博碩士論文 110324026 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:150 、訪客IP:3.17.186.157
姓名 李青泓(Ching-Hung Lee)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 以有機金屬框架製備鐵摻雜富鋰鎳錳鈷氧正極材料 應用於鋰離子電池之研究
(The Study of Fe-doped Li-rich Li1.2Mn0.54Ni0.13Co0.13O2 Cathode Material Prepare Using Metal-Organic Framework for Lithium-ion Battery)
相關論文
★ 氫氧化鎳/奈米碳管/碳纖維複合電極之製備及其於尿素溶液中電極動力學之研究★ 無黏合劑鉻摻雜鋰鎳錳氧/碳纖維高電壓複合正極與奈米碳管/碳纖維複合負極應用於鋰離子電池之研究
★ 鈣鈦礦釔鐵氧化物/碳纖維複合電極應用於有機汙水處理之研究★ 碳黑改質對高電壓鋰離子電池正極電化學表現影響之研究
★ 電化學輔助紫外光/氯程序應用於水楊酸降解之研究★ 以廢棄太陽能電池製作Si/SiOx/Al2O3碳纖維複合式負極應用於鋰離子電池之研究
★ 部分碳化聚乙烯吡咯烷酮黏著劑應用於高電壓鋰離子電池正極之研究★ 釔鐵氧化物/氧化鈰光陽極應用於有機汙水處理
★ 水熱法合成之Li1+xAlxTi2-x(PO4)3與聚偏二氟乙烯/醋酸纖維素複合型固態電解質 應用於鋰離子電池之研究★ 含水深共熔溶劑系統電化學製備之奈米氫氧化鎳/鎳/碳纖維氈複合電極應用於水分解製氫
★ 以回收太陽能板之矽基材料結合石墨製備Si/SiOx/C複合負極應用於鋰離子電池之研究★ 原位聚合生成雙鋰鹽系統類凝膠聚(1,3-二氧戊環)電解質應用於鋰離子電池之研究
★ 以含水深共熔溶劑電化學系統製備奈米鎳銅合金/碳纖維氈複合電極應用於水分解製氫★ 以有機金屬框架結合乙醇輔助水熱法製備鐵摻雜鋰鎳錳氧高電壓正極 應用於鋰離子電池之研究
★ 氧化鎂/聚丙烯酸/聚偏二氟乙烯修飾聚丙烯隔離膜應用於鋰離子電池★ Na1+xAlxTi2-x(PO4)3與聚偏二氟乙烯/ 醋酸纖維素複合型固態電解質應用於鈉離子電池之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2029-6-30以後開放)
摘要(中) 富鋰層狀鋰鎳錳鈷正極材(Lithium-rich layered lithium nickel manganese cobalt oxide, Li1.2Mn0.54Ni0.13Co0.13O2, LRO) ,由於其擁有最高的能量密度、最寬的電壓窗口以及良好的工作電壓,被認為有前途的正極材料,此外同時作為一種高錳的正極材料,具備低成本以及較好的環性友善性。然而,Li1.2Mn0.54Ni0.13Co0.13O2的結構不穩定性導致循環性能差、容量衰減,限制了富鋰正極材料的發展。
為了解決這些挑戰,我們提出了一種創新方法,使用基於對苯二甲酸(PTA)的金屬有機框架(MOFs)之前驅物合成Li1.2Mn0.54Ni0.13Co0.13O2。在此過程中,有機配體作為模板,使金屬離子的均勻排列並大幅縮小顆粒尺寸,提升材料的Li+傳導率。另外直接讓鐵參與配位反應,形成鐵摻雜 Li1.2Mn0.54-xNi0.13Co0.13FexO2,進一步提升材料的穩定性,此外,我們分析不同充放電樣本的結構變化,建立起材料與電化學性能之間的關聯性。我們的研究揭示了正極材料在長期循環中的詳細結構重組,並為理解電池材料再生現象提供了理論支持與新的研究方向。
從結果可以發現在有機金屬框架製程中,正極材料會自動生成Li2Co3 均勻包覆在Li1.2Mn0.54Ni0.13Co0.13O2表面,保護材料減少電解液劣化反應,提升 Li+ 擴散。通過適當的鐵摻雜,控制Li2MnO3相態,提升材料的穩定性,其中Li1.2Mn0.54-xNi0.13Co0.13FexO2 (x =0.03) 樣品擁有最佳的性能表現,在 0.2 C 下,具有 250mAh/g 之實際電容量,在 1 C條件下進行 200 次與500次循環下,分別維持189 mAh/g和179 mAh/g的電容量,並且在不同倍率測試中,顯示2 C和5 C下能夠擁有170 mAh/g與127 mAh/g,揭示以有機金屬框架與鐵摻雜之結合,所合成出來的Li1.2Mn0.54Ni0.13Co0.13O2,其綜合性能遠超過其他製程。
摘要(英) Lithium-rich layered lithium nickel manganese cobalt oxide Li1.2Mn0.54Ni0.13Co0.13O2 (LRO) has been recognized as a promising cathode material. Due to its highest energy density, widest voltage window, and excellent operating voltage. Furthermore, as a high-manganese cathode material, it possesses low cost and good environmental compatibility. However, the structural instability of LRO leads to poor cycling performance, capacity decay, limiting the development of lithium-rich materials.
