博碩士論文 110324063 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:10 、訪客IP:18.116.85.96
姓名 賴奕銘(Yi-Ming Lai)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 聚苯乙烯高分子-奈米粒子複合材料的黏度降低機制之研究
(Study on the Mechanism of Viscosity Reduction in Polystyrene Polymer-Nanoparticle Composites)
相關論文
★ 雙連續相中孔二氧化鈦光催化以及電子結構之實驗與模擬研究★ 聚合物-奈米粒子複合材料在玻璃轉移溫度下的結構與動力學相關性之實驗與模擬研究
★ 新興糖基雙子型界面活性劑之結構以及其對基因轉染效率之影響★ 自發曲率、金屬離子吸附以及微脂體膜融合效率三者間之相關性探討
★ 脂質組成成分對細胞膜物理性質與生物功能的影響★ 添加具有抗菌潛力的胜肽對磷脂質自組裝結構與彈性性質的影響
★ 分子構型與表面電荷密度對雙子型陰陽離子界面活性劑系統之相行為影響★ 探討具有不同間隔長度的陰、陽離子雙子型界面活性劑對於DNA壓實與解壓實之影響
★ 具抗菌潛力之胜肽如何影響脂質膜的彈性性質與結構完整性★ CoCrFeMnNi 高熵合金 形變行為之探討
★ 透過改變磷脂質排列密度減少Amyloid β與膜之間交互作用★ 對生物膜具活性的胜肽誘導相分離脂質膜產生結構上擾動
★ 人類脂肪幹細胞於生醫材料塗佈細胞外間質之純化及分化★ 發展量測雙層脂質膜的排列密度之實驗技術
★ 利用酸鹼度敏感型雙子型界面活性劑製作之基因載體對核內體脂質膜結構之影響★ 開發預測雙子型界面活性劑之自組裝結構的方法
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2028-8-31以後開放)
摘要(中) 將微米和奈米尺度的顆粒添加到高分子基質中通常會增加複合材料的黏度。不過,研究發現添加奈米顆粒於基質有可能反而造成複合物的黏度下降。對於造成黏度降低的機制目前尚未完全理解,為了解決這個問題,我們的研究旨在探究複合物黏度的降低可能來自於空間排列的變化。同時,我們還探索了複合物的宏觀性質變化,如熱性質和流變性質等,這些都是為了釐清黏度降低的機制。我們合成了不同尺寸的聚苯乙烯奈米顆粒,並將其分散在分子量低於或高於纏結臨界值的聚苯乙烯基質中。我們發現黏度下降的行為僅發生於纏結基質系統,並觀察到黏度降低約90 %。透過小角度和廣角度X射線散射實驗,我們認為奈米粒子的添加可能會影響分子鏈的結構排列。對於纏結分子鏈,粒子可能減弱糾纏的密度而增強鏈的流動性。透過結合微觀的分子排列行為與宏觀的黏度特性表現,我們希望建立這些性質之間的相關性,從而解釋黏度降低的機制。
摘要(英) The addition of micro- and nanoscopic particles to a polymer matrix typically increases the viscosity of the composite material. However, the studies have found that adding nanoparticles to the matrix may result in the viscosity reduction of the composite. The mechanism responsible for the viscosity reduction is not fully understood. To address this issue, our study aims to investigate how changes in spatial arrangement may contribute to the viscosity reduction. Also, we explore the macroscopic properties change of the composite, such as thermal and rheological properties, all in an effort to understand the mechanism behind the viscosity reduction. We synthesized the polystyrene nanoparticles with different sizes and dispersed them in the polystyrene matrix with the molecular weight below or above the entanglement threshold. We found that the viscosity reduction behavior only occurred in the entangled matrix system, and observed a viscosity decrease of approximately 90 %. Through the small-angle and wide-angle X-ray scattering experiments, we thought that the addition of nanoparticles may affect the structural arrangement of molecular chains. For the entangled molecular chains, the particles may weaken the density of entanglement and enhance the mobility of the chains. By combining the microscopic molecular arrangement behavior with the macroscopic viscosity characteristics, we hope to establish the correlation between these properties and thereby explain the mechanism of the viscosity reduction.
