博碩士論文 110324053 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:4 、訪客IP:3.14.249.191
姓名 王詩涵(Shih-Han Wanng)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 基於磁性奈米粒子和量子點的新型早期阿茲海默症診斷工具
(A Novel Diagnostic Tool for Early Detection of Alzheimer′s Disease based on Magnetic Nanoparticles and Quantum Dots)
相關論文
★ 雙連續相中孔二氧化鈦光催化以及電子結構之實驗與模擬研究★ 聚合物-奈米粒子複合材料在玻璃轉移溫度下的結構與動力學相關性之實驗與模擬研究
★ 新興糖基雙子型界面活性劑之結構以及其對基因轉染效率之影響★ 自發曲率、金屬離子吸附以及微脂體膜融合效率三者間之相關性探討
★ 脂質組成成分對細胞膜物理性質與生物功能的影響★ 添加具有抗菌潛力的胜肽對磷脂質自組裝結構與彈性性質的影響
★ 分子構型與表面電荷密度對雙子型陰陽離子界面活性劑系統之相行為影響★ 探討具有不同間隔長度的陰、陽離子雙子型界面活性劑對於DNA壓實與解壓實之影響
★ 具抗菌潛力之胜肽如何影響脂質膜的彈性性質與結構完整性★ CoCrFeMnNi 高熵合金 形變行為之探討
★ 透過改變磷脂質排列密度減少Amyloid β與膜之間交互作用★ 對生物膜具活性的胜肽誘導相分離脂質膜產生結構上擾動
★ 人類脂肪幹細胞於生醫材料塗佈細胞外間質之純化及分化★ 發展量測雙層脂質膜的排列密度之實驗技術
★ 利用酸鹼度敏感型雙子型界面活性劑製作之基因載體對核內體脂質膜結構之影響★ 開發預測雙子型界面活性劑之自組裝結構的方法
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2028-8-31以後開放)
摘要(中) 澱粉樣蛋白(Amyloid beta, Aβ)長期以來一直被認為是阿茲海默症的主要病理因子。研究發現,血漿中的Aβ42具有極高的錯誤結構形成趨勢並形成有毒的聚集體,因此與一個人患有或發展阿茲海默症的可能性高度相關,即使在沒有觀察到認知能力下降的情況下也是如此。因此,測量血液中Aβ的濃度成為一種有前景的非侵入性阿茲海默症早期檢測工具。相比基於常見認知測試的阿茲海默症診斷方法,這種檢測方法可以在病情進展到最終階段之前進行診斷。我們致力於開發一種基於磁性奈米粒子和量子點的診斷方法,以實現這一潛力。具體而言,我們使用Aβ42特異性抗體捕獲血漿中的澱粉樣蛋白,並利用磁性奈米粒子和量子點實現反向分析策略,簡化了確定Aβ42濃度的分析過程。這種多重、敏感和快速的診斷方法預計將成為阿茲海默症診斷和監測的有價值的工具。
摘要(英) The peptide family of amyloid beta (Aβ) has long been suspected to be a major pathogenic culprit for Alzheimer′s disease (AD). Research has found that Aβ42 in plasma exhibits a pronounced tendency to form erroneous structures and generate toxic aggregates. Consequently, there is a strong correlation between the presence of Aβ42 and the likelihood of developing or experiencing Alzheimer′s disease, even in individuals without apparent cognitive decline. Therefore, measuring the concentration of Aβ in blood has emerged as a promising non-invasive tool for early detection of Alzheimer′s disease. This detection method, compared to conventional cognitive tests-based diagnostic approaches, allows for diagnosis before the disease progresses to its final stages. We have been developing a diagnostic method based on magnetic nanoparticles and quantum dots to realize this potential. Specifically, we use Aβ42-specific antibodies to capture the peptide in plasma, and employ magnetic nanoparticles and quantum dots to implement a reverse assay strategy, simplifying the analysis process for determining the concentration of Aβ42. This multiplex, sensitive, and rapid diagnostic method is expected to become a valuable tool for Alzheimer′s disease diagnosis and monitoring.