To address these challenges, we propose an innovative approach to synthesize LRO cathode materials from precursors using metal-organic frameworks (MOFs) based on purified terephthalic acid (PTA). In this process, organic ligands serve as templates, facilitating uniform arrangement of metal ions and significantly reducing particle size to prepare cathode materials with high cycling stability and energy density. With Fe doping into the PTA-Mn-Ni-Co precursor. We successfully using XRD, XPS, and TEM confirm the incorporation of Fe into the material structure. In addition, we established a direct correlation between material structural changes and electrochemical performance and observed the microscopic structure of the samples through HR-TEM. Our research reveals detailed structural reorganization of cathode materials during long-term cycles and provides a microscopic mechanism for capacity increase, offering theoretical support for understanding battery material regeneration phenomena. The in-situ generate a Li2CO3 coating layer on the surface of LRO during the MOFs process, protecting the material from degradation reactions with the electrolyte and enhancing Li+ diffusion. Furthermore, by appropriate Fe doping, we control the ratio of Li2MnO3 phase to improve material stability. Among the different Fe doping sample, the Li1.2Mn0.54-xNi0.13Co0.13FexO2 (x=0.03) sample exhibits the best performance, achieving an actual capacity of 250 mAh/g at 0.2 C, and discharge capacity of 189 mAh/g and 179 mAh/g after 200 and 500 cycles at 1 C rate, respectively. Moreover, it maintains capacity of 170 mAh/g and 127 mAh/g at 2 C and 5 C rates, respectively. Compared with LRO from other literature, it reveals that the LRO combined with metal-organic frameworks and Fe doping exhibits significantly greater cycling stability than LRO produced by other processes.
關鍵字(中) ★ 鋰離子電池
★ 正極材料
★ 有機金屬框架
★ 鐵摻雜
★ 碳酸鋰塗層
關鍵字(英) ★ Lithium-rich layered lithium cathode
★ Metal−Organic Frameworks
★ Fe-doped
★ Li2CO3 coating
★ Lithium-ion battery
論文目次 Chapter 1 Introduction 1
1-1 Energy issues and energy storage development 1
1-2 Development of the lithium-ion battery industry 3
1-3 Composition and working principle of lithium-ion batteries 6
1-4 Lithium-Ion battery components 9
1-4-1 Cathode material 9
1-4-1-1 Layered compounds 10
1-4-1-2 Spinel compounds 12
1-4-1-3 Olivine compounds 13
1-4-2 Anode material 13
1-4-3 Separator 15
1-4-4 Current collector 16
1-4-5 Binder 18
1-5 Research motivation 18
Chapter 2 Literature Review 21
2-1 Li-rich layered oxide cathode material 21
2-2 LRO cathode material synthesis method 22
2-2-1 Solid-state reactions method 23
2-2-2 Sol-gel method 23
2-2-3 Hydrothermal method 24
2-2-4 Co-precipitation method 24
2-2-5 Polyol synthesis method 24
2-2-6 Metal-organic framework (MOFs) method 25
2-3 Doping of transition metals 30
Chapter 3 Experimental Method 33
3-1 Experimental framework 33
3-2 Chemical reagent, material and instrument 35
3-2-1 Chemical reagent 35
3-2-2 Experimental material 36
3-2-3 Experimental Instruments 37
3-3 Experimental step 38
3-3-1 Precursor preparation 38
3-3-2 Preparation of cathode material 38
3-3-3 Electrode preparation 39
3-3-4 CR2032 button battery 40
3-4 Material and electrochemical analysis 40
3-4-1 Fourier-transform infrared spectroscopy (FTIR) 41
3-4-2 Field emission scanning electron microscope (FE-SEM) 41
3-4-3 X-ray diffraction (XRD) 42
3-4-4 X-ray photoelectron spectroscopy (XPS) 42
3-4-5 Transmission electron microscopy (HR-TEM) 43
3-4-6 Electrochemical impedance spectroscopy (EIS) 43
3-4-7 Cyclic voltammetry (CV) 44
3-4-8 Charge/Discharge Test 44
Chapter 4 Result and discussion 46
4-1 Precursors of cathode materials with different Fe doping ratios 46
4-1-1 XRD analysis of precursors with different Fe doping ratios 46
4-1-2 FTIR analysis of PTA-Mn-Ni-Co and PTA-Mn-Ni-Co-Fe(x=0.03) 49
4-2 LRO cathode materials with different Fe doping ratios 51
4-2-1 SEM analysis of LRO (x=0) and LRFO (x=0.01, 0.03, 0.05) 51
4-2-2 SEM analysis of LRO and LRFO (x=0.03) for different cycle 56
4-2-3 XRD analysis of LRO (x=0) and LRFO (x=0.01, 0.03, 0.05) 58
4-2-4 XPS analysis of LRO (x=0) and LRFO (x=0.03) 62
4-2-5 HR-TEM analysis of LRO (x=0) 68
4-2-6 Cycling performance tests of LRO (x=0) and LRFO (x=0.01, 0.03, 0.05) 70
4-2-7 Rapid cycling performance test of LRO (x=0) and LRFO (x=0.01, 0.03, 0.05) 74
4-2-8 The 0.2 C rate cycling performance and 500-cycle cycling performance tests 76
4-2-10 Electrochemical impedance analysis of LRO (x=0) and LRFO (x=0.01, 0.03, 0.05) 82
4-2-11 Operating Voltage decay analysis of LRO (x=0) and LRFO (x=0.01, 0.03, 0.05) 87
4-3 LRO capacity increase analysis 89
4-3-1 XRD analysis of different cycling samples 89
4-3-2 HR-TEM analysis of different cycles sample 93
4-3-2-1 LRO samples after 5 cycles at 1 C rate 93
4-3-2-2 LRO samples cycled at 1 C for 55 cycles 96