關鍵字(中) ★ 聚苯乙烯
★ 複合材料
★ 黏度降低
★ 高分子奈米複合材料
關鍵字(英) ★ polystyrene
★ composite
★ viscosity reduction
★ polymer nanocomposite
論文目次 目錄
摘要 i
Abstract ii
誌謝 iii
目錄 iv
圖目錄 vii
表目錄 xiv
一、緒論 1
1.1簡介 1
1.2研究目的及動機 2
二、文獻回顧 3
2.1複合材料 3
2.2奈米複合材料 4
2.3複合材料之流動特性 6
2.4異常黏度行為及可能機制 8
2.4.1自由體積理論 8
2.4.2基質纏結與解纏結效應 10
2.4.3奈米粒子空間限制性 14
2.4.4弛豫行為的約束釋放 16
2.4.5黏度下降機制整理與討論 18
2.5實驗製備 20
三、實驗製備與儀器測量 28
3.1實驗藥品 28
3.2樣品製備 30
3.2.1共聚高分子鏈合成 30
3.2.2奈米粒子交聯合成 33
3.2.3複合材料合成 35
3.2.4樣品資訊 38
3.2.4.1共聚高分子鏈 38
3.2.4.2奈米粒子 39
3.2.4.3高分子基質 40
3.2.4.4複合材料 40
3.3實驗儀器 41
3.4儀器原理介紹 43
3.4.1核磁共振光譜儀 43
3.4.2膠體滲透層析儀 46
3.4.3動態光散射儀 48
3.4.4掃描穿透式電子顯微鏡 51
3.4.5小角度及廣角度X光散射儀 54
3.4.6差示掃描量熱儀 59
3.4.7流變儀 62
四、結果與討論 68
4.1奈米粒子合成 68
4.1.1 NMR分析 68
4.1.2 GPC分析 73
4.2奈米粒子的性質分析 76
4.2.1 DLS分析 76
4.2.2 STEM分析 79
4.2.3 SAXS分析 82
4.3複合材料的型態分析 84
4.3.1 SAXS分析 84
4.3.2 WAXS分析 91
4.4複合材料的熱性質分析 101
4.5複合材料的流變分析 106
五、結論 117
參考文獻 118
附錄一、應變掃描測試 129
附錄二、平移因子方程式擬合 133
附錄三、複合物散射圖譜 137
附錄四、廣角度散射擬合 141
附錄五、樣品DSC熱流圖 145
附錄六、流變模量圖與黏度圖 150
參考文獻 [1] Balazs, A. C., Emrick, T., & Russell, T. P, “Nanoparticle polymer composites: where two small worlds meet ”, Science, 314(5802), 1107-1110, 2006.
[2] Jouni, M., Djurado, D., Massardier, V., & Boiteux, G, “A representative and comprehensive review of the electrical and thermal properties of polymer composites with carbon nanotube and other nanoparticle fillers ”, Polymer International, 66(9), 1237-1251, 2017.
[3] Einstein, A, “On the theory of Brownian movement ”, Ann. Phys, 19, 371–381, 1996.
[4] Batchelor, G. K, “The effect of Brownian motion on the bulk stress in a suspension of spherical particles ”, Journal of Fluid Mechanics, 83(1), 97-117, 1977.
[5] Senses, E., Kitchens, C. L., & Faraone, A, “Viscosity reduction in polymer nanocomposites: Insights from dynamic neutron and X‐ray scattering ”, Journal of Polymer Science, 60(7), 1130-1150, 2022.
[6] Tuteja, A., Mackay, M. E., Hawker, C. J., & Van Horn, B, “Effect of ideal, organic nanoparticles on the flow properties of linear polymers: non-Einstein-like behavior ”, Macromolecules, 38(19), 8000-8011, 2005.
[7] 李育德等編著,聚合物物性,七版,高立出版,2021年。
[8] Sharma, A. K., Bhandari, R., Aherwar, A., & Rimašauskienė, R, “Matrix materials used in composites: A comprehensive study ”, Materials Today: Proceedings, 21, 1559-1562, 2020.
[9] Agnihotri, P., Basu, S., & Kar, K. K, “Effect of carbon nanotube length and density on the properties of carbon nanotube-coated carbon fiber/polyester composites ”, Carbon, 49(9), 3098-3106, 2011.
[10] Bledzki, A. K., & Gassan, J, “Composites reinforced with cellulose based fibres ”, Progress in polymer science, 24(2), 221-274, 1999.
[11] Ishida, H., Campbell, S., & Blackwell, J, “General approach to nanocomposite preparation ”, Chemistry of Materials, 12(5), 1260-1267, 2000.
[12] Liu, Y., Hou, C., Jiao, T., Song, J., Zhang, X., Xing, R., & Peng, Q, “Self-assembled AgNP-containing nanocomposites constructed by electrospinning as efficient dye photocatalyst materials for wastewater treatment ”, Nanomaterials, 8(1), 35, 2018.