關鍵字(中) ★ 阿茲海默症
★ 量子點
★ 磁性奈米粒子
★ 免疫傳感器
關鍵字(英)
論文目次 摘要 i
Abstract ii
誌謝 iii
目錄 iv
圖目錄 vii
表目錄 xi
第一章、緒論 1
1.1簡介 1
1.2研究目的及動機 3
第二章、文獻回顧 5
2.1 阿茲海默症 5
2.1.1現況 5
2.1.2阿茲海默症發病症狀的進程階段 5
2.1.3阿茲海默症診斷程序 6
2.1.4阿茲海默症診斷方法及優缺點 7
2.2 阿茲海默症的成因 9
2.2.1澱粉樣蛋白假說(Amyloid hypothesis) 10
2.2.2 tau蛋白假說(Tau protein hypothesis) 12
2.3 磁性奈米粒子在生物上的應用及其重要性 13
2.3.1生化檢測 15
2.4 量子點與磁性奈米粒子的系統 18
第三章、實驗方法 24
3.1實驗藥品 24
3.2樣品製備 27
3.2.1磁性奈米粒子 27
3.2.2免疫磁性奈米粒子 28
3.2.3量子點 30
3.2.4量子點與抗體複合物 32
3.2.5量子點與磁性奈米粒子生物傳感器 32
3.3實驗儀器 34
3.4分析用儀器原理介紹 36
3.4.1動態光散射(Dynamic Light Scattering, DLS) 36
3.4.2螢光光譜(Fluorescence spectroscopy) 37
3.4.3穿透式電子顯微鏡(Transmission electron microscope, TEM) 40
3.4.4傅立葉轉換紅外光譜(Fourier-transform infrared spectroscopy, FTIR) 41
3.4.5 X光繞射儀(X-ray Diffraction, XRD) 42
3.4.6紫外-可見光吸收光譜(Ultraviolet–visible asorption spectrum) 44
3.4.7小角度X光散射(Small-Angle X-ray Scattering, SAXS) 45
第四章、結果與討論 49
4.1修飾磁性奈米粒子的表徵 49
4.2 CdTe量子點(Quantum Dot, QD)的表徵 59
4.3免疫磁性奈米粒子性質 67
4.4量子點與抗體複合物的性質 69
4.5檢測澱粉樣蛋白(β-amyloid 42 peptide, Aβ42) 71
第五章、結論 78
第六章、參考資料 79
參考文獻 [1] Alzheimer′s Disease International and McGill University. "World Alzheimer Report 2021." (2021).
[2] Burns, A. "Diagnosis and management of Alzheimer′s disease." Dialogues in Clinical Neuroscience (2022).
[3] Palmqvist, S., Zetterberg, H., Mattsson, N., Johansson, P., Minthon, L., Blennow, K., & Swedish BioFINDER Study Group. (2015). Detailed comparison of amyloid PET and CSF biomarkers for identifying early Alzheimer disease. Neurology, 85(14), 1240-1249.
[4] Lewczuk, P., Lelental, N., Spitzer, P., Maler, J. M., & Kornhuber, J. (2015). "Amyloid-β 42/40 cerebrospinal fluid concentration ratio in the diagnostics of Alzheimer′s disease: validation of two novel assays." Journal of Alzheimer′s Disease 43.1: 183-191.
[5] NIH National Institute on Aging (NIA): How Is Alzheimer′s Disease Treated?, April, 2023, from https://www.nia.nih.gov/health/how-alzheimers-disease-treated
[6] Nelson, P. T., Braak, H., & Markesbery, W. R. "Neuropathology and cognitive impairment in Alzheimer disease: a complex but coherent relationship." Journal of Neuropathology & Experimental Neurology, 68(1), 1-14. (2009).