Chapter 5 Conclusion and future perspectives 101
5-1 Precursor 101
5-2 Cathode material 101
5-3 Capacity increase analysis 103
5-4 Future perspectives 104

Figure Contents
Fig. 1 Global carbon dioxide emissions from 1750 to 2022 1
Fig. 2 Years in which various countries will ban the sale of fuel vehicles 2
Fig. 3 Global energy storage market demand 3
Fig. 4 Comparison of average power and energy density for various types of electrochemical energy storage 3
Fig. 5 Estimated value of the global lithium-battery market 4
Fig. 6 Cost composition of electric vehicle power systems 5
Fig. 7 Historical changes in battery costs (USD/kWh) 6
Fig. 8 Global electric vehicle sales from 2013 to 2018 6
Fig. 9 Composition of button battery 8
Fig. 10 Working principle for lithium-ion battery 8
Fig. 11 Common types of crystal structures in lithium-ion battery cathode materials 10
Fig. 12 (a) Crystal structure of olivine compound (b) Li+ diffusion in one-dimensional path of olivine structure 13
Fig. 13 Theoretical capacity and operating voltage of various negative electrode material 15
Fig. 14 The LRO cyclic performance at 0.1 C[70] 22
Fig. 15 Sketch for the LRO samples prepared by sol-gel method. 23
Fig. 16 Schematic diagram of the synthesis process of polycrystal LRO nanoparticles and single-crystal LRO nanosheets[45] 25
Fig. 17 Types of metal-organic frameworks 26
Fig. 18 Schematic of metal Ion and organic ligand coordination 27
Fig. 19 The structures of MOF-808X feature green and pink spheres, which represent the tetrahedral and adamantane-shaped cages in the framework, respectively. The dark gray balls within the framework denote the coordinated anions. In MOF-808A, the hexagonal windows have a diameter of approximately 10 Å 28
Fig. 20 Procedure for fabricating cathode materials by using metal-organic frameworks 28
Fig. 21 The synthetic reaction mechanism diagram of the PTA precursor 29
Fig. 22 The cyclic performance of LiNi0.5Mn1.5O4 under different ratios of NaOH and PTA. 30
Fig. 23 The cyclic performance of Fe doping ratio 31
Fig. 24 The discharge curves of LRO with different Fe doping levels 32
Fig. 25 The figure of experimental framework 34
Fig. 26 The figure of experimental procedure 39
Fig. 27 Schematic diagram of metal-organic framework 47
Fig. 28 XRD pattern of precursor materials of Li1.2Mn0.54-xNi0.12Co0.12FexO2 with different Fe doping 48
Fig. 29 FTIR spectra of PTA and PTA-Mn-Ni-Co precursor materials 50
Fig. 30 FTIR spectra of PTA-Mn-Ni-Co and PTA-Mn-Ni-Co-Fe (x=0.03) 50
Fig. 31 SEM analysis of (a-b) LRO (x=0), (c-d) LRFO (x=0.01), (e-f) LRFO (x=0.03), (g-h) LRFO (x=0.05) 53
Fig. 32 EDS analysis of LRO (x=0) 54
Fig. 33 EDS analysis of LRFO (x=0.03) 55
Fig. 34 SEM analysis of LRO (x=0) and LRFO(x=0.03) for different cycle (a) LRO (x=0) (b) LRO (x=0) for 100th cycles (c) LRFO (x=0.03) (d) LRFO (x=0.03) for 100th cycles 57
Fig. 35 XRD pattern of LRO and LRFO (x=0.01, x=0.03, x=0.05) with different Fe doping 59
Fig. 36 XRD pattern of LRO and LRFO (x=0.01, x=0.03, x=0.05) with different Fe doping in the range of 20° to 25° 60
Fig. 37 XRD pattern of LRO and LRFO (x=0.01, x=0.03, x=0.05) with different Fe doping in the range of 35° to 80° 60
Fig. 38 XPS spectrum analysis of LRO (x=0): (a) Survey spectrum, (b) Ni 2p, (c) Mn 2p, (d) Co 2p, (e) O 1s 65
Fig. 39 XPS spectrum analysis of LRFO (x=0.03): (a) survey spectrum, (b) Ni 2p, (c) Mn 2p, (d) Co 2p, (e) O 1s (f) Fe 2p 66
Fig. 40 HR-TEM image of LRO (x=0) 69
Fig. 41 Initial charge-discharge curves at 0.1 C for LRO (x=0) and LRFO (x=0.03) 71
Fig. 42 The cycling performance of LRO (x=0) and LRFO (x=0.01, x=0.03, x=0.05) with different Fe doping under 1 C rate in the voltage range of 2.0 V to 4.8 V for 200 cycles 72
Fig. 43 The rate performances of LRO (x=0) and LRFO (x=0.01, x=0.03, x=0.05) with different Fe doping in the voltage range of 2.0~4.8 V. 75
Fig. 44 The capacity retention ratio of LRO (x=0) and LRFO (x=0.01, x=0.03, x=0.05) under various current rate 76
Fig. 45 The cycling performance of LRFO (x=0.03) in the voltage range of 2.0~4.8V for 50 cycles at 0.2 C rate 77
Fig. 46 The cycling performance of LRFO (x=0.03) in the voltage range of 2.0~4.8V for 500 cycles at 1 C rate 77
Fig. 47 Cyclic voltammetry profiles of (a) LRO (x=0) (b) LRFO (x=0.01) (c)LRFO (x=0.03) (d) LRFO (x=0.05) in the 2.0~4.8 V voltage range for the 2nd and 3rd cycle 81
Fig. 48 Presents the equivalent circuit 82
Fig. 49 Nyquist plots of LRO (x=0) and LRFO (x=0.01, x=0.03, x=0.05) with different Fe doping 84
Fig. 50 Nyquist plots of LRO (x=0) and LRFO (x=0.01, x=0.03, x=0.05) with different Fe doping after 100 cycles 84
Fig. 51 Voltage decay of (a) LRO (x=0) (b) LRFO (x=0.01) (c) LRFO (x=0.03) (d) LRFO (x=0.05) with different cycles 88
Fig. 52 Schematic diagram of LRO surface transformation into LiMn2O4 spinel upon charge 91
Fig. 53 XRD pattern of LRO under different cycles 91
Fig. 54 XRD pattern of LRO under different cycles for the range of 15° to 30° 91
