參考文獻 |
[1] Alzheimer′s Disease International and McGill University. "World Alzheimer Report 2021." (2021).
[2] Burns, A. "Diagnosis and management of Alzheimer′s disease." Dialogues in Clinical Neuroscience (2022).
[3] Palmqvist, S., Zetterberg, H., Mattsson, N., Johansson, P., Minthon, L., Blennow, K., & Swedish BioFINDER Study Group. (2015). Detailed comparison of amyloid PET and CSF biomarkers for identifying early Alzheimer disease. Neurology, 85(14), 1240-1249.
[4] Lewczuk, P., Lelental, N., Spitzer, P., Maler, J. M., & Kornhuber, J. (2015). "Amyloid-β 42/40 cerebrospinal fluid concentration ratio in the diagnostics of Alzheimer′s disease: validation of two novel assays." Journal of Alzheimer′s Disease 43.1: 183-191.
[5] NIH National Institute on Aging (NIA): How Is Alzheimer′s Disease Treated?, April, 2023, from https://www.nia.nih.gov/health/how-alzheimers-disease-treated
[6] Nelson, P. T., Braak, H., & Markesbery, W. R. "Neuropathology and cognitive impairment in Alzheimer disease: a complex but coherent relationship." Journal of Neuropathology & Experimental Neurology, 68(1), 1-14. (2009).
[7] Sperling, R. A., Aisen, P. S., Beckett, L. A., Bennett, D. A., Craft, S., Fagan, A. M., & Phelps, C. H. "Toward defining the preclinical stages of Alzheimer’s disease: Recommendations from the National Institute on Aging-Alzheimer′s Association workgroups on diagnostic guidelines for Alzheimer′s disease." Alzheimer′s & Dementia, 7(3), 280-292. (2011).
[8] Alzheimer’s Association. "2020 Alzheimer’s disease facts and figures. Alzheimer’s & Dementia." The Journal of the Alzheimer’s Association, 16.3: 391-460. (2020).
[9] Shaw, L. M., Vanderstichele, H., Knapik‐Czajka, M., Clark, C. M., Aisen, P. S., Petersen, R. C., & Alzheimer′s Disease Neuroimaging Initiative. "Cerebrospinal fluid biomarker signature in Alzheimer′s disease neuroimaging initiative subjects." Annals of Neurology, 65(4), 403-413. (2009).
[10] Pichler, B. J., Wehrl, H. F., Kolb, A., & Judenhofer, M. S. "Positron emission tomography/magnetic resonance imaging: the next generation of multimodality imaging?" Seminars in Nuclear Medicine, 38(3), 199–208. (2008).
[11] Townsend, David W. "A combined PET/CT scanner: the choices." The Journal of Nuclear Medicine 42.3: 533. (2001)
[12] Jack Jr, C. R., Lowe, V. J., Senjem, M. L., Weigand, S. D., Kemp, B. J., Shiung, M. M., & Petersen, R. C. "11C PiB and structural MRI provide complementary information in imaging of Alzheimer′s disease and amnestic mild cognitive impairment." Brain, 131(3), 665-680. (2008).
[13] Attems, J., & Jellinger, K. A. "The overlap between vascular disease and Alzheimer’s disease-lessons from pathology." BMC Medicine, 12(1), 1-12. (2014).
[14] Kametani, F., & Hasegawa, M. (2018). "Reconsideration of amyloid hypothesis and tau hypothesis in Alzheimer′s disease." Frontiers in Neuroscience, 12, 25.
[15] Hroudová, J., Singh, N., Fišar, Z., & Ghosh, K. K. "Progress in drug development for Alzheimer′s disease: An overview in relation to mitochondrial energy metabolism." European Journal of Medicinal Chemistry, 121, 774-784. (2016).
[16] Alzheimer′s Association. "Beta-amyloid and the Amyloid Hypothesis" The Journal of the Alzheimer’s Association (2017).
[17] Haass, C., Kaether, C., Thinakaran, G., & Sisodia, S. "Trafficking and proteolytic processing of APP." Cold Spring Harbor Perspectives in Medicine, 2(5). (2012).
[18] Hampel, H., Hardy, J., Blennow, K., Chen, C., Perry, G., Kim, S. H., & Vergallo, A. "The amyloid-β pathway in Alzheimer’s disease." Molecular Psychiatry, 26(10), 5481-5503. (2021).
