博碩士論文 110324042 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:81 、訪客IP:18.227.107.146
姓名 陳書昀(Shu-Yun Chen)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 利用四塔十六步驟變壓吸附法分離 CO2 甲烷化產氣之模擬暨實驗設計研究
(Separation of Gases from Methanation by Four-bed Sixteen-step Pressure Swing Adsorption Process with Design of Experiments)
相關論文
★ 醫療用氧氣濃縮機之改善與發展★ 變壓吸附法濃縮及回收氣化產氫製程中二氧化碳與氫氣之模擬
★ 變壓吸附法應用於小型化醫療用製氧機及生質酒精脫水產生無水酒精之模擬★ 變壓吸附法濃縮及回收氣化產氫製程中一氧化碳、二氧化碳與氫氣之模擬
★ 利用吸附程序於較小型發電廠煙道氣進氣量下捕獲二氧化碳之模擬★ 利用週期性吸附反應程序製造高純度氫氣並捕獲二氧化碳之模擬
★ 變溫吸附程序分離煙道氣中二氧化碳之連續性探討與實驗設計分析★ 利用PEI/SBA-15於變溫及真空變溫吸附捕獲煙道氣中二氧化碳之模擬
★ PEI/SBA-15固態吸附劑對二氧化碳吸附之實驗研究★ 以變壓吸附法分離汙染空氣中氧化亞氮之模擬
★ 以變壓吸附法分離汙染空氣中氧化亞氮之實驗★ 以變壓吸附法濃縮己二酸工廠尾氣中氧化亞氮之模擬
★ 利用變壓吸附法捕獲煙道氣與合成氣中二氧化碳之實驗★ 變壓吸附法回收發電廠廢氣與合成氣中二氧化碳之模擬
★ 利用變壓吸附程序分離甲醇裂解產氣中氫氣及一氧化碳之模擬★ 變壓吸附程序捕獲合成氣中二氧化碳之實驗研究與吸附劑之選擇評估
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 隨著國際社會推動2050年淨零排放目標,再生能源的比例將會大幅增加,為了解決再生能源的間歇性問題並提高電力調度的彈性,電轉氣(Power to Gas, P2G)技術已成為國際間積極推動的儲能技術。此技術能將多餘的再生能源經由電解水來產生氫氣,這些氫氣能被儲存也能藉由甲烷化將氫氣和二氧化碳進行反應,為了使氫氣不被浪費,甲烷化反應中常會以二氧化碳過量的方式來進行,經反應後,產物組成為二氧化碳、甲烷及乙烷。因此本研究目的為設計出一四塔十六步驟程序分離出高純度、高回收率甲烷以供後續能源使用並同時回收二氧化碳達到溫室
氣體減量目標。
本研究使用模擬探討以變壓吸附法(pressure swing adsorption, PSA)進行CO2甲烷化反應後之氣體高純度純化分離,依據文獻資料根據選擇率擇定沸石13X做為吸附劑。隨後,本研究以程序模擬結合實驗設計(design of experiment, DOE),找出以進料條件為67.9%甲烷、30%二氧化碳及2.1%乙烷時之四塔十六步驟PSA
程序之分離最適化操作條件。
比較之前實驗室模擬三塔九步驟最佳化程序及本次四塔十六步驟PSA最佳化程序分離結果發現,甲烷的純度從95.91%上升至97.51%,甲烷回收率從97.93%上升至98.96%,二氧化碳的純度大約持平為90%,回收率則從90.47%大幅提升
至 94.41%,捕獲二氧化碳所花費的能耗則也從0.45 GJ/t-CO2下降至0.35 GJ/t-
CO2。
摘要(英) With the global pursuit of net-zero emissions by 2050, the proportion of renewable energy is expected to significantly increase. To address the intermittency issues of renewable energy and enhance grid flexibility, Power to Gas (P2G) technology has emerged as a promising energy storage solution. This technology enables the conversion of surplus renewable energy into hydrogen through electrolysis, which can be stored and further utilized through methanation, a process that involves the reaction of hydrogen with carbon dioxide. To minimize hydrogen wastage, methanation reactions often employ excess carbon dioxide. The resulting products of the reaction are carbon dioxide, methane, and ethane. Therefore, the aim of this study is to design a four-bed sixteen-step pressure swing adsorption (PSA) process for the purification and separation of high-purity methane for subsequent energy utilization, while simultaneously recovering carbon dioxide to achieve greenhouse gas reduction targets.