Fig. 55 XRD pattern of LRO under different cycles for the range of 50° to 80° 92
Fig. 56 HR-TEM image of LRO after 5 cycles at 1 C rate 94
Fig. 57 FFT analysis of LRO after 5 cycles at 1 C rate 94
Fig. 58 The d-spacing of LRO after 5 cycles at 1 C rate shows in HR-TEM image 95
Fig. 59 Schematic diagram of the relationship between capacity and phase transformation after 5 cycles 95
Fig. 60 HR-TEM image of LRO after 55 cycles at 1 C rate 98
Fig. 61 FFT analysis of the red box region after 55 cycles at 1 C rate 98
Fig. 62 The d-spacing of red box region after 55 cycles at 1 C rate shows in HR-TEM image 99
Fig. 63 FFT analysis of the blue box region after 55 cycles at 1 C rate 99
Fig. 64 The d-spacing of blue box region after 55 cycles at 1 C rate shows in HR-TEM image 100
Fig. 65 Schematic diagram of the relationship between capacity and phase transformation after 55 cycles 100

Table Content
Table. 1 Chemical reagent, specification and suppliers 35
Table. 2 Material name, specification, and supplier 36
Table. 3 Experimental instruments and suppliers 37
Table. 4 Instrument and supplier and model 40
Table.5 Crystal structure parameters of LRO and LRFO (x=0.01, x=0.03, x=0.05) with different Fe doping 61
Table. 6 The crystal size of LRO prepared by conventional co-precipitation method[61] 61
Table.7 The chemical bonds and corresponding binding energies of the fitted peaks for Mn 2p, Ni 2p, Co 2p, Fe 2p, and O 1s in LRO (x=0) 67
Table. 8 The XPS Mn 2p valence state composition of LRO (x=0) and LRFO (x=0.03) 67
Table. 9 The XPS Co 2p valence state composition of LRO (x=0) and LRFO (x=0.03) 67
Table. 10 Comparison of initial coulombic efficiencies for LRO (x=0) and LRFO (x=0.03) 72
Table. 11 Cycle capacity and average coulombic of LRO (x=0) and LRFO (x=0.01, x=0.03, x=0.05) 73
Table. 12 Comparison of electrochemical performance between LRO reported in previous literatures 79
Table. 13 The EIS fitting parameters of LRO (x=0) and LRFO (x=0.0, x=0.03, x=0.05) before and after 100 cycles 86
Table.14 The Li+ diffusion coefficients of LRO (x=0) and LRFO (x=0.01, x=0.03, x=0.05) 86
Table.15 The Li+ diffusion coefficients of LRO prepared by conventional co-precipitation method[70] 86
Table.16 The median voltage and voltage retention rate after 100 cycles of LRO (x=0) and LRFO (x=0.01, x=0.03, x=0.05) 88
Table. 17 The lattice constant under different cycles of 92




參考文獻 [1] Our World in Data, Global CO2 emissions from fossil fuels, 2022; Available from: https://ourworldindata.org/grapher/annual-co2-emissions-per-country?country=~OWID_WRL
[2] The International Council on clean Transportation, 2020; Available from:https://theicct.org/growing-momentum-global-overview-of-government-targets-for-phasing-out-sales-of-new-internal-combustion-engine-vehicles/
[3] Precedence Research Energy Storage Systems Market (By Technology: Compressed Air, Pumped Hydro Storage, Lithium Ion, Sodium Sulphur, Lead Acid, Redox flow, Nickel Cadmium, Flywheel, By Application, Transportation, Grid Management; By End User: Residential, Non-Residential, Utilities) - Global Industry Analysis, Size, Share, Growth, Trends, Regional Outlook, and Forecast 2024 – 2033; Available from:https://www.precedenceresearch.com/energy-storage-systems-market
[4] Alem, A., Kalogiannis, T., Van Mierlo, J., & Berecibar, M. (2022). A comprehensive review of stationary energy storage devices for large scale renewable energy sources grid integration. Renewable and Sustainable Energy Reviews, 159, 112213.
[5] Precedence Research, Lithium-ion-battery-market size, 2022; Available from :https://www.precedenceresearch.com/lithium-ion-battery-market
[6] Powertrain International Web, 2022; Available from:https://www.powertraininternationalweb.com/components/interact-analysis-which-ev-component-increased-price-the-most-in-2022/
[7] BloombergNEF, 2019; Available from: https://about.bnef.com/blog/behind-scenes-take-lithium-ion-battery-prices/
[8] ARK Investment Management LLC, 2019; Available from: https://ark-invest.com/articles/analyst-research/ev-growth-outperforming-the-traditional-s-curve-dynamics/
[9] Julien, C. M., Mauger, A., Zaghib, K., & Groult, H. (2014). Comparative issues of cathode materials for Li-ion batteries. Inorganics, 2, 132-154.
[10] Xu, C., Märker, K., Lee, J., Mahadevegowda, A., Reeves, P. J., Day, S. J., Groh, M. F., Emge, S. P., Ducati, C., Mehdi, B. L., Tang, C. C., & Grey, C. P. (2021). Bulk fatigue induced by surface reconstruction in layered Ni-rich cathodes for Li-ion batteries. Nature Materials, 20(1), 84–92.
[11] De Biasi, L., Schwarz, B., Brezesinski, T., Hartmann, P., Janek, J., & Ehrenberg, H. (2019). Chemical, structural, and electronic aspects of formation and degradation behavior on different length scales of Ni-rich NCM and Li-rich HE-NCM cathode materials in Li-ion batteries. Advanced Materials, 31(26), 1900985.