[19] Mucke, L., & Selkoe, D. J. "Neurotoxicity of amyloid β-protein: synaptic and network dysfunction. " Cold Spring Harbor Perspectives in Medicine, 2(7). (2012).
[20] Pham, C., Hérault, K., Oheim, M., Maldera, S., Vialou, V., Cauli, B., & Li, D. "Astrocytes respond to a neurotoxic Aβ fragment with state-dependent Ca2+ alteration and multiphasic transmitter release." Acta Neuropathologica Communications, 9(1), 1-19. (2021).
[21] Abedin, F., Kandel, N., & Tatulian, S. A. "Effects of Aβ-derived peptide fragments on fibrillogenesis of Aβ." Scientific Reports, 11(1), 19262. (2021).
[22] Alzheimer′s Association Calcium Hypothesis Workgroup, & Khachaturian, Z. S. "Calcium hypothesis of Alzheimer′s disease and brain aging: a framework for integrating new evidence into a comprehensive theory of pathogenesis." Alzheimer′s & Dementia, 13(2), 178-182. (2017).
[23] Khatoon, S., Grundke‐Iqbal, I., & Iqbal, K. "Brain levels of microtubule‐associated protein τ are elevated in Alzheimer′s disease: A radioimmuno‐slot‐blot assay for nanograms of the protein." Journal of Neurochemistry, 59(2), 750-753. (1992).
[24] Garcia-Sierra, F., Ghoshal, N., Quinn, B., Berry, R. W., & Binder, L. I. "Conformational changes and truncation of tau protein during tangle evolution in Alzheimer′s disease." Journal of Alzheimer′s Disease, 5(2), 65-77. (2003).
[25] NUKINA, N., & IHARA, Y. "One of the antigenic determinants of paired helical filaments is related to tau protein." The Journal of Biochemistry, 99(5), 1541-1544. (1986).
[26] Alonso, A. D. C., Zaidi, T., Grundke-Iqbal, I., & Iqbal, K. "Role of abnormally phosphorylated tau in the breakdown of microtubules in Alzheimer disease." Proceedings of the National Academy of Sciences, 91(12), 5562-5566. (1994).
[27] Siddappaji, K. K., & Gopal, S. "Molecular mechanisms in Alzheimer′s disease and the impact of physical exercise with advancements in therapeutic approaches." AIMS Neuroscience, 8(3), 357. (2021).
[28] Akbarzadeh, A., Samiei, M., & Davaran, S. "Magnetic nanoparticles: preparation, physical properties, and applications in biomedicine." Nanoscale Research Letters, 7, 1-13. (2012).
[29] Zhou, Z., Yang, L., Gao, J., & Chen, X. "Structure–relaxivity relationships of magnetic nanoparticles for magnetic resonance imaging." Advanced Materials, 31(8), 1804567. (2019).
[30] Guldris, N., Argibay, B., Gallo, J., Iglesias-Rey, R., Carbó-Argibay, E., Kolen’ko, Y. V., & Rivas, J. "Magnetite nanoparticles for stem cell labeling with high efficiency and long-term in vivo tracking." Bioconjugate Chemistry, 28(2), 362-370. (2017).
[31] Jun, Y. W., Seo, J. W., & Cheon, J. "Nanoscaling laws of magnetic nanoparticles and their applicabilities in biomedical sciences." Accounts of Chemical Research, 41(2), 179-189. (2008).
[32] Anik, M. I., Hossain, M. K., Hossain, I., Ahmed, I., & Doha, R. M. "Biomedical applications of magnetic nanoparticles." Magnetic Nanoparticle-Based Hybrid Materials (pp. 463-497). Woodhead Publishing. (2021).
[33] Grippin, A. J., Wummer, B., Wildes, T., Dyson, K., Trivedi, V., Yang, C., & Mitchell, D. A. "Dendritic cell-activating magnetic nanoparticles enable early prediction of antitumor response with magnetic resonance imaging. " ACS Nano, 13(12), 13884-13898. (2019).
[34] Hess, K. L., Medintz, I. L., & Jewell, C. M. "Designing inorganic nanomaterials for vaccines and immunotherapies." Nano Today, 27, 73-98. (2019).