[7] Sperling, R. A., Aisen, P. S., Beckett, L. A., Bennett, D. A., Craft, S., Fagan, A. M., & Phelps, C. H. "Toward defining the preclinical stages of Alzheimer’s disease: Recommendations from the National Institute on Aging-Alzheimer′s Association workgroups on diagnostic guidelines for Alzheimer′s disease." Alzheimer′s & Dementia, 7(3), 280-292. (2011).
[8] Alzheimer’s Association. "2020 Alzheimer’s disease facts and figures. Alzheimer’s & Dementia." The Journal of the Alzheimer’s Association, 16.3: 391-460. (2020).
[9] Shaw, L. M., Vanderstichele, H., Knapik‐Czajka, M., Clark, C. M., Aisen, P. S., Petersen, R. C., & Alzheimer′s Disease Neuroimaging Initiative. "Cerebrospinal fluid biomarker signature in Alzheimer′s disease neuroimaging initiative subjects." Annals of Neurology, 65(4), 403-413. (2009).
[10] Pichler, B. J., Wehrl, H. F., Kolb, A., & Judenhofer, M. S. "Positron emission tomography/magnetic resonance imaging: the next generation of multimodality imaging?" Seminars in Nuclear Medicine, 38(3), 199–208. (2008).
[11] Townsend, David W. "A combined PET/CT scanner: the choices." The Journal of Nuclear Medicine 42.3: 533. (2001)
[12] Jack Jr, C. R., Lowe, V. J., Senjem, M. L., Weigand, S. D., Kemp, B. J., Shiung, M. M., & Petersen, R. C. "11C PiB and structural MRI provide complementary information in imaging of Alzheimer′s disease and amnestic mild cognitive impairment." Brain, 131(3), 665-680. (2008).
[13] Attems, J., & Jellinger, K. A. "The overlap between vascular disease and Alzheimer’s disease-lessons from pathology." BMC Medicine, 12(1), 1-12. (2014).
[14] Kametani, F., & Hasegawa, M. (2018). "Reconsideration of amyloid hypothesis and tau hypothesis in Alzheimer′s disease." Frontiers in Neuroscience, 12, 25.
[15] Hroudová, J., Singh, N., Fišar, Z., & Ghosh, K. K. "Progress in drug development for Alzheimer′s disease: An overview in relation to mitochondrial energy metabolism." European Journal of Medicinal Chemistry, 121, 774-784. (2016).
[16] Alzheimer′s Association. "Beta-amyloid and the Amyloid Hypothesis" The Journal of the Alzheimer’s Association (2017).
[17] Haass, C., Kaether, C., Thinakaran, G., & Sisodia, S. "Trafficking and proteolytic processing of APP." Cold Spring Harbor Perspectives in Medicine, 2(5). (2012).
[18] Hampel, H., Hardy, J., Blennow, K., Chen, C., Perry, G., Kim, S. H., & Vergallo, A. "The amyloid-β pathway in Alzheimer’s disease." Molecular Psychiatry, 26(10), 5481-5503. (2021).
[19] Mucke, L., & Selkoe, D. J. "Neurotoxicity of amyloid β-protein: synaptic and network dysfunction. " Cold Spring Harbor Perspectives in Medicine, 2(7). (2012).
[20] Pham, C., Hérault, K., Oheim, M., Maldera, S., Vialou, V., Cauli, B., & Li, D. "Astrocytes respond to a neurotoxic Aβ fragment with state-dependent Ca2+ alteration and multiphasic transmitter release." Acta Neuropathologica Communications, 9(1), 1-19. (2021).
[21] Abedin, F., Kandel, N., & Tatulian, S. A. "Effects of Aβ-derived peptide fragments on fibrillogenesis of Aβ." Scientific Reports, 11(1), 19262. (2021).
[22] Alzheimer′s Association Calcium Hypothesis Workgroup, & Khachaturian, Z. S. "Calcium hypothesis of Alzheimer′s disease and brain aging: a framework for integrating new evidence into a comprehensive theory of pathogenesis." Alzheimer′s & Dementia, 13(2), 178-182. (2017).
