參考文獻 |
1. Dahm, R., Friedrich Miescher and the discovery of DNA. Developmental Biology, 2005. 278(2): p. 274-288.
2. Watson, J.D. and F.H. Crick, Molecular structure of nucleic acids; a structure for deoxyribose nucleic acid. Nature, 1953. 171(4356): p. 737-8.
3. Watson, J.D. and F.H.C. Crick, Molecular Structure of Nucleic Acids - a Structure for Deoxyribose Nucleic Acid. Nature, 1953. 171(4356): p. 737-738.
4. Herbert, A., et al., Special Issue: A, B and Z: The Structure, Function and Genetics of Z-DNA and Z-RNA. International Journal of Molecular Sciences, 2021. 22(14).
5. Ashikawa, I., K. Kinosita, and A. Ikegami, Dynamics of Z-Form DNA. Biochimica Et Biophysica Acta, 1984. 782(1): p. 87-93.
6. Sharp, P.A., The Centrality of RNA. Cell, 2009. 136(4): p. 577-580.
7. Vandivier, L.E., et al., The Conservation and Function of RNA Secondary Structure in Plants. Annual Review of Plant Biology, Vol 67, 2016. 67: p. 463-488.
8. Butcher, S.E. and A.M. Pyle, The Molecular Interactions That Stabilize RNA Tertiary Structure: RNA Motifs, Patterns, and Networks. Accounts of Chemical Research, 2011. 44(12): p. 1302-1311.
9. Xu, S.Q., et al., mRNA Vaccine Era-Mechanisms, Drug Platform and Clinical Prospection. International Journal of Molecular Sciences, 2020. 21(18).
10. Hollams, E.M., et al., mRNA stability and the control of gene expression: Implications for human disease. Neurochemical Research, 2002. 27(10): p. 957-980.
11. Kaur, H., B.R. Babu, and S. Maiti, Perspectives on chemistry and therapeutic applications of Locked Nucleic Acid (LNA). Chem Rev, 2007. 107(11): p. 4672-97.
12. Fakhfakh, K., et al., Molecular thermodynamics of LNA: LNA base pairs and the hyperstabilizing effect of 5′‐proximal LNA: DNA base pairs. AIChE Journal, 2015. 61(9): p. 2711-2731.
13. Singh, S.K., et al., LNA (locked nucleic acids): synthesis and high-affinity nucleic acid recognition. Chemical Communications, 1998(4): p. 455-456.
14. Alfeghaly, C., et al., Non-Coding RNA Silencing in Mammalian Cells by Antisense LNA GapmeRs Transfection. Methods Mol Biol, 2021. 2300: p. 31-37.
15. Kurreck, J., et al., Design of antisense oligonucleotides stabilized by locked nucleic acids. Nucleic Acids Research, 2002. 30(9): p. 1911-1918.
16. Burel, S.A., et al., Hepatotoxicity of high affinity gapmer antisense oligonucleotides is mediated by RNase H1 dependent promiscuous reduction of very long pre-mRNA transcripts. Nucleic Acids Research, 2016. 44(5): p. 2093-2109.
17. Wahlestedt, C., et al., Potent and nontoxic antisense oligonucleotides containing locked nucleic acids. Proceedings of the National Academy of Sciences of the United States of America, 2000. 97(10): p. 5633-5638.
18. Gupta, A., A. Mishra, and N. Puri, Peptide nucleic acids: Advanced tools for biomedical applications. Journal of Biotechnology, 2017. 259: p. 148-159.
19. Nielsen, P.E. and M. Egholm, An introduction to peptide nucleic acid. Current issues in molecular biology, 1999. 1(2): p. 89-104.
20. Gambari, R., Applications of peptide nucleic acids (PNA) in molecular medicine and biotechnology - Preface. Minerva Biotecnologica, 1999. 11(3): p. 161-162.
21. Marchelli, R., et al., Gene modulation by peptide nucleic acids (PNAs) targeting microRNAs (miRs), in Targets in Gene Therapy. 2011, IntechOpen.
22. Nulf, C.J. and D. Corey, Intracellular inhibition of hepatitis C virus (HCV) internal ribosomal entry site (IRES)-dependent translation by peptide nucleic acids (PNAs) and locked nucleic acids (LNAs) (vol 32, pg 3792, 2004). Nucleic Acids Research, 2004. 32(16): p. 4954-4954.
23. Moody, H.M., et al., Regiospecific inhibition of DNA duplication by antisense phosphate-methylated oligodeoxynucleotides. Nucleic acids research, 1989. 17(12): p. 4769-4782.