[35] Shen, H., Wang, J., Liu, H., Li, Z., Jiang, F., Wang, F. B., & Yuan, Q. "Rapid and selective detection of pathogenic bacteria in bloodstream infections with aptamer-based recognition." ACS Applied Materials & Interfaces, 8(30), 19371-19378. (2016).
[36] Martins, P. M., Lima, A. C., Ribeiro, S., Lanceros-Mendez, S., & Martins, P. "Magnetic nanoparticles for biomedical applications: from the soul of the earth to the deep history of ourselves." ACS Applied Bio Materials, 4(8), 5839-5870. (2021).
[37] Xu, Y. P., Zhou, H. Y., Wang, G. C., Zhang, Y., Yang, T., Zhao, Y., & Tang, R. "Rational Design of a Replication‐Competent and Inheritable Magnetic Viruses for Targeting Biomedical Applications." Small, 16(41), 2002435. (2020).
[38] Zhou, Z., & Chen, X. "Magnetic Nanomaterials for Diagnostics." Magnetic Nanomaterials: Fundamentals, Synthesis and Applications, 365-392. (2017).
[39] Grover, V. P., Tognarelli, J. M., Crossey, M. M., Cox, I. J., Taylor-Robinson, S. D., & McPhail, M. J. "Magnetic resonance imaging: principles and techniques: lessons for clinicians." Journal of Clinical and Experimental Hepatology, 5(3), 246-255. (2015).
[40] Xie, J., Huang, J., Li, X., Sun, S., & Chen, X. "Iron oxide nanoparticle platform for biomedical applications." Current Medicinal Chemistry, 16(10), 1278-1294. (2009).
[41] Fernández, M., Javaid, F., & Chudasama, V. "Advances in targeting the folate receptor in the treatment/imaging of cancers." Chemical Science, 9(4), 790-810. (2018).
[42] Li, Y., Song, L., Lin, J., Ma, J., Pan, Z., Zhang, Y., & Hou, Z. "Programmed nanococktail based on pH-responsive function switch for self-synergistic tumor-targeting therapy." ACS Applied Materials & Interfaces, 9(45), 39127-39142. (2017).
[43] Peng, Y., Zhao, Z., Liu, T., Li, X., Hu, X., Wei, X., & Tan, W. "Smart human‐serum‐albumin–As2O3 nanodrug with self‐amplified folate receptor‐targeting ability for chronic myeloid leukemia treatment." Angewandte Chemie International Edition, 56(36), 10845-10849. (2017).
[44] Wust, P., Hildebrandt, B., Sreenivasa, G., Rau, B., Gellermann, J., Riess, H., Felix, R., & Schlag, P. M. "Hyperthermia in combined treatment of cancer." The Lancet. Oncology, 3(8), 487–497. (2002).
[45] Milleron, R. S., & Bratton, S. B. "‘Heated’debates in apoptosis." Cellular and Molecular Life Sciences, 64, 2329-2333. (2007).
[46] Moroz, P., Jones, S. K., & Gray, B. N. "Magnetically mediated hyperthermia: current status and future directions." International Journal of Hyperthermia, 18(4), 267-284. (2002).
[47] Wang, C., Xiao, R., Wang, S., Yang, X., Bai, Z., Li, X., & Wang, S. "Magnetic quantum dot based lateral flow assay biosensor for multiplex and sensitive detection of protein toxins in food samples." Biosensors and Bioelectronics, 146, 111754. (2019).
[48] Hassan, A. H. A., Bergua, J. F., Morales-Narváez, E., & Mekoçi, A. "Validity of a single antibody-based lateral flow immunoassay depending on graphene oxide for highly sensitive determination of E. coli O157: H7 in minced beef and river water." Food Chemistry, 297, 124965. (2019).
[49] Zhang, L., Du, X., Su, Y., Niu, S., Li, Y., Liang, X., & Luo, H. "Quantitative assessment of AD markers using naked eyes: point-of-care testing with paper-based lateral flow immunoassay." Journal of Nanobiotechnology, 19, 1-17. (2021).
[50] Zuckerkandl, E., & Pauling, L. "Evolutionary divergence and convergence in proteins. " Evolving genes and proteins (pp. 97-166). Academic Press. (1965).