[12] Lin, F., Nordlund, D., Markus, I., Weng, T.-C., Xin, H., & Doeff, M. (2014). Profiling the nanoscale gradient in stoichiometric layered cathode particles for lithium-ion batteries. Energy & Environmental Science, 7.
[13] Lin, F., Markus, I. M., Nordlund, D., Weng, T.-C., Asta, M. D., Xin, H. L., & Doeff, M. M. (2014). Surface reconstruction and chemical evolution of stoichiometric layered cathode materials for lithium-ion batteries. Nature Communications, 5(1), 3529.
[14] Xiao, P., Shi, T., Huang, W., & Ceder, G. (2019). Understanding surface densified phases in Ni-rich layered compounds. ACS Energy Letters, 4(4), 811-818.
[15] Rossouw, M. H., Liles, D. C., & Thackeray, M. M. (1993). Synthesis and structural characterization of a novel layered lithium manganese oxide, Li0.36Mn0.91O2, and its lithiated derivative, Li1.09Mn0.91O2. Journal of Solid State Chemistry, 104(2), 464-466.
[16] Karunawan, J., Abdillah, O., Floweri, O., Aji, M., Santosa, S., Sumboja, A., & Iskandar, F. (2022). Improving the structural ordering and particle-size homogeneity of Li-rich layered Li1.2Ni0.13Co0.13Mn0.54O2 cathode materials through microwave irradiation solid-state synthesis. Batteries, 9, 31.
[17] Zhang, X., Hao, J., Wu, L., Guo, Z., Ji, Z., Luo, J., Chen, C., Shu, J., Long, H., Yang, F., & Volinsky, A. A. (2018). Enhanced electrochemical performance of perovskite LaNiO3 coating on Li1.2Mn0.54Ni0.13Co0.13O2 as cathode materials for Li-ion batteries. Electrochimica Acta, 283, 1203-1212.
[18] Okubo, M., Hosono, E., Kim, J., Enomoto, M., Kojima, N., Kudo, T., Zhou, H., & Honma, I. (2007). Nanosize effect on high-rate Li-ion intercalation in LiCoO2 electrode. Journal of the American Chemical Society, 129(23), 7444-7452.
[19] Zheng, J., Yan, P., Estevez, L., Wang, C., & Zhang, J.-G. (2018). Effect of calcination temperature on the electrochemical properties of nickel-rich LiNi0.76Mn0.14Co0.10O2 cathodes for lithium-ion batteries. Nano Energy, 49, 538-548.
[20] Zheng, J., Xiao, J., & Zhang, J.-G. (2016). The roles of oxygen non-stoichiometry on the electrochemical properties of oxide-based cathode materials. Nano Today, 11, 678−694.
[21] Bi, Y., Yang, W., Du, R., Zhou, J., Liu, M., Liu, Y., & Wang, D. (2015). Correlation of oxygen non-stoichiometry to the instabilities and electrochemical performance of LiNi0.8Co0.1Mn0.1O2 utilized in lithium ion battery. Journal of Power Sources, 283, 211-218.
[22] Nayak, P., Yang, L., Pollok, K., Langenhorst, F., Aurbach, D., & Adelhelm, P. (2019). Investigation of Li1.17Ni0.20Mn0.53Co0.10O2 as an interesting Li and Mn-rich oxide cathode materials by electrochemical means, microscopy and in situ electrochemical dilatometry. ChemElectroChem, 6, 1-27.
[23] Manthiram, A. (2011). Materials challenges and opportunities of lithium ion batteries. The Journal of Physical Chemistry Letters, 2(3), 176-184.
[24] Tolganbek, N., Yerkinbekova, Y., Kalybekkyzy, S., Bakenov, Z., & Mentbayeva, A. (2021). Current state of high voltage olivine structured LiMPO4 cathode materials for energy storage applications: A review. Journal of Alloys and Compounds, 882, 160774.
[25] Lee, H. G., Kim, S. Y., & Lee, J. S. (2022). Dynamic observation of dendrite growth on lithium metal anode during battery charging/discharging cycles. npj Computational Materials, 8(1), 103.
[26] Lang, S.-Y., Shen, Z.-Z., Hu, X.-C., Shi, Y., Guo, Y.-G., Jia, F.-F., Wang, F.-Y., Wen, R., & Wan, L.-J. (2020). Tunable structure and dynamics of solid electrolyte interphase at lithium metal anode. Nano Energy, 75, 104967.
[27] Busche, M. R., Drossel, T., Leichtweiss, T., Weber, D. A., Falk, M., Schneider, M., Reich, M. L., Sommer, H., Adelhelm, P., & Janek, J. (2016). Dynamic formation of a solid-liquid electrolyte interphase and its consequences for hybrid-battery concepts. Nature Chemistry, 8(5), 426-434.
[28] Liu, B., Zhang, J. G., & Xu, W. (2018). Advancing lithium metal batteries. Joule, 2, 833-845.
[29] Lu, J., Chen, Z., Pan, F., Cui, Y., & Amine, K. (2018). High-performance anode materials for rechargeable lithium-ion batteries. Electrochemical Energy Reviews, 1(1), 35-53.
[30] Etacheri, V., Marom, R., Elazari, R., Salitra, G., & Aurbach, D. (2011). Challenges in the development of advanced Li-ion batteries: a review. Energy & Environmental Science, 4(9), 3243-3262.
[31] Zheng, Y., Wu, X., Lan, X., & Hu, R. (2022). A spinel (FeNiCrMnMgAl)3O4 high entropy oxide as a cycling stable anode material for Li-ion batteries. Processes, 10(1).
