311-4323.
[45] Saito, I.; Miyazaki, T.; Yamamoto, K. Depth-Resolved Structure Analysis of Cylindrical Microdomain in Block Copolymer Thin Film by Grazing-Incidence Small-Angle X-Ray Scattering Utilizing Low-Energy X-Rays. Macromolecules 2015, 48, 8190-8196.
[46] Hsu, C.-H.; Yue, K.; Wang, J.; Dong, X.-H.; Xia, Y.; Jiang, Z.; Thomas, E. L.; Cheng, S. Z. Thickness-Dependent Order-to-Order Transitions of Bolaform-Like Giant Surfactant in Thin Films. Macromolecules 2017, 50, 7282-7290.
[47] Choi, J.; Gunkel, I.; Li, Y.; Sun, Z.; Liu, F.; Kim, H.; Carter, K. R.; Russell, T. P. Macroscopically Ordered Hexagonal Arrays by Directed Self-Assembly of Block Copolymers with Minimal Topographic Patterns. Nanoscale 2017, 9, 14888-14896.
[48] Pang, Y.; Wan, L.; Huang, G.; Zhang, X.; Jin, X.; Xu, P.; Liu, Y.; Han, M.; Wu, G.-P.; Ji, S. Controlling Block Copolymer–Substrate Interactions by Homopolymer Brushes/Mats. Macromolecules 2017, 50, 6733-6741.
[49] Zhu, L.; Huang, P.; Chen, W. Y.; Weng, X.; Cheng, S. Z.; Ge, Q.; Quirk, R. P.; Senador, T.; Shaw, M. T.; Thomas, E. L. “Plastic Deformation” Mechanism and Phase Transformation in a Shear-Induced Metastable Hexagonally Perforated Layer Phase of a Polystyrene-B-Poly (Ethylene Oxide) Diblock Copolymer. Macromolecules 2003, 36, 3180-3188.
[50] Heo, K.; Yoon, J.; Jin, S.; Kim, J.; Kim, K.-W.; Shin, T. J.; Chung, B.; Chang, T.; Ree, M. Polystyrene-B-Polyisoprene Thin Films with Hexagonally Perforated Layer Structure: Quantitative Grazing-Incidence X-Ray Scattering Analysis. Journal of Applied Crystallography 2008, 41, 281-291.
[51] Ahn, J.-H.; Zin, W.-C. Structure of Shear-Induced Perforated Layer Phase in Styrene− Isoprene Diblock Copolymer Melts. Macromolecules 2000, 33, 641-644.
[52] Jo, S.; Park, H.; Jun, T.; Kim, K.; Jung, H.; Park, S.; Lee, B.; Lee, S.; Ryu, D. Y. Symmetry-Breaking in Double Gyroid Block Copolymer Films by Non-Affine Distortion. Applied Materials Today 2021, 23, 101006.
[53] Zhao, Y.; Sivaniah, E.; Hashimoto, T. Saxs Analysis of the Order− Disorder Transition and the Interaction Parameter of Polystyrene-Block-Poly (Methyl Methacrylate). Macromolecules 2008, 24, 9948-9951.
[54] Yan, Y.; Li, J.; Liu, Q.; Zhou, P. Evaporation Effect on Thickness Distribution for Spin-Coated Films on Rectangular and Circular Substrates. Coatings 2021, 11, 1322.
[55] Shiratori, S.; Kubokawa, T. Double-Peaked Edge-Bead in Drying Film of Solvent-Resin Mixtures. Physics of Fluids 2015, 27, 102105.
[56] Xia, X.; Lau, T.-K.; Guo, X.; Li, Y.; Qin, M.; Liu, K.; Chen, Z.; Zhan, X.; Xiao, Y.; Chan, P. F. Uncovering the out-of-Plane Nanomorphology of Organic Photovoltaic Bulk Heterojunction by GTSAXS. Nature Communications 2021, 12, 6226.
[57] Liu, J.; Yager, K. G. Unwarping GISAXS Data. IUCrJ 2018, 5, 737-752.
[58] Lu, X.; Yager, K. G.; Johnston, D.; Black, C. T.; Ocko, B. M. Grazing-Incidence Transmission X-Ray Scattering: Surface Scattering in the Born Approximation. Journal of Applied Crystallography 2013, 46, 165-172.
[59] Busch, P.; Rauscher, M.; Moulin, J.-F.; Mueller-Buschbaum, P. Debye–Scherrer Rings from Block Copolymer Films with Powder-Like Order. Journal of Applied Crystallography 2011, 44, 370-379.
[60] Panduro, E. A. C.; Granlund, H. v.; Sztucki, M.; Konovalov, O.; Breiby, D. W.; Gibaud, A. Using Three-Dimensional 3d Grazing-Incidence Small-Angle X-Ray Scattering (GISAXS) Analysis to Probe Pore Deformation in Mesoporous Silica Films. ACS Applied Materials & Interfaces 2014, 6, 2686-2691.
[61] Horvat, A.; Sevink, G. A.; Zvelindovsky, A. V.; Krekhov, A.; Tsarkova, L. Specific Features of Defect Structure and Dynamics in the Cylinder Phase of Block Copolymers. Acs Nano 2008, 2, 1143-1152.
[62] Lin, S.-H.; Ho, C.-C.; Su, W.-F. Cylinder-to-Gyroid Phase Transition in a Rod–Coil Diblock Copolymer. Soft Matter 2012, 8, 4890-4893.
[63] Aissou, K.; Mumtaz, M.; Portale, G.; Brochon, C.; Cloutet, E.; Fleury, G.; Hadziioannou, G. Templated Sub‐100‐Nm‐Thick Double‐Gyroid Structure from Si‐Containing Block Copolymer Thin Films. Small 2017, 13, 1603777.
[64] Matsen, M. W. Cylinder↔ Gyroid Epitaxial Transitions in Complex Polymeric Liquids. Physical Review Letters 1998, 80, 4470.
[65] Feng, X.; Burke, C. J.; Zhuo, M.; Guo, H.; Yang, K.; Reddy, A.; Prasad, I.; Ho, R.-M.; Avgeropoulos, A.; Grason, G. M. Seeing Mesoatomic Distortions in Soft-Matter Crystals of a Double-Gyroid Block Copolymer. Nature 2019, 575, 175-179.
指導教授 李岱洲 孫亞賢(Tai-Chou Lee Ya-Sen Sun) 審核日期 2023-7-26
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明