[23] Khatoon, S., Grundke‐Iqbal, I., & Iqbal, K. "Brain levels of microtubule‐associated protein τ are elevated in Alzheimer′s disease: A radioimmuno‐slot‐blot assay for nanograms of the protein." Journal of Neurochemistry, 59(2), 750-753. (1992).
[24] Garcia-Sierra, F., Ghoshal, N., Quinn, B., Berry, R. W., & Binder, L. I. "Conformational changes and truncation of tau protein during tangle evolution in Alzheimer′s disease." Journal of Alzheimer′s Disease, 5(2), 65-77. (2003).
[25] NUKINA, N., & IHARA, Y. "One of the antigenic determinants of paired helical filaments is related to tau protein." The Journal of Biochemistry, 99(5), 1541-1544. (1986).
[26] Alonso, A. D. C., Zaidi, T., Grundke-Iqbal, I., & Iqbal, K. "Role of abnormally phosphorylated tau in the breakdown of microtubules in Alzheimer disease." Proceedings of the National Academy of Sciences, 91(12), 5562-5566. (1994).
[27] Siddappaji, K. K., & Gopal, S. "Molecular mechanisms in Alzheimer′s disease and the impact of physical exercise with advancements in therapeutic approaches." AIMS Neuroscience, 8(3), 357. (2021).
[28] Akbarzadeh, A., Samiei, M., & Davaran, S. "Magnetic nanoparticles: preparation, physical properties, and applications in biomedicine." Nanoscale Research Letters, 7, 1-13. (2012).
[29] Zhou, Z., Yang, L., Gao, J., & Chen, X. "Structure–relaxivity relationships of magnetic nanoparticles for magnetic resonance imaging." Advanced Materials, 31(8), 1804567. (2019).
[30] Guldris, N., Argibay, B., Gallo, J., Iglesias-Rey, R., Carbó-Argibay, E., Kolen’ko, Y. V., & Rivas, J. "Magnetite nanoparticles for stem cell labeling with high efficiency and long-term in vivo tracking." Bioconjugate Chemistry, 28(2), 362-370. (2017).
[31] Jun, Y. W., Seo, J. W., & Cheon, J. "Nanoscaling laws of magnetic nanoparticles and their applicabilities in biomedical sciences." Accounts of Chemical Research, 41(2), 179-189. (2008).
[32] Anik, M. I., Hossain, M. K., Hossain, I., Ahmed, I., & Doha, R. M. "Biomedical applications of magnetic nanoparticles." Magnetic Nanoparticle-Based Hybrid Materials (pp. 463-497). Woodhead Publishing. (2021).
[33] Grippin, A. J., Wummer, B., Wildes, T., Dyson, K., Trivedi, V., Yang, C., & Mitchell, D. A. "Dendritic cell-activating magnetic nanoparticles enable early prediction of antitumor response with magnetic resonance imaging. " ACS Nano, 13(12), 13884-13898. (2019).
[34] Hess, K. L., Medintz, I. L., & Jewell, C. M. "Designing inorganic nanomaterials for vaccines and immunotherapies." Nano Today, 27, 73-98. (2019).
[35] Shen, H., Wang, J., Liu, H., Li, Z., Jiang, F., Wang, F. B., & Yuan, Q. "Rapid and selective detection of pathogenic bacteria in bloodstream infections with aptamer-based recognition." ACS Applied Materials & Interfaces, 8(30), 19371-19378. (2016).
[36] Martins, P. M., Lima, A. C., Ribeiro, S., Lanceros-Mendez, S., & Martins, P. "Magnetic nanoparticles for biomedical applications: from the soul of the earth to the deep history of ourselves." ACS Applied Bio Materials, 4(8), 5839-5870. (2021).
[37] Xu, Y. P., Zhou, H. Y., Wang, G. C., Zhang, Y., Yang, T., Zhao, Y., & Tang, R. "Rational Design of a Replication‐Competent and Inheritable Magnetic Viruses for Targeting Biomedical Applications." Small, 16(41), 2002435. (2020).