[32] Components 101 Battery Separators – Types and Importance in the Performance of Battery, 2019; Available from: https://components101.com/articles/battery-seperators-types-and-importance
[33] Yamada, M., Watanabe, T., Gunji, T., Wu, J., & Matsumoto, F. (2020). Review of the design of current collectors for improving the battery performance in lithium-ion and post-lithium-ion batteries. Electrochem, 1, 124-159.
[34] Kang, S.-H., Sun, Y. K., & Amine, K. (2003). Electrochemical and ex situ X-ray study of Li (Li0.2Ni0.2Mn0.6) O2 cathode material for Li secondary batteries. Electrochemical and Solid-State Letters, 6(9), A183.
[35] Toprakci, O., Toprakci, H. A. K., Li, Y., Ji, L. W., Xue, L. G., Lee, H., Zhang, S., & Zhang, X. W. (2013). Synthesis and characterization of xLi2MnO3·(1-x)LiNi1/3Co1/3Mn1/3O2 composite cathode materials for rechargeable lithium-ion batteries. Journal of Power Sources, 241, 522-528.
[36] Nisar, U., Muralidharan, N., Essehli, R., Amin, R., & Belharouak, I. (2021). Valuation of surface coatings in high-energy density lithium-ion battery cathode materials. Energy Storage Materials, 38, 309-328.
[37] Liu, X., Su, Q., Zhang, C., Huang, T., & Yu, A. (2016). Enhanced electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode with an ionic conductive LiVO3 coating layer. ACS Sustainable Chemistry & Engineering, 4, 255-263.
[38] Hwang, I., Lee, C. W., Kim, J. C., & Yoon, S. (2012). Particle size effect of Ni-rich cathode materials on lithium ion battery performance. Materials Research Bulletin, 47, 73-78.
[39] Sun, G., & Yu, F.-D. (2019). Local electronic structure modulation enhances operating voltage in Li-rich cathodes. Nano Energy, 66, 104102.
[40] Liu, S., Wang, Z., Huang, Y., Ni, Z., Bai, J., Kang, S., Wang, Y., & Li, X. (2018). Fluorine doping and Al2O3 coating Co-modified Li[Li0.20Ni0.133Co0.133Mn0.534]O2 as high performance cathode material for lithium-ion batteries. Journal of Alloys and Compounds, 731, 636-645.
[41] Kang, S., Li, B., Qin, H., et al. (2015). Simple solid-state method for synthesis of Li[Li0.20Mn0.534Ni0.133Co0.133]O2 cathode material with improved electrochemical performance in lithium-ion batteries. Journal of Solid State Electrochemistry, 19, 525–531.
[42] Chen, C., Wu, H., Zhou, D., Xu, D., Zhou, Y., & Guo, J. (2021). Sol-gel synthesis of nano Li1.2Mn0.54Ni0.13Co0.13O2 cathode materials using DL-lactic acid as chelating agent. Ceramics International, 47, 6270-6278.
[43] Hou, X., Huang, Y., Ma, S., Zou, X., Hu, S., & Wu, Y. (2015). Facile hydrothermal method synthesis of coralline-like Li1.2Mn0.54Ni0.13Co0.13O2 hierarchical architectures as superior cathode materials for lithium-ion batteries. Materials Research Bulletin, 63, 256-264.
[44] Lengyel, M., Atlas, G., Elhassid, D., Luo, P. Y., Zhang, X., Belharouak, I., & Axelbaum, R. L. (2014). Effects of synthesis conditions on the physical and electrochemical properties of Li1.2Mn0.54Ni0.13Co0.13O2 prepared by spray pyrolysis. Journal of Power Sources, 262, 286-296.
[45] Hao, Z., Gou, X., Ma, H., Yang, Z., Hao, Z., Yang, G., Lu, Y., Zhao, Q., Jin, H., Zhang, Q., Yan, Z., & Chen, J. (2023). Boosting the cycle and rate performance of Li1.2Mn0.54Ni0.13Co0.13O2 via single-crystal structure design. Science China Materials, 66, 3424–3432.
[46] Dutt, S., Kumar, A., & Singh, S. (2023). Synthesis of Metal Organic Frameworks (MOFs) and Their Derived Materials for Energy Storage Applications. Clean Technol., 5, 140-166.
[47] Oh, S. H., Chung, K. Y., Jeon, S. H., et al. (2009). Structural and electrochemical investigations on the LiNi0.5−xMn1.5−yMx+yO4 (M = Cr, Al, Zr) compound for 5V cathode material. Journal of Alloys and Compounds, 469, 244-250.
[48] Lin, Z.-J., Zheng, H.-Q., Chen, J., Zhuang, W.-E., Lin, Y.-X., Su, J.-W., Huang, Y.-B., & Cao, R. (2018). Encapsulation of phosphotungstic acid into metal–organic frameworks with tunable window sizes: Screening of PTA@MOF catalysts for efficient oxidative desulfurization. Inorganic Chemistry, 57(20), 13009-13019.
[49] Zhong, G. B., Wang, Y. Y., Yu, Y. Q., et al. (2012). Electrochemical investigations of the LiNi0.45M0.10Mn1.45O4 (M=Fe, Co, Cr) 5V cathode materials for lithium ion batteries. Journal of Power Sources, 205, 385-393.
[50] Boopathi, D., Swain, D., & Nayak, P. K. (2023). Improved charge storage performance of Fe-doped Li-rich Ni–Mn–Co oxide Li1.2Ni0.13Mn0.54Co0.13O2 in half- and full lithium-ion cells. Energy & Fuels, 37, 19266-19277.