In this study, a simulation program was used to perform high-purity gas purification and separation of CO2 methanation products using PSA. Based on literature data and selectivity considerations, zeolite 13X was chosen as the adsorbent. Subsequently, the study combined process simulation with design of experiment (DOE) to identify the optimal operating conditions for a four-bed sixteen-step PSA process with feed composition of 67.9% methane, 30% carbon dioxide, and 2.1% ethane.
Comparing the results of the previous laboratory simulation of the three-bed nine-step PSA optimized process with the four-bed sixteen-step PSA optimized process, it was found that the methane purity increased from 95.91% to 97.51%, and the methane recovery increased from 97.93% to 98.96%. The purity of carbon dioxide remained approximately the same at around 90%, while the recovery significantly improved from 90.47% to 94.41%. The energy consumption required for capturing carbon dioxide also decreased from 0.45 GJ/t-CO2 to 0.35 GJ/t-CO2.
關鍵字(中) ★ 變壓吸附法
★ 電轉氣
★ 二氧化碳捕獲
關鍵字(英) ★ pressure swing adsorption
★ power to gas
★ carbon dioxide capture
論文目次 摘要 i
ABSTRACT ii
誌謝 iv
目錄 v
圖目錄 viii
表目錄 xi
符號說明 xiii
第一章、緒論 1
第二章、簡介及文獻回顧 3
2-1 吸附之簡介 3
2-1-1 吸附之基本原理 3
2-1-2 吸附劑之選擇性 4
2-1-3 吸附程序 6
2-1-4 突破曲線 7
2-2 研究目的及文獻回顧 8
2-2-1 PSA程序之發展與改進 9
2-2-2 理論之回顧 12
2-2-3 用於甲烷化反應後氣體分離之吸附劑回顧 13
2-2-3-1 分離甲烷與二氧化碳之比較 13
2-2-3-2 分離乙烷之比較 14
第三章、假設及理論 16
3-1基本假設 16
3-2統制方程式 16
3-3 吸附平衡關係式 19
3-3-1 等溫吸附平衡關係式 19
3-3-2 質傳驅動力模式(Driving force model) 20
3-3-3 吸附熱關係式 20
3-4 參數推導 21
3-4-1 軸向分散係數(Axial dispersion coefficient) 21
3-4-2 熱傳係數 22
3-4-3 線性驅動力質傳係數(Mass transfer coefficient of linear 24
3-5邊界條件與流速 26
3-5-1 邊界條件與節點流速 26
3-5-2 閥公式 27
3-6 求解步驟 28
3-7 能耗計算公式 31
第四章、模擬程序所需參數與驗證 32
4-1製程描述 32
4-2模擬驗證所需參數 35
4-3模擬驗證結果 36
第五章、多塔之模擬程序所需參數與驗證 38
5-1 吸附劑吸附能力比較 38
5-1-1 吸附劑吸附數據蒐集 38
5-1-2 吸附劑之選擇率計算結果與比較 41
5-1-3 Zeolite 13X等溫平衡吸附曲線 43
5-1-4 氣體與吸附劑性質 45
5-1-5 吸附塔參數 46
5-2 三塔九步驟PSA製程 46
5-3 三塔九步驟PSA最佳化結果與分析 49
第六章、四塔十六步驟PSA程序描述 55
6-1 不同四塔十六步驟PSA程序 55
6-2 不同四塔十六步驟PSA程序之模擬結果與分析 58
第七章、以實驗設計求最佳化結果 63
7-1 因子選定 63
7-2 變異數分析(Analysis of Variance, ANOVA) 64
7-2-1 殘差分析圖(Analysis of residual plots) 76
7-2-2 回歸分析(Regression analysis) 79
7-3 各響應組合之最佳化結果 80
7-3-1 各響應之邊界值 80
7-3-1-1 塔頂輕產物甲烷純度極大值 80
7-3-1-2 塔頂輕產物甲烷回收率極大值 82
7-3-1-3 塔底重產物二氧化碳純度極大值 84
7-3-1-4 塔底重產物二氧化碳回收率極大值 85
7-3-1-5 捕獲每噸二氧化碳所需能耗極小值 86
7-3-2 各響應組合最佳化結果及參數 88
7-4 以模擬程序驗證最佳化響應與結果 96
7-4-1 以模擬程序驗證實驗設計之最佳化結果 96
7-4-2 三塔九步驟最佳化結果與四塔十六步驟最佳化結果比較 100
第八章、結論 102
參考文獻 103
附錄A、流速之估算方法 110
附錄B、ANOVA全因子設計之各響應值 113
附錄C、三塔九步驟設計準則 117
參考文獻 [1] 國發會: 國家發展委員會, 臺灣2050淨零排放路徑及策略總說明, Available from: https://www.ndc.gov.tw/Content _List.aspx?n=D EE 68 AA D8B38BD76
[2] UOB Asset Management Analysis, IRENA Hydrogen Value Chain, P2G
technologicalvalue chain, .Available from: https://www.uobam.com.