[38] Zhou, Z., & Chen, X. "Magnetic Nanomaterials for Diagnostics." Magnetic Nanomaterials: Fundamentals, Synthesis and Applications, 365-392. (2017).
[39] Grover, V. P., Tognarelli, J. M., Crossey, M. M., Cox, I. J., Taylor-Robinson, S. D., & McPhail, M. J. "Magnetic resonance imaging: principles and techniques: lessons for clinicians." Journal of Clinical and Experimental Hepatology, 5(3), 246-255. (2015).
[40] Xie, J., Huang, J., Li, X., Sun, S., & Chen, X. "Iron oxide nanoparticle platform for biomedical applications." Current Medicinal Chemistry, 16(10), 1278-1294. (2009).
[41] Fernández, M., Javaid, F., & Chudasama, V. "Advances in targeting the folate receptor in the treatment/imaging of cancers." Chemical Science, 9(4), 790-810. (2018).
[42] Li, Y., Song, L., Lin, J., Ma, J., Pan, Z., Zhang, Y., & Hou, Z. "Programmed nanococktail based on pH-responsive function switch for self-synergistic tumor-targeting therapy." ACS Applied Materials & Interfaces, 9(45), 39127-39142. (2017).
[43] Peng, Y., Zhao, Z., Liu, T., Li, X., Hu, X., Wei, X., & Tan, W. "Smart human‐serum‐albumin–As2O3 nanodrug with self‐amplified folate receptor‐targeting ability for chronic myeloid leukemia treatment." Angewandte Chemie International Edition, 56(36), 10845-10849. (2017).
[44] Wust, P., Hildebrandt, B., Sreenivasa, G., Rau, B., Gellermann, J., Riess, H., Felix, R., & Schlag, P. M. "Hyperthermia in combined treatment of cancer." The Lancet. Oncology, 3(8), 487–497. (2002).
[45] Milleron, R. S., & Bratton, S. B. "‘Heated’debates in apoptosis." Cellular and Molecular Life Sciences, 64, 2329-2333. (2007).
[46] Moroz, P., Jones, S. K., & Gray, B. N. "Magnetically mediated hyperthermia: current status and future directions." International Journal of Hyperthermia, 18(4), 267-284. (2002).
[47] Wang, C., Xiao, R., Wang, S., Yang, X., Bai, Z., Li, X., & Wang, S. "Magnetic quantum dot based lateral flow assay biosensor for multiplex and sensitive detection of protein toxins in food samples." Biosensors and Bioelectronics, 146, 111754. (2019).
[48] Hassan, A. H. A., Bergua, J. F., Morales-Narváez, E., & Mekoçi, A. "Validity of a single antibody-based lateral flow immunoassay depending on graphene oxide for highly sensitive determination of E. coli O157: H7 in minced beef and river water." Food Chemistry, 297, 124965. (2019).
[49] Zhang, L., Du, X., Su, Y., Niu, S., Li, Y., Liang, X., & Luo, H. "Quantitative assessment of AD markers using naked eyes: point-of-care testing with paper-based lateral flow immunoassay." Journal of Nanobiotechnology, 19, 1-17. (2021).
[50] Zuckerkandl, E., & Pauling, L. "Evolutionary divergence and convergence in proteins. " Evolving genes and proteins (pp. 97-166). Academic Press. (1965).
[51] Holschuh, K., & Schwämmle, A. "Preparative purification of antibodies with protein A—an alternative to conventional chromatography." Journal of Magnetism and Magnetic Materials, 293(1), 345-348. (2005).
[52] Šafařı́k, I., & Šafařı́ková, M. "Use of magnetic techniques for the isolation of cells." Journal of Chromatography B: Biomedical Sciences and Applications, 722(1-2), 33-53. (1999).
[53] Mani, V., Chikkaveeraiah, B. V., & Rusling, J. F. "Magnetic particles in ultrasensitive biomarker protein measurements for cancer detection and monitoring." Expert Opinion on Medical Diagnostics, 5(5), 381-391. (2011).