[13] Ovid′Ko, I. A., Valiev, R. Z., & Zhu, Y. T, “Review on superior strength and enhanced ductility of metallic nanomaterials ”, Progress in materials science, 94, 462-540, 2018.
[14] Leszczyńska, A., Njuguna, J., Pielichowski, K., & Banerjee, J. R, “Polymer/montmorillonite nanocomposites with improved thermal properties: Part I. Factors influencing thermal stability and mechanisms of thermal stability improvement ”, Thermochimica acta, 453(2), 75-96, 2007.
[15] Rafiee, M. A., Rafiee, J., Wang, Z., Song, H., Yu, Z. Z., & Koratkar, N, “Enhanced mechanical properties of nanocomposites at low graphene content ”, ACS nano, 3(12), 3884-3890, 2009.
[16] Jordan, J., Jacob, K. I., Tannenbaum, R., Sharaf, M. A., & Jasiuk, I, “Experimental trends in polymer nanocomposites—a review ”, Materials science and engineering: A, 393(1-2), 1-11, 2005.
[17] Gojny, F. H., Wichmann, M. H., Fiedler, B., Kinloch, I. A., Bauhofer, W., Windle, A. H., & Schulte, K, “Evaluation and identification of electrical and thermal conduction mechanisms in carbon nanotube/epoxy composites ”, Polymer, 47(6), 2036-2045, 2006.
[18] Sathishkumar, T. P., Satheeshkumar, S., & Naveen, J, “Glass fiber-reinforced polymer composites–a review ”, Journal of reinforced plastics and composites, 33(13), 1258-1275, 2014.
[19] Eslami, R., Ghaffarian, S. R., Salehi, M., & Rafizadeh, M, “Evaluation of non-Einstein rheology behavior of soft nanoparticles/epoxy nano-composites and their multifunctional effects on curing kinetics ”, Polymer Testing, 66, 350-359, 2018.
[20] Lim, S. K., Kim, J. W., Chin, I. J., & Choi, H. J, “Rheological properties of a new rubbery nanocomposite: polyepichlorohydrin/organoclay nanocomposites ”, Journal of applied polymer science, 86(14), 3735-3739, 2002.
[21] Mackay, M. E., Dao, T. T., Tuteja, A., Ho, D. L., Van Horn, B., Kim, H. C., & Hawker, C. J, “Nanoscale effects leading to non-Einstein-like decrease in viscosity ”, Nature materials, 2(11), 762-766, 2003.
[22] Kuo, C. J., & Lan, W. L, “Gel spinning of synthetic polymer fibres ”, Advances in filament yarn spinning of textiles and polymers, 100-112, 2014.
[23] Kong, D. C., Yang, M. H., Zhang, X. S., Du, Z. C., Fu, Q., Gao, X. Q., & Gong, J. W, “Control of polymer properties by entanglement: a review ”, Macromolecular Materials and Engineering, 306(12), 2100536, 2021.
[24] Graessley, W. W, “The entanglement concept in polymer rheology ”, The entanglement concept in polymer rheology, 1-179, 2005.
[25] Chen, T., Zhao, H. Y., Shi, R., Lin, W. F., Jia, X. M., Qian, H. J., & Sun, Z. Y, “An unexpected N-dependence in the viscosity reduction in all-polymer nanocomposite ”, Nature Communications, 10(1), 5552, 2019.
[26] Mangal, R., Srivastava, S., & Archer, L. A, “Phase stability and dynamics of entangled polymer–nanoparticle composites ”, Nature communications, 6(1), 7198, 2015.
[27] Tuteja, A., Duxbury, P. M., & Mackay, M. E, “Multifunctional nanocomposites with reduced viscosity ”, Macromolecules, 40(26), 9427-9434, 2007.
[28] Yamamoto, U., & Schweizer, K. S, “Microscopic theory of the long-time diffusivity and intermediate-time anomalous transport of a nanoparticle in polymer melts ”, Macromolecules, 48(1), 152-163, 2015.
[29] Tuteja, A., Mackay, M. E., Narayanan, S., Asokan, S., & Wong, M. S, “Breakdown of the continuum Stokes− Einstein relation for nanoparticle diffusion ”, Nano letters, 7(5), 1276-1281, 2007.
[30] Kong, D. C., Yang, M. H., Zhang, X. S., Du, Z. C., Fu, Q., Gao, X. Q., & Gong, J. W, “Control of polymer properties by entanglement: a review ”, Macromolecular Materials and Engineering, 306(12), 2100536, 2021.