[51] Holschuh, K., & Schwämmle, A. "Preparative purification of antibodies with protein A—an alternative to conventional chromatography." Journal of Magnetism and Magnetic Materials, 293(1), 345-348. (2005).
[52] Šafařı́k, I., & Šafařı́ková, M. "Use of magnetic techniques for the isolation of cells." Journal of Chromatography B: Biomedical Sciences and Applications, 722(1-2), 33-53. (1999).
[53] Mani, V., Chikkaveeraiah, B. V., & Rusling, J. F. "Magnetic particles in ultrasensitive biomarker protein measurements for cancer detection and monitoring." Expert Opinion on Medical Diagnostics, 5(5), 381-391. (2011).
[54] Wang, Y. K., Wang, Y. C., Wang, H. A., Ji, W. H., Sun, J. H., & Yan, Y. X. "An immunomagnetic-bead-based enzyme-linked immunosorbent assay for sensitive quantification of fumonisin B1." Food Control, 40, 41-45. (2014).
[55] Mayo, C., Ortega, F. G., Giménez-Capitán, A., Molina-Vila, M. A., Serrano, M. J., Viteri, S., & Rosell, R. "CK-coated magnetic-based beads as a tool to isolate circulating tumor cells (CTCs) in human tumors." Translational Lung Cancer Research, 2(2), 65. (2013).
[56] Chen, H., Li, Y., Zhang, Z., & Wang, S. "Immunomagnetic separation of circulating tumor cells with microfluidic chips and their clinical applications." Biomicrofluidics, 14(4). (2020).
[57] Wang, Z., Cai, R., Gao, Z., Yuan, Y., & Yue, T. "Immunomagnetic separation: An effective pretreatment technology for isolation and enrichment in food microorganisms detection." Comprehensive Reviews in Food Science and Food Safety, 19(6), 3802-3824. (2020).
[58] Qiao, Z., Lei, C., Fu, Y., & Li, Y. "Rapid and sensitive detection of E. coli O157: H7 based on antimicrobial peptide functionalized magnetic nanoparticles and urease-catalyzed signal amplification." Analytical Methods, 9(35), 5204-5210. (2017).
[59] Filomena, A., Pessler, F., Akmatov, M. K., Krause, G., Duffy, D., Gärtner, B., & Schneiderhan-Marra, N. "Development of a Bead-Based Multiplex Assay for the Analysis of the Serological Response against the Six Pathogens HAV, HBV, HCV, CMV, T. gondii, and H. pylori." High-throughput, 6(4), 14. (2017).
[60] Ren, Z. Q., Liu, T. C., Hou, J. Y., Chen, M. J., Chen, Z. H., Lin, G. F., & Wu, Y. S. "A rapid and sensitive method based on magnetic beads for the detection of hepatitis B virus surface antigen in human serum." Luminescence, 29(6), 591-597. (2014).
[61] Wang, F., Zhou, X. L., Yang, Q. G., Xu, W. H., Wang, F., Chen, Y. P., & Chen, G. H. "A peptide that binds specifically to the β-amyloid of Alzheimer′s disease: selection and assessment of anti-β-amyloid neurotoxic effects." PLoS One, 6(11), e27649. (2011).
[62] Mai, T. D., Ferraro, D., Aboud, N., Renault, R., Serra, M., Tran, N. T., & Taverna, M. "Single-step immunoassays and microfluidic droplet operation: Towards a versatile approach for detection of amyloid-β peptide-based biomarkers of Alzheimer’s disease." Sensors and Actuators B: Chemical, 255, 2126-2135. (2018).
[63] Amin, F. U., Hoshiar, A. K., Do, T. D., Noh, Y., Shah, S. A., Khan, M. S., & Kim, M. O. "Osmotin-loaded magnetic nanoparticles with electromagnetic guidance for the treatment of Alzheimer′s disease." Nanoscale, 9(30), 10619-10632. (2017).
[64] Pandit, C., Alajangi, H. K., Singh, J., Khajuria, A., Sharma, A., Hassan, M. S., & Kaur, I. P. "Development of magnetic nanoparticle assisted aptamer-quantum dot based biosensor for the detection of Escherichia coli in water samples." Science of The Total Environment, 831, 154857. (2022).