[54] Wang, Y. K., Wang, Y. C., Wang, H. A., Ji, W. H., Sun, J. H., & Yan, Y. X. "An immunomagnetic-bead-based enzyme-linked immunosorbent assay for sensitive quantification of fumonisin B1." Food Control, 40, 41-45. (2014).
[55] Mayo, C., Ortega, F. G., Giménez-Capitán, A., Molina-Vila, M. A., Serrano, M. J., Viteri, S., & Rosell, R. "CK-coated magnetic-based beads as a tool to isolate circulating tumor cells (CTCs) in human tumors." Translational Lung Cancer Research, 2(2), 65. (2013).
[56] Chen, H., Li, Y., Zhang, Z., & Wang, S. "Immunomagnetic separation of circulating tumor cells with microfluidic chips and their clinical applications." Biomicrofluidics, 14(4). (2020).
[57] Wang, Z., Cai, R., Gao, Z., Yuan, Y., & Yue, T. "Immunomagnetic separation: An effective pretreatment technology for isolation and enrichment in food microorganisms detection." Comprehensive Reviews in Food Science and Food Safety, 19(6), 3802-3824. (2020).
[58] Qiao, Z., Lei, C., Fu, Y., & Li, Y. "Rapid and sensitive detection of E. coli O157: H7 based on antimicrobial peptide functionalized magnetic nanoparticles and urease-catalyzed signal amplification." Analytical Methods, 9(35), 5204-5210. (2017).
[59] Filomena, A., Pessler, F., Akmatov, M. K., Krause, G., Duffy, D., Gärtner, B., & Schneiderhan-Marra, N. "Development of a Bead-Based Multiplex Assay for the Analysis of the Serological Response against the Six Pathogens HAV, HBV, HCV, CMV, T. gondii, and H. pylori." High-throughput, 6(4), 14. (2017).
[60] Ren, Z. Q., Liu, T. C., Hou, J. Y., Chen, M. J., Chen, Z. H., Lin, G. F., & Wu, Y. S. "A rapid and sensitive method based on magnetic beads for the detection of hepatitis B virus surface antigen in human serum." Luminescence, 29(6), 591-597. (2014).
[61] Wang, F., Zhou, X. L., Yang, Q. G., Xu, W. H., Wang, F., Chen, Y. P., & Chen, G. H. "A peptide that binds specifically to the β-amyloid of Alzheimer′s disease: selection and assessment of anti-β-amyloid neurotoxic effects." PLoS One, 6(11), e27649. (2011).
[62] Mai, T. D., Ferraro, D., Aboud, N., Renault, R., Serra, M., Tran, N. T., & Taverna, M. "Single-step immunoassays and microfluidic droplet operation: Towards a versatile approach for detection of amyloid-β peptide-based biomarkers of Alzheimer’s disease." Sensors and Actuators B: Chemical, 255, 2126-2135. (2018).
[63] Amin, F. U., Hoshiar, A. K., Do, T. D., Noh, Y., Shah, S. A., Khan, M. S., & Kim, M. O. "Osmotin-loaded magnetic nanoparticles with electromagnetic guidance for the treatment of Alzheimer′s disease." Nanoscale, 9(30), 10619-10632. (2017).
[64] Pandit, C., Alajangi, H. K., Singh, J., Khajuria, A., Sharma, A., Hassan, M. S., & Kaur, I. P. "Development of magnetic nanoparticle assisted aptamer-quantum dot based biosensor for the detection of Escherichia coli in water samples." Science of The Total Environment, 831, 154857. (2022).
[65] Ghasemi, R., Mirahmadi-Zare, S. Z., Nasr-Esfahani, M. H., Allafchian, A., & Behmanesh, M. "Optical biosensing of Streptococcus agalactiae based on core/shell magnetic nanoparticle-quantum dot." Analytical and Bioanalytical Chemistry, 411, 6733-6743. (2019).
[66] Sun, P., Zhang, H., Liu, C., Fang, J., Wang, M., Chen, J., & Xu, S. "Preparation and characterization of Fe3O4/CdTe magnetic/fluorescent nanocomposites and their applications in immuno-labeling and fluorescent imaging of cancer cells." Langmuir, 26(2), 1278-1284. (2010).