[31] Rostom, S., White, B. T., Yuan, G., Saito, T., & Dadmun, M. D, “Polymer Chain Diffusion in All-Polymer Nanocomposites: Confinement vs Chain Acceleration ”, The Journal of Physical Chemistry C, 124(34), 18834-18839, 2020.
[32] Zamponi, M., Wischnewski, A., Monkenbusch, M., Willner, L., Richter, D., Likhtman, A. E., & Farago, B, “Molecular observation of constraint release in polymer melts ”, Physical review letters, 96(23), 238302, 2006.
[33] Kalathi, J. T., Yamamoto, U., Schweizer, K. S., Grest, G. S., & Kumar, S. K, “Nanoparticle diffusion in polymer nanocomposites ”, Physical review letters, 112(10), 108301, 2014.
[34] Kalathi, J. T., Grest, G. S., & Kumar, S. K, “Universal viscosity behavior of polymer nanocomposites ”, Physical review letters, 109(19), 198301, 2012.
[35] Knauert, S. T., Douglas, J. F., & Starr, F. W, “The effect of nanoparticle shape on polymer‐nanocomposite rheology and tensile strength ”, Journal of Polymer Science Part B: Polymer Physics, 45(14), 1882-1897, 2007.
[36] Harth, E., Horn, B. V., Lee, V. Y., Germack, D. S., Gonzales, C. P., Miller, R. D., & Hawker, C. J, “A facile approach to architecturally defined nanoparticles via intramolecular chain collapse ”, Journal of the American Chemical Society, 124(29), 8653-8660, 2002.
[37] Tuteja, A., Mackay, M. E., Hawker, C. J., Van Horn, B., & Ho, D. L, “Molecular architecture and rheological characterization of novel intramolecularly crosslinked polystyrene nanoparticles ”, Journal of Polymer Science Part B: Polymer Physics, 44(14), 1930-1947, 2006.
[38] Brünger, A. T., Adams, P. D., Clore, G. M., DeLano, W. L., Gros, P., Grosse-Kunstleve, R. W., & Warren, G. L, “Crystallography & NMR system: A new software suite for macromolecular structure determination ”, Acta Crystallographica Section D: Biological Crystallography, 54(5), 905-921, 1998.
[39] Koradi, R., Billeter, M., & Wüthrich, K, “MOLMOL: a program for display and analysis of macromolecular structures ”, Journal of molecular graphics, 14(1), 51-55, 1996.
[40] Massiot, D., Fayon, F., Capron, M., King, I., Le Calvé, S., Alonso, B., & Hoatson, G, “Modelling one‐and two‐dimensional solid‐state NMR spectra ”, Magnetic resonance in chemistry, 40(1), 70-76, 2002.
[41] Schmidt-Rohr, K., Clauss, J., & Spiess, H. W, “Correlation of structure, mobility, and morphological information in heterogeneous polymer materials by two-dimensional wideline-separation NMR spectroscopy ”, Macromolecules, 25(12), 3273-3277, 1992.
[42] Schmidt-Rohr, K., Kulik, A. S., Beckham, H. W., Ohlemacher, A., Pawelzik, U., Boeffel, C., & Spiess, H. W, “Molecular Nature of the  Relaxation in Poly (methyl methacrylate) Investigated by Multidimensional NMR ”, Macromolecules, 27(17), 4733-4745, 1994.
[43] Lutz, J. F., & Matyjaszewski, K, “Nuclear magnetic resonance monitoring of chain‐end functionality in the atom transfer radical polymerization of styrene ”, Journal of Polymer Science Part A: Polymer Chemistry, 43(4), 897-910, 2005.
[44] 陳藹然:化學位移,科學Online,2011年11月11日,取自https://highscope.ch.ntu.edu.tw/wordpress/?p=40787
[45] Malmsten, M., & Lindman, B, “Self-assembly in aqueous block copolymer solutions ”, Macromolecules, 25(20), 5440-5445, 1992.
[46] Zen, A., Saphiannikova, M., Neher, D., Grenzer, J., Grigorian, S., Pietsch, U., & Wegner, G, “Effect of molecular weight on the structure and crystallinity of poly (3-hexylthiophene) ”, Macromolecules, 39(6), 2162-2171, 2006.
[47] Yu, Y. H., Lin, C. Y., Yeh, J. M., & Lin, W. H, “Preparation and properties of poly (vinyl alcohol)–clay nanocomposite materials ”, Polymer, 44(12), 3553-3560, 2003.