[65] Ghasemi, R., Mirahmadi-Zare, S. Z., Nasr-Esfahani, M. H., Allafchian, A., & Behmanesh, M. "Optical biosensing of Streptococcus agalactiae based on core/shell magnetic nanoparticle-quantum dot." Analytical and Bioanalytical Chemistry, 411, 6733-6743. (2019).
[66] Sun, P., Zhang, H., Liu, C., Fang, J., Wang, M., Chen, J., & Xu, S. "Preparation and characterization of Fe3O4/CdTe magnetic/fluorescent nanocomposites and their applications in immuno-labeling and fluorescent imaging of cancer cells." Langmuir, 26(2), 1278-1284. (2010).
[67] Wang, J. J., Jiang, Y. Z., Lin, Y., Wen, L., Lv, C., Zhang, Z. L., & Pang, D. W. "Simultaneous point-of-care detection of enterovirus 71 and coxsackievirus B3." Analytical Chemistry, 87(21), 11105-11112. (2015).
[68] Yin, B., Wang, Y., Dong, M., Wu, J., Ran, B., Xie, M., & Chen, Y. "One-step multiplexed detection of foodborne pathogens: Combining a quantum dot-mediated reverse assaying strategy and magnetic separation." Biosensors and Bioelectronics, 86, 996-1002. (2016).
[69] Pi, J., Long, Y., Huang, N., Cheng, Y., & Zheng, H. "A sandwich immunoassay for detection of Aβ1-42 based on quantum dots." Talanta, 146, 10-15. (2016).
[70] Mai, T. D., Ferraro, D., Aboud, N., Renault, R., Serra, M., Tran, N. T., & Taverna, M. "Single-step immunoassays and microfluidic droplet operation: Towards a versatile approach for detection of amyloid-β peptide-based biomarkers of Alzheimer’s disease." Sensors and Actuators B: Chemical, 255, 2126-2135. (2018).
[71] Wang, M., Shen, J., Thomas, J. C., Mu, T., Liu, W., Wang, Y., & Liu, K. "Particle size measurement using dynamic light scattering at ultra-low concentration accounting for particle number fluctuations." Materials, 14(19), 5683. (2021).
[72] Stetefeld, J., McKenna, S. A., & Patel, T. R. "Dynamic light scattering: a practical guide and applications in biomedical sciences." Biophysical Reviews, 8, 409-427. (2016).
[73] Falke, S., & Betzel, C. "Dynamic Light Scattering (DLS) Principles, Perspectives, Applications to Biological Samples." Radiation in Bioanalysis: Spectroscopic Techniques and Theoretical Methods, 173-193. (2019).
[74] Ramanujam, N. "Fluorescence spectroscopy of neoplastic and non-neoplastic tissues." Neoplasia, 2(1-2), 89-117. (2000).
[75] Winey, M., Meehl, J. B., O′Toole, E. T., & Giddings Jr, T. H. "Conventional transmission electron microscopy." Molecular Biology of the Cell, 25(3), 319-323. (2014).
[76] Leitgeb, M. Photoelectrochemical porosification of silicon carbide for MEMS (Doctoral dissertation, Wien). (2018).
[77] Harrington, G. F., & Santiso, J. "Back-to-Basics tutorial: X-ray diffraction of thin films." Journal of Electroceramics, 47(4), 141-163. (2021).
[78] Barré, L. "Contribution of small-angle x-ray and neutron scattering (saxs and sans) to the characterization of natural nanomaterials." X-ray and Neutron Techniques for Nanomaterials Characterization, 665-716. (2016).
[79] Ojemaye, M. O., Okoh, O. O., & Okoh, A. I. "Adsorption of Cu2+ from aqueous solution by a novel material; azomethine functionalized magnetic nanoparticles." Separation and Purification Technology, 183, 204-215. (2017).
[80] Ojemaye, M. O., & Okoh, A. I. "Multiple nitrogen functionalized magnetic nanoparticles as an efficient adsorbent: synthesis, kinetics, isotherm and thermodynamic studies for the removal of rhodamine B from aqueous solution." Scientific Reports, 9(1), 9672. (2019).
[81] Osifeko, O. L., Uddin, I., Mashazi, P. N., & Nyokong, T. "Physicochemical and antimicrobial photodynamic chemotherapy of unsymmetrical indium phthalocyanines alone or in the presence of magnetic nanoparticles." New Journal of Chemistry, 40(3), 2710-2721. (2016). |