sg/insights/hydrogen-powering-the-future.page?path=data/uobam/hydrogen-
powering
[3] R. Augelletti, M. Conti, and M.C. Annesini, Pressure swing adsorption for biogas upgrading. A new process configuration for the separation of biomethane and carbon dioxide, Journal of Cleaner Production, 140, pp. 1390-1398, 2017.
[4] S. Sircar, Pressure swing adsorption, Industrial & engineering chemistry research, 41(6), pp. 1389-1392, 2002.
[5] 陳韻庭, 利用真空變壓吸附法分離CO2甲烷化產氣之模擬暨實驗設計研究, 國立中央大學碩士論文, 2022.
[6] A. Ntiamoah, J. Ling, P. Xiao, P.A. Webley, and Y. Zhai, CO2 capture by vacuum swing adsorption: role of multiple pressure equalization steps. Adsorption, 21, pp. 509-522, 2015.
[7] R.T. Yang, Gas separation by adsorption processes, World Scientific, 1997.
[8] R.T. Yang, Adsorbents: fundamentals and applications, John Wiley & Sons, 2003.
[9] S.U. Rege and R.T. Yang, A simple parameter for selecting an adsorbent for gas separation by pressure swing adsorption, Separation science and technology, 36(15), pp. 3355-3365, 2001.
[10] A. Agarwal, Advanced strategies for optimal design and operation of pressure swing adsorption processes, Carnegie Mellon University, 2010.
[11] W. H. McAdams, Heat Transmission, 3rd ed., New York: McGraw-Hill, 1954.
[12] C.W. Skarstrom, Method and apparatus for fractionating gaseous mixtures by adsorption, 1960.
[13] A.E. Rodrigues, M.D. LeVan, and D. Tondeur, Adsorption: Science and technology, vol. 158, Springer Science & Business Media, 2012.
[14] W. K. Choi, T. I. Kwon, Y. K. Yeo, H. Lee, H. K. Song, and B. K. Na,, Optimal operation of the pressure swing adsorption (PSA) process for CO2 recovery, Korean Journal of Chemical Engineering, 20(4), pp. 617-623, 2003.
[15] M.P.G. De and D. Daniel, Process for separating a binary gaseous mixture by adsorption. U.S. Patent No. 31554683, 1964.
[16] P. E. Jahromi, S. Fatemi, A. Vatani, J. A. Ritter, and A. D. Ebner, Purification of helium from a cryogenic natural gas nitrogen rejection unit by pressure swing adsorption, Separation and Purification Technology, 193, pp. 91-102, 2018.
[17] B. K. Na, H. Lee, K. K. Koo, and H. K. Song, Effect of rinse and recycle methods on the pressure swing adsorption process to recover CO2 from power plant flue gas using activated carbon, Industrial & Engineering Chemistry Research, 41(22), pp. 5498-5503, 2002.
[18] R. Yang and S. Doong, Gas separation by pressure swing adsorption: A pore‐diffusion model for bulk separation, AIChE Journal, 31(11), pp. 1829-1842, 1985.
[19] L. Jiang, V.G. Fox, and L.T. Biegler, Simulation and optimal design of multiple‐bed pressure swing adsorption systems, AIChE Journal, 50(11), pp. 2904-2917, 2004.
[20] E. Rudelstorfer and A. Fuderer, Selective adsorption process. U.S. Patent No. 3986849, 1976.
[21] P.H. Turnock and R.H. Kadlec, Separation of nitrogen and methane via periodic adsorption, AIChE Journal, 17(2), pp. 335-342, 1971.
[22] S. Farooq and D.M. Ruthven, Heat effects in adsorption column dynamics. 2. Experimental validation of the one-dimensional model, Industrial & Engineering Chemistry Research, 29(6), pp. 1084-1090, 1990.