[51] Sibille, R., Mesbah, A., Mazet, T., et al. (2012). Magnetic measurements and neutron diffraction study of the layered hybrid compounds Mn(C8H4O4)(H2O)2 and Mn2(OH)2(C8H4O4). Journal of Solid State Chemistry, 186, 134-141.
[52] Park, H. K., Kim, D. K., & Kim, C. H. (1997). Effect of Solvent on Titania Particle Formation and Morphology in Thermal Hydrolysis of TiCl4. Journal of the American Ceramic Society, 80(3), 743-749.
[53] Park, H. K., Moon, Y. T., Kim, D. K., & Kim, C. H. (1996). Formation of Monodisperse Spherical TiO2 Powders by Thermal Hydrolysis of Ti(SO4)2. Journal of the American Ceramic Society, 79(10), 2727-2732.
[54] Wang, Z., Liu, Y., Gao, C., Jiang, H., & Zhang, J. (2015). A porous Co(OH)2 material derived from a MOF template and its superior energy storage performance for supercapacitors. Journal of Materials Chemistry A, 3(41), 20658-20663.
[55] He, S., Li, Z., Wang, J., et al. (2016). MOF-derived NixCo1−x(OH)2 composite microspheres for high-performance supercapacitors. RSC Advances, 6, 49478-49486.
[56] Bordiga, S., Lamberti, C., Bonino, F., Travert, A., & Thibault-Starzyk, F. (2015). Probing zeolites by vibrational spectroscopies. Chemical Society Reviews, 44(20), 7262-7341.
[57] Mao, J., Dai, K., Xuan, M., Shao, G., Qiao, R., Yang, W., Battaglia, V. S., & Liu, G. (2016). Effect of chromium and niobium doping on the morphology and electrochemical performance of high-voltage spinel LiNi0.5Mn1.5O4 cathode material. ACS Applied Materials & Interfaces, 8(14), 9116–9124.
[58] Deng, H., Belharouak, I., & Sun, Y. K. (2009). LixNi0.25Mn0.75Oy (0.5 ≤ x ≤ 2, 2 ≤ y ≤ 2.75) compounds for high-energy lithium-ion batteries. Journal of Materials Chemistry, 19(26), 4510–4516.
[59] Jarvis, K. A., Deng, Z., & Allard, L. F. (2011). Atomic structure of a lithium-rich layered oxide material for lithium-ion batteries: evidence of a solid solution. Journal of Materials Chemistry, 23(16), 3614–3621.
[60] Julien, C., Mauger, A., Zaghib, K., & Groult, H. (2016). Optimization of Layered Cathode Materials for Lithium-Ion Batteries. Materials, 9, 595.
[61] Alagar, S., Karuppiah, C., Madhuvilakku, R., Piraman, S., & Yang, C. C. (2019). Temperature-Controlled Synthesis of Li and Mn-Rich Li1.2Mn0.54Ni0.13Co0.13O2 Hollow Nano/Sub-Microsphere Electrodes for High-Performance Lithium-Ion Battery. ACS Omega, 4, 20285–20296.
[62] Duraisamy, S., Penki, T., Kishore, B., Barpanda, P., Nayak, P., Aurbach, D., & Munichandraiah, N. (2017). Porous, hollow Li₁.₂Mn₀.₅₃Ni₀.₁₃Co₀.₁₃O₂ microspheres as a positive electrode material for Li-ion batteries. Journal of Solid State Electrochemistry, 21.
[63] Zhang, Y., Li, X., Zhu, T., Ma, S., Li, H., & Sun, G. (2019). Facile Fabrication Hierarchical Pore Structure Li₁.₂Mn₀.₅₄Ni₀.₁₃Co₀.₁₃-xSrxO₂ Nanofiber for High-Performance Cathode Materials. ES Materials & Manufacturing, 3, 38–46.
[64] Huo, Y.-L., Gu, Y-J., Chen, Z.-L., Ma, X.-Y., Wu, F.-Z., & Dai, X.-Y. (2023). Improved electrochemical performance of spinel LiMn₂O₄ derived from manganese-based metal–organic frameworks by organic ligands. New Journal of Chemistry, 47(29), 14068-14077.
[65] Xu, H., Deng, S., & Chen, G. (2014). Improved electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 by Mg doping for lithium ion battery cathode material. Journal of Materials Chemistry A, 2(36), 15015-15021.
[66] Yi, T.-F., Fang, Z.-K., Xie, Y., Zhu, Y.-R., & Zang, L.-Y. (2014). Synthesis of LiNi0.5Mn1.5O4 cathode with excellent fast charge-discharge performance for lithium-ion battery. Electrochimica Acta, 147, 250-256.
[67] Yi, T.-F., Li, Y.-M., Cai, X.-D., Yang, S.-Y., & Zhu, Y.-R. (2017). Fe-stabilized Li-rich layered Li1.2Mn0.56Ni0.16Co0.08O2 oxide as a high performance cathode for advanced lithium-ion batteries. Materials Today Energy, 4, 25-33.
[68] Hawari, N. H., Xie, H., Prayogi, A., Sumboja, A., & Ding, N. (2023). Understanding SEI evolution during the cycling test of anode-free lithium-metal batteries with LiDFOB salt. RSC Advances, 13(36), 25673-25680.
[69] Wang, L., Zhao, J., He, X., Gao, J., Li, J., Wan, C., & Jiang, C. (2012). Electrochemical Impedance Spectroscopy (EIS) Study of LiNi1/3Co1/3Mn1/3O2 for Li-ion Batteries. International Journal of Electrochemical Science, 7(1), 345-353.
[70] Gao, Z., Zhao, Jiayi, Pan, Xiaoliang, Liu, Lijun, Xie, Shikun, & Yuan, Huiling. (2021). Controllable preparation of one-dimensional Li1.2Mn0.54Ni0.13Co0.13O2 cathode materials for high-performance lithium-ion batteries. The Royal Society of Chemistry., 11(9), 4864-4872.