24. van Genderen, M.H., L.H. Koole, and H.M. Buck, Hybridization of phosphate‐methylated DNA and natural oligonucleotides. Implications for protein‐induced DNA duplex destabilization. Recueil des Travaux Chimiques des Pays‐Bas, 1989. 108(1): p. 28-35.
25. Kuo, T.-C., et al., Reduction of interstrand charge repulsion of DNA duplexes by salts and by neutral phosphotriesters–Contrary effects for harnessing duplex formation. Journal of the Taiwan Institute of Chemical Engineers, 2020. 110: p. 1-7.
26. Chou, S.-C., et al., Increasing the λ-Red mediated gene deletion efficiency in Escherichia coli using methyl phosphotriester-modified DNA. Journal of the Taiwan Institute of Chemical Engineers, 2022. 137: p. 104297.
27. Miller, P.S., et al., Solid-phase synthesis of oligodeoxyribonucleoside methylphosphonates. Biochemistry, 1986. 25(18): p. 5092-5097.
28. Wang, P.-H., et al., Sensitive and Specific MicroRNA In Situ Hybridization Using Partially Methylated Phosphotriester Antisense DNA Probes. GEN Biotechnology, 2022. 1(5): p. 447-455.
29. Buck, H.M., Phosphate-methylated oligonucleotides past, present and future. Journal of Biophysical Chemistry, 2020. 11(03): p. 27-42.
30. 陳奕儒, 探討中性DNA與一般DNA雜交反應熱力學與結合機制之研究, in 化學工程與材料工程學系. 2016, 國立中央大學: 桃園縣. p. 115.
31. Caruthers, M.H., Gene synthesis machines: DNA chemistry and its uses. Science, 1985. 230(4723): p. 281-285.
32. 周韋成, 設計不帶電中性核酸探針於矽奈米線場效電晶體來改善富含GC鹼基核醣核酸之檢測專一性, in 化學工程與材料工程學系. 2018, 國立中央大學: 桃園縣. p. 118.
33. 洪靖雅, 應用磷酸根甲基化去氧核醣核酸引子以提升檢測單一核酸變異和微核醣核酸專一性之研究, in 化學工程與材料工程學系. 2021, 國立中央大學: 桃園縣. p. 128.
34. 李采璘, 使用不帶電中性核酸探針於原位雜交技術檢測微核醣核酸之研究, in 化學工程與材料工程學系. 2018, 國立中央大學: 桃園縣. p. 85.
35. Gitanjali Kher, S.T., Ambikanandan Misra, 7 - Antisense Oligonucleotides and RNA Interference, in Challenges in Delivery of Therapeutic Genomics and Proteomics. 2011.
36. Jafar-Nejad, P., et al., The atlas of RNase H antisense oligonucleotide distribution and activity in the CNS of rodents and non-human primates following central administration. Nucleic Acids Research, 2021. 49(2).
37. Monia, B.P., et al., Evaluation of 2 ‘-modified oligonucleotides containing 2 ‘-deoxy gaps as antisense inhibitors of gene expression. Journal of Biological Chemistry, 1993. 268(19): p. 14514-14522.
38. Crooke, S.T., Antisense drug technology: principles, strategies, and applications. 2007: CRC press.
39. Bennett, C.F. and E.E. Swayze, RNA targeting therapeutics: molecular mechanisms of antisense oligonucleotides as a therapeutic platform. Annual review of pharmacology and toxicology, 2010. 50: p. 259-293.
40. Boirivant, M., et al., Inhibition of Smad7 with a specific antisense oligonucleotide facilitates TGF-β1–mediated suppression of colitis. Gastroenterology, 2006. 131(6): p. 1786-1798.
41. Shi, S.J., et al., Solid Lipid Nanoparticles Loaded with Anti-microRNA Oligonucleotides (AMOs) for Suppression of MicroRNA-21 Functions in Human Lung Cancer Cells. Pharmaceutical Research, 2012. 29(1): p. 97-109.
42. Liang, G.F., et al., PLGA-based gene delivering nanoparticle enhance suppression effect of miRNA in HePG2 cells. Nanoscale Research Letters, 2011. 6.
43. Li, X., et al., The packaging of siRNA within the mesoporous structure of silica nanoparticles. Biomaterials, 2011. 32(35): p. 9546-9556.
44. Sun, H.X., et al., Visualizing the down-regulation of hTERT mRNA expression using gold-nanoflare probes and verifying the correlation with cancer cell apoptosis. Analyst, 2019. 144(9): p. 2994-3004.
45. Malik, S., et al., Next generation miRNA inhibition using short anti-seed PNAs encapsulated in PLGA nanoparticles. Journal of Controlled Release, 2020. 327: p. 406-419.