[23] E. Glueckauf and J. Coates, 241. Theory of chromatography. Part IV. The influence of incomplete equilibrium on the front boundary of chromatograms and on the effectiveness of separation, Journal of the Chemical Society (Resumed), pp. 1315-1321, 1947.
[24] H. H. Heck, M. L. Hall, R. dos Santos, and M. M. Tomadakis, Pressure swing adsorption separation of H2S/CO2/CH4 gas mixtures with molecular sieves 4A, 5A, and 13X, Separation Science and Technology, 53(10), pp. 1490-1497, 2018.
[25] F. Gholipour and M. Mofarahi, Adsorption equilibrium of methane and carbon dioxide on zeolite 13X: Experimental and thermodynamic modeling, The Journal of Supercritical Fluids, 111, pp. 47-54, 2016.
[26] M. Mofarahi and S.M. Salehi, Pure and binary adsorption isotherms of ethylene and ethane on zeolite 5A, Adsorption, 19(1), pp. 101-110, 2013.
[27] J.A. Silva, K. Schumann, and A.E. Rodrigues, Sorption and kinetics of CO2 and CH4 in binderless beads of 13X zeolite, Microporous and Mesoporous Materials, 158, pp. 219-228, 2012.
[28] S. Cavenati, C.A. Grande, and A.E. Rodrigues, Adsorption equilibrium of methane, carbon dioxide, and nitrogen on zeolite 13X at high pressures, Journal of Chemical & Engineering Data, 49(4), pp. 1095-1101, 2004.
[29] S.H. Hyun and R.P. Danner, Equilibrium adsorption of ethane, ethylene, isobutane, carbon dioxide, and their binary mixtures on 13X molecular sieves, Journal of Chemical and Engineering Data, 27(2), pp. 196-200, 1982.
[30] R.P. Danner and E.C. Choi, Mixture adsorption equilibria of ethane and ethylene on 13X molecular sieves, Industrial & Engineering Chemistry Fundamentals, 17(4), pp. 248-253, 1978.
[31] R. Seabra, V. F. Martins, A. M. Ribeiro, A. E. Rodrigues, and A. P. Ferreira, Ethylene/ethane separation by gas-phase SMB in binderfree zeolite 13X monoliths, Chemical Engineering Science, 229, pp. 116006, 2021.
[32] S. Pu, J. Wang, L. Li, Z. Zhang, Z. Bao, Q. Yang and Q. Ren, Performance comparison of metal–organic framework extrudates and commercial zeolite for ethylene/ethane separation, Industrial & Engineering Chemistry Research, 57(5), pp. 1645-1654, 2018.
[33] C.-T. Chou and C.-Y. Chen, Carbon dioxide recovery by vacuum swing adsorption, Separation and Purification Technology, 39(1-2), pp. 51-65, 2004.
[34] S. Sircar, R. Mohr, C. Ristic, and M. B. Rao, Isosteric heat of adsorption: theory and experiment, The Journal of Physical Chemistry B, 103(31), pp. 6539-6546, 1999.
[35] C.-Y. Wen and L.-t. Fan, Models for flow systems and chemical reactors, M. Dekker, 1975.
[36] B. Bird, W. Stewart, and E. Lightfoot, Transport phenomena (revised 2nd edition) John Wiley & Sons, New York, 2007.
[37] E. Fuller and J. Giddings, A comparison of methods for predicting gaseous diffusion coefficients, Journal of Chromatographic Science, 3(7), pp. 222-227, 1965.
[38] E.N. Fuller, K. Ensley, and J.C. Giddings, Diffusion of halogenated hydrocarbons in helium. The effect of structure on collision cross sections, The Journal of Physical Chemistry, 73(11), pp. 3679-3685, 1969.
[39] D. Fairbanks and C. Wilke, Diffusion coefficients in multicomponent gas mixtures, Industrial & Engineering Chemistry, 42(3), pp. 471-475, 1950.
[40] W.L. McCabe, J.C. Smith, and P. Harriott, Unit operations of chemical engineering, 7th ed., New York: McGraw-Hill, 2005.
[41] N. Wakao, S. Kaguei, and T. Funazkri, Effect of fluid dispersion coefficients on particle-to-fluid heat transfer coefficients in packed beds: correlation of Nusselt numbers, Chemical Engineering Science, 34(3), pp. 325-336, 1979.
[42] G. Carta and A. Cincotti, Film model approximation for non-linear adsorption and diffusion in spherical particles, Chemical Engineering Science, 53(19), pp. 3483-3488, 1998.