[71] Amalraj, F., Talianker, M., Markovsky, B., Burlaka, L., Leifer, N., Goobes, G., Erickson, E. M., Haik, O., Grinblat, J., Zinigrad, E., Aurbach, D., Lampert, J. K., Shin, J.-Y., Schulz-Dobrick, M., & Garsuch, A. (2013). Studies of Li and Mn-Rich Lix[MnNiCo]O2 Electrodes: Electrochemical Performance, Structure, and the Effect of the Aluminum Fluoride Coating. Journal of The Electrochemical Society, 160(11), A2220.
[72] Nayak, P., Grinblat, J., Mikhael, L., Haik, O., Levi, E., Kim, S., Choi, J., & Aurbach, D. (2015). Multiphase LiNi0.33Mn0.54Co0.13O2 Cathode Material with High Capacity Retention for Li‐Ion Batteries. ChemElectroChem, 2.
[73] Nayak, P., & Levi, E. (2015). Effect of Fe in suppressing the discharge voltage decay of high capacity Li-rich cathodes for Li-ion batteries. Journal of Solid State Electrochemistry, 19.
[74] Gan, Q., Qin, N., Li, Z. (2023). Surface spinel reconstruction to suppress detrimental phase transition for stable LiNi0.8Co0.1Mn0.1O2 cathodes. Nano Research, 16, 513–520.
[75] Mohanty, D., Sefat, A. S., Li, J., Meisner, R. A., Rondinone, A. J., Payzant, E. A., Abraham, D. P., Wood, D. L., Daniel, C., & Daniel, C. (2013). Correlating cation ordering and voltage fade in a lithium-manganese-rich lithium-ion battery cathode oxide: A joint magnetic susceptibility and TEM study. Physical Chemistry Chemical Physics, 15(44), 19496-509.
[76] Hao, G., Lai, Q., & Zhang, H. (2021). Nanostructured Mn-based oxides as high-performance cathodes for next-generation Li-ion batteries. Journal of Energy Chemistry, 59, 547-571.
[77] Chou, T.-S., Pang, W. K., & Wu, S.-H. (2013). Effects of Preparing Process On the Properties of O-LiMnO2 Via Pechini’s Method.
[78] Liu, W.-W., Wang, D., Wang, Z., Deng, J., Lau, W.-M., & Zhang, Y. (2017). Influence of magnetic ordering and Jahn–Teller distortion on the lithiation process of LiMn2O4. Physical Chemistry Chemical Physics, 19(9), 6481-6486.
[79] Sun, W., Cao, F., Liu, Y., Zhao, X., Liu, X., & Yuan, J. (2012). Nanoporous LiMn2O4 nanosheets with exposed {111} facets as cathodes for highly reversible lithium-ion batteries. Journal of Materials Chemistry, 22, 20952-20957.
[80] Li, X., Su, Z., & Wang, Y. (2018). Electrochemical properties of monoclinic and orthorhombic LiMnO2 synthesized by a one-step hydrothermal method. Journal of Alloys and Compounds, 735, 2182-2189.
[81] Reed, J., & Ceder, G. (2004). Role of Electronic Structure in the Susceptibility of Metastable Transition Metal Oxide Structures to Transformation. Chemical Reviews, 104, 4513-4534.
[82] Freitag, R., & Conradie, J. (2013). Understanding the Jahn–Teller Effect in Octahedral Transition-Metal Complexes: A Molecular Orbital View of the Mn(β-diketonato)3 Complex. Journal of Chemical Education, 90(12), 1692-1696.
[83] Tang, D., Ben, L., Sun, Y., Chen, B., Yang, Z., Gu, L., & Huang, X. (2014). Electrochemical Behavior And Surface Structural Change of LiMn2O4 Charged to 5.1 V. Journal of Materials Chemistry A, 2, 14519-14527.
[84] Zheng, F., Ou, X., Pan, Q., Xiong, X., Yang, C., & Liu, M. (2017). The effect of composite organic acid (citric acid & tartaric acid) on microstructure and electrochemical properties of Li1.2Mn0.54Ni0.13Co0.13O2 Li-rich layered oxides. Journal of Power Sources, 346, 31–39.
[85] Huang, L., Liu, L., Wu, H., Wang, Y., Liu, H., & Zhang, Y. (2019). Optimization of synthesis parameters for uniform sphere-like Li1.2Mn0.54Ni0.13Co0.13O2 as high performance cathode material for lithium ion batteries. Journal of Alloys and Compounds, 775, 921–930.
[86] Zhang, X., Hao, J., Wu, L., Guo, Z., Ji, Z., Luo, J., Chen, C., Shu, J., Long, H., Yang, F., & Volinsky, A. A. (2018). Enhanced electrochemical performance of perovskite LaNiO3 coating on Li1.2Mn0.54Ni0.13Co0.13O2 as cathode materials for li-ion batteries. Electrochimica Acta, 283, 1203–1212.
[87] Duraisamy, S., Penki, T. R., Kishore, B., et al. (2017). Porous, hollow Li1.2Mn0.53Ni0.13Co0.13O2 microspheres as a positive electrode material for Li-ion Batteries. Journal of Solid State Electrochemistry, 21, 437–445.
[88] Ma, D., Zhang, P., Li, Y., & Ren, X. (2015). Li1.2Mn0.54Ni0.13Co0.13O2-encapsulated carbon nanofiber network cathodes with improved stability and rate capability for Li-ion batteries. Scientific Reports, 5, No. 1268.
指導教授 劉奕宏(Yi-Hung Liu) 審核日期 2024-7-23
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明