46. Behzadi, S., et al., Cellular uptake of nanoparticles: journey inside the cell. Chemical Society Reviews, 2017. 46(14): p. 4218-4244.
47. Verma, A. and F. Stellacci, Effect of Surface Properties on Nanoparticle-Cell Interactions. Small, 2010. 6(1): p. 12-21.
48. Nel, A.E., et al., Understanding biophysicochemical interactions at the nano-bio interface. Nature Materials, 2009. 8(7): p. 543-557.
49. Iversen, T.G., T. Skotland, and K. Sandvig, Endocytosis and intracellular transport of nanoparticles: Present knowledge and need for future studies. Nano Today, 2011. 6(2): p. 176-185.
50. Ho, Y.T., R.D. Kamm, and J.C.Y. Kah, Influence of protein corona and caveolae-mediated endocytosis on nanoparticle uptake and transcytosis. Nanoscale, 2018. 10(26): p. 12386-12397.
51. Cheng, X.J., et al., Protein Corona Influences Cellular Uptake of Gold Nanoparticles by Phagocytic and Nonphagocytic Cells in a Size-Dependent Manner. Acs Applied Materials & Interfaces, 2015. 7(37): p. 20568-20575.
52. Shapero, K., et al., Time and space resolved uptake study of silica nanoparticles by human cells. Molecular Biosystems, 2011. 7(2): p. 371-378.
53. Frohlich, E., The role of surface charge in cellular uptake and cytotoxicity of medical nanoparticles. International Journal of Nanomedicine, 2012. 7: p. 5577-5591.
54. Akinc, A. and G. Battaglia, Exploiting Endocytosis for Nanomedicines. Cold Spring Harbor Perspectives in Biology, 2013. 5(11).
55. Chen, L.A., et al., The role of surface charge on the uptake and biocompatibility of hydroxyapatite nanoparticles with osteoblast cells. Nanotechnology, 2011. 22(10).
56. AbouAitah, K. and W. Lojkowski, Delivery of Natural Agents by Means of Mesoporous Silica Nanospheres as a Promising Anticancer Strategy. Pharmaceutics, 2021. 13(2).
57. Slowing, I.I., et al., Mesoporous silica nanoparticles: structural design and applications. Journal of Materials Chemistry, 2010. 20(37): p. 7924-7937.
58. Trewyn, B.G., et al., Mesoporous silica nanoparticle based controlled release, drug delivery, and biosensor systems. Chemical Communications, 2007(31): p. 3236-3245.
59. He, Q.J. and J.L. Shi, Mesoporous silica nanoparticle based nano drug delivery systems: synthesis, controlled drug release and delivery, pharmacokinetics and biocompatibility. Journal of Materials Chemistry, 2011. 21(16): p. 5845-5855.
60. Kim, J., et al., Multifunctional Uniform Nanoparticles Composed of a Magnetite Nanocrystal Core and a Mesoporous Silica Shell for Magnetic Resonance and Fluorescence Imaging and for Drug Delivery. Angewandte Chemie-International Edition, 2008. 47(44): p. 8438-8441.
61. Vivero-Escoto, J.L., et al., Photoinduced Intracellular Controlled Release Drug Delivery in Human Cells by Gold-Capped Mesoporous Silica Nanosphere. Journal of the American Chemical Society, 2009. 131(10): p. 3462-+.
62. Liong, M., et al., Multifunctional inorganic nanoparticles for imaging, targeting, and drug delivery. Acs Nano, 2008. 2(5): p. 889-896.
63. Radu, D.R., et al., A polyamidoamine dendrimer-capped mesoporous silica nanosphere-based gene transfection reagent. Journal of the American Chemical Society, 2004. 126(41): p. 13216-13217.
64. Torney, F., et al., Mesoporous silica nanoparticles deliver DNA and chemicals into plants. Nature Nanotechnology, 2007. 2(5): p. 295-300.
65. Manzano, M. and M. Vallet-Regi, New developments in ordered mesoporous materials for drug delivery. Journal of Materials Chemistry, 2010. 20(27): p. 5593-5604.
66. Kim, M.H., et al., Facile Synthesis of Monodispersed Mesoporous Silica Nanoparticles with Ultralarge Pores and Their Application in Gene Delivery. Acs Nano, 2011. 5(5): p. 3568-3576.
67. Xia, T., et al., Polyethyleneimine coating enhances the cellular uptake of mesoporous silica nanoparticles and allows safe delivery of siRNA and DNA constructs. ACS nano, 2009. 3(10): p. 3273-3286.