[67] Wang, J. J., Jiang, Y. Z., Lin, Y., Wen, L., Lv, C., Zhang, Z. L., & Pang, D. W. "Simultaneous point-of-care detection of enterovirus 71 and coxsackievirus B3." Analytical Chemistry, 87(21), 11105-11112. (2015).
[68] Yin, B., Wang, Y., Dong, M., Wu, J., Ran, B., Xie, M., & Chen, Y. "One-step multiplexed detection of foodborne pathogens: Combining a quantum dot-mediated reverse assaying strategy and magnetic separation." Biosensors and Bioelectronics, 86, 996-1002. (2016).
[69] Pi, J., Long, Y., Huang, N., Cheng, Y., & Zheng, H. "A sandwich immunoassay for detection of Aβ1-42 based on quantum dots." Talanta, 146, 10-15. (2016).
[70] Mai, T. D., Ferraro, D., Aboud, N., Renault, R., Serra, M., Tran, N. T., & Taverna, M. "Single-step immunoassays and microfluidic droplet operation: Towards a versatile approach for detection of amyloid-β peptide-based biomarkers of Alzheimer’s disease." Sensors and Actuators B: Chemical, 255, 2126-2135. (2018).
[71] Wang, M., Shen, J., Thomas, J. C., Mu, T., Liu, W., Wang, Y., & Liu, K. "Particle size measurement using dynamic light scattering at ultra-low concentration accounting for particle number fluctuations." Materials, 14(19), 5683. (2021).
[72] Stetefeld, J., McKenna, S. A., & Patel, T. R. "Dynamic light scattering: a practical guide and applications in biomedical sciences." Biophysical Reviews, 8, 409-427. (2016).
[73] Falke, S., & Betzel, C. "Dynamic Light Scattering (DLS) Principles, Perspectives, Applications to Biological Samples." Radiation in Bioanalysis: Spectroscopic Techniques and Theoretical Methods, 173-193. (2019).
[74] Ramanujam, N. "Fluorescence spectroscopy of neoplastic and non-neoplastic tissues." Neoplasia, 2(1-2), 89-117. (2000).
[75] Winey, M., Meehl, J. B., O′Toole, E. T., & Giddings Jr, T. H. "Conventional transmission electron microscopy." Molecular Biology of the Cell, 25(3), 319-323. (2014).
[76] Leitgeb, M. Photoelectrochemical porosification of silicon carbide for MEMS (Doctoral dissertation, Wien). (2018).
[77] Harrington, G. F., & Santiso, J. "Back-to-Basics tutorial: X-ray diffraction of thin films." Journal of Electroceramics, 47(4), 141-163. (2021).
[78] Barré, L. "Contribution of small-angle x-ray and neutron scattering (saxs and sans) to the characterization of natural nanomaterials." X-ray and Neutron Techniques for Nanomaterials Characterization, 665-716. (2016).
[79] Ojemaye, M. O., Okoh, O. O., & Okoh, A. I. "Adsorption of Cu2+ from aqueous solution by a novel material; azomethine functionalized magnetic nanoparticles." Separation and Purification Technology, 183, 204-215. (2017).
[80] Ojemaye, M. O., & Okoh, A. I. "Multiple nitrogen functionalized magnetic nanoparticles as an efficient adsorbent: synthesis, kinetics, isotherm and thermodynamic studies for the removal of rhodamine B from aqueous solution." Scientific Reports, 9(1), 9672. (2019).
[81] Osifeko, O. L., Uddin, I., Mashazi, P. N., & Nyokong, T. "Physicochemical and antimicrobial photodynamic chemotherapy of unsymmetrical indium phthalocyanines alone or in the presence of magnetic nanoparticles." New Journal of Chemistry, 40(3), 2710-2721. (2016).
指導教授 陳儀帆(Yi-Fan Chen) 審核日期 2023-8-11
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明