[43] W. Schirmer, Diffusion in zeolites and other microporous solids, Zeitschrift für physikalische Chemie, 186(2), pp. 269-270, 1994.
[44] M. LeVan, G. Carta, and C. Yon, Adsorption and ion exchange, Perry’s Chemical Engineers Handbook, 7th ed., New York: McGraw-Hill,1997.
[45] K. Kawazoe, M. Suzuki, and K. Chihara, Chromatographsc stidy of diffusion in molecular-sieving carbon, Journal of Chemical Engineering of Japan, 7(3), pp. 151-157, 1974.
[46] H. Qinglin, S. Sundaram, and S. Farooq, Revisiting transport of gases in the micropores of carbon molecular sieves, Langmuir, 19(2), pp. 393-405, 2003.
[47] X. Hu, E. Mangano, D. Friedrich, H. Ahn, and S. Brandani, Diffusion mechanism of CO2 in 13X zeolite beads, Adsorption, 20(1), pp. 121-135, 2014.
[48] C.A. Grande and A.E. Rodrigues, Biogas to fuel by vacuum pressure swing adsorption I. Behavior of equilibrium and kinetic-based adsorbents, Industrial & Engineering Chemistry Research, 46(13), pp. 4595-4605, 2007.
[49] Y. Park, Y. Ju, D. Park, and C. H. Lee, Adsorption equilibria and kinetics of six pure gases on pelletized zeolite 13X up to 1.0 MPa: CO2, CO, N2, CH4, Ar and H2, Chemical Engineering Journal, 292, pp. 348-365, 2016.
[50] L. Sigot, G. Ducom, B. Benadda, and C. Labouré, et al., Comparison of adsorbents for H2S and D4 removal for biogas conversion in a solid oxide fuel cell, Environmental Technology, 37(1), pp. 86-95, 2016.
[51] M. I. Hossain, C. E. Holland, A. D. Ebner, and J. A. Ritter, Mass transfer mechanisms and rates of CO2 and N2 in 13X zeolite from volumetric frequency response, Industrial & Engineering Chemistry Research, 58(47), pp. 21679-21690, 2019.
[52] P.V. Danckwerts, Continuous flow systems: distribution of residence times, Chemical Engineering Science, 2(1), pp. 1-13, 1953.
[53] R. C. Patel and C. J. Karamchandani, Elements of heat engines, 8th ed., Vadodara: Acharya, 1997.
[54] J. Khunpolgrang, S. Yosantea, A. Kongnoo, and C. Phalakornkule, Alternative
PSA process cycle with combined vacuum regeneration and nitrogen purging
for CH4/CO2 separation. Fuel, 140, pp.171-177, 2015.
[55] M.J. Ahmed, A.H.A.K. Mohammed, and A.A.H. Kadhum, Experimental and theoretical studies of equilibrium isotherms for pure light hydrocarbons adsorption on 4A zeolite, Korean Journal of Chemical Engineering, 27(6), pp. 1801-1804, 2010.
[56] E. Khoramzadeh, M. Mofarahi, and C.-H. Lee, Equilibrium adsorption study of CO2 and N2 on synthesized zeolites 13X, 4A, 5A, and Beta, Journal of Chemical & Engineering Data, 64(12), pp. 5648-5664, 2019.
[57] 林柏瑋, 利用真空變壓吸附法純化生質沼氣之模擬暨實驗設計研究, 國立中央大學碩士論文, 2020.
[58] G. M. Nam, B. M. Jeong, S. H. Kang, B. K. Lee, and D. K. Choi, Equilibrium isotherms of CH4, C2H6, C2H4, N2, and H2 on zeolite 5A using a static volumetric method, Journal of Chemical & Engineering Data, 50(1), pp. 72-76, 2005.
[59] J.M. Smith, Introduction to chemical engineering thermodynamics, New York: ACS Publications, 1950.
[60] 張鈞翔, 利用真空變壓吸附法捕獲發電廠煙道氣中二氧化碳之三塔實驗設計分析模擬研究, 國立中央大學碩士論文, 2020.
[61] K. Kamatani, Efficient strategy for the Markov chain Monte Carlo in high-dimension with heavy-tailed target probability distribution, Bernoulli, 24(4B), pp. 3711-3750, 2018.
指導教授 周正堂(Cheng-Tung Chou) 審核日期 2023-7-24
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明