68. Chou, C.C., et al., Molecular Elucidation of Biological Response to Mesoporous Silica Nanoparticles in Vitro and in Vivo. Acs Applied Materials & Interfaces, 2017. 9(27): p. 22235-22251.
69. Dilnawaz, F. and S.K. Sahoo, Augmented Anticancer Efficacy by si-RNA Complexed Drug-Loaded Mesoporous Silica Nanoparticles in Lung Cancer Therapy. Acs Applied Nano Materials, 2018. 1(2): p. 730-740.
70. White, T.J., N. Arnheim, and H.A. Erlich, The polymerase chain reaction. Trends in genetics, 1989. 5: p. 185-189.
71. Bartlett, J.M. and D. Stirling, A short history of the polymerase chain reaction. PCR protocols, 2003: p. 3-6.
72. Saiki, R.K., et al., Primer-Directed Enzymatic Amplification of DNA with a Thermostable DNA-Polymerase. Science, 1988. 239(4839): p. 487-491.
73. Wilhelm, J. and A. Pingoud, Real‐time polymerase chain reaction. Chembiochem, 2003. 4(11): p. 1120-1128.
74. Chen, C., et al., Real-time quantification of microRNAs by stem-loop RT-PCR. Nucleic Acids Res, 2005. 33(20): p. e179.
75. Yi, G.H., et al., Single Nucleotide Polymorphisms of Human STING Can Affect Innate Immune Response to Cyclic Dinucleotides. Plos One, 2013. 8(10).
76. Dembélé, J., et al., Overcoming Cytosolic Delivery Barriers of Proteins Using Denatured Protein-Conjugated Mesoporous Silica Nanoparticles. ACS Applied Materials & Interfaces, 2022. 15(1): p. 432-451.
77. Chamchoy, K., et al., Application of WST-8 based colorimetric NAD(P)H detection for quantitative dehydrogenase assays. Bmc Biochemistry, 2019. 20.
78. Held, P., An Absorbance-based Cytotoxicity Assay using High Absorptivity, Water-soluble Tetrazolium Salts
79. Mamedov, T., et al., A fundamental study of the PCR amplification of GC-rich DNA templates. Computational biology and chemistry, 2008. 32(6): p. 452-457.
80. Chakrabarti, R. and C.E. Schutt, The enhancement of PCR amplification by low molecular weight amides. Nucleic acids research, 2001. 29(11): p. 2377-2381.
81. Sarkar, G., S. Kapelner, and S.S. Sommer, Formamide can dramatically improve the specificity of PCR. Nucleic acids research, 1990. 18(24): p. 7465.
82. Sun, Y., G. Hegamyer, and N.H. Colburn, PCR-direct sequencing of a GC-rich region by inclusion of 10% DMSO: application to mouse c-jun. Biotechniques, 1993. 15(3): p. 372-4.
83. Weissensteiner, T. and J.S. Lanchbury, Strategy for controlling preferential amplification and avoiding false negatives in PCR typing. Biotechniques, 1996. 21(6): p. 1102-8.
84. Leeman, M., et al., Proteins and antibodies in serum, plasma, and whole blood—size characterization using asymmetrical flow field-flow fractionation (AF4). Analytical and bioanalytical chemistry, 2018. 410: p. 4867-4873.
85. Ralser, M., et al., An efficient and economic enhancer mix for PCR. Biochemical and Biophysical Research Communications, 2006. 347(3): p. 747-751.
86. Milo, R., What is the total number of protein molecules per cell volume? A call to rethink some published values. Bioessays, 2013. 35(12): p. 1050-1055.
87. Palazzo, A.F. and E.S. Lee, Non-coding RNA: what is functional and what is junk? Frontiers in genetics, 2015. 6: p. 2.
88. Juusola, J. and J. Ballantyne, Messenger RNA profiling: a prototype method to supplant conventional methods for body fluid identification. Forensic Science International, 2003. 135(2): p. 85-96.
89. 張晴雯, 部分磷酸根甲基化之反義去氧核醣核酸探針與 微小核糖核酸雜交靈敏度與專一性之研究, in 化學工程與材料工程學系. 2022, 國立中央大學: 桃園縣. p. 123.
90. Choi, E. and S. Kim, Surface pH buffering to promote degradation of mesoporous silica nanoparticles under a physiological condition. Journal of Colloid and Interface Science, 2019. 533: p. 463-470.
91. McHugh, M.M., et al., The antitumor enediyne C-1027 alters cell cycle progression and induces chromosomal aberrations and telomere dysfunction. Cancer Research, 2005. 65(12): p. 5344-5351. |