[48] Ahmad, I. H, “Studying chemical and sequence length heterogeneities in copolymers ”, The Florida State University, 2011.
[49] Uhlenbeck, G. E., & Ornstein, L. S, “On the theory of the Brownian motion ”, Physical review, 36(5), 823, 1930.
[50] Dünweg, B., & Kremer, K, “Molecular dynamics simulation of a polymer chain in solution ”, The Journal of chemical physics, 99(9), 6983-6997, 1993.
[51] Kaszuba, M., McKnight, D., Connah, M. T., McNeil-Watson, F. K., & Nobbmann, U, “Measuring sub nanometre sizes using dynamic light scattering ”, Journal of nanoparticle research, 10, 823-829, 2008.
[52] Hassan, P. A., Rana, S., & Verma, G, “Making sense of Brownian motion: colloid characterization by dynamic light scattering ”, Langmuir, 31(1), 3-12, 2015.
[53] Loos, J., Sourty, E., Lu, K., de With, G., & v. Bavel, S, “Imaging Polymer Systems with High-Angle Annular Dark Field Scanning Transmission Electron Microscopy (HAADF− STEM) ”, Macromolecules, 42(7), 2581-2586, 2009.
[54] Song, Y. S., & Youn, J. R, “Influence of dispersion states of carbon nanotubes on physical properties of epoxy nanocomposites ”, Carbon, 43(7), 1378-1385, 2005.
[55] Zhang, L., Wang, D., Huang, H., Liu, L., Zhou, Y., Xia, X., & Liu, X, “Preparation of gold–carbon dots and ratiometric fluorescence cellular imaging ”, ACS applied materials & interfaces, 8(10), 6646-6655, 2016.
[56] Müller, K., Krause, F. F., Béché, A., Schowalter, M., Galioit, V., Löffler, S., & Rosenauer, A, “Atomic electric fields revealed by a quantum mechanical approach to electron picodiffraction ”, Nature communications, 5(1), 5653, 2014.
[57] Müller-Caspary, K., Krause, F. F., Grieb, T., Löffler, S., Schowalter, M., Béché, A., & Rosenauer, A, “Measurement of atomic electric fields and charge densities from average momentum transfers using scanning transmission electron microscopy ”, Ultramicroscopy, 178, 62-80, 2017.
[58] Dwyer, C, “Simulation of scanning transmission electron microscope images on desktop computers ”, Ultramicroscopy, 110(3), 195-198, 2010.
[59] Menon, N. K., & Yuan, J, “Quantitative analysis of the effect of probe convergence on electron energy loss spectra of anisotropic materials ”, Ultramicroscopy, 74(1-2), 83-94, 1998.
[60] 陳信龍,鄭有舜:小角度 X 光散射在高分子奈米結構解析之應用,科儀新知,(160),7-17,2007。
[61] Genix, A. C., & Oberdisse, J, “Structure and dynamics of polymer nanocomposites studied by X-ray and neutron scattering techniques ”, Current Opinion in Colloid & Interface Science, 20(4), 293-303, 2015.
[62] 王進威:中子粉末繞射簡介及其應用,物理雙月刊,2021年4月20日,取自https://pb.ps-taiwan.org/modules/news/article.php?storyid=75
[63] Wolf, C. M., Guio, L., Scheiwiller, S. C., O’Hara, R. P., Luscombe, C. K., & Pozzo, L. D, “Blend Morphology in Polythiophene–Polystyrene Composites from Neutron and X-ray Scattering ”, Macromolecules, 54(6), 2960-2978, 2021.
[64] Mondello, M., Yang, H. J., Furuya, H., & Roe, R. J, “Molecular dynamics simulation of atactic polystyrene. 1. Comparison with X-ray scattering data ”, Macromolecules, 27(13), 3566-3574, 1994.
[65] Lee, B., Park, I., Yoon, J., Park, S., Kim, J., Kim, K. W., & Ree, M, “ Structural analysis of block copolymer thin films with grazing incidence small-angle X-ray scattering ”, Macromolecules, 38(10), 4311-4323, 2005.
[66] Wojdyr, M, “Fityk: a general‐purpose peak fitting program ”. Journal of Applied Crystallography, 43(5‐1), 1126-1128, 2010.
[67] Ayyagari, C., Bedrov, D., & Smith, G. D, “Structure of atactic polystyrene: a molecular dynamics simulation study ”, Macromolecules, 33(16), 6194-6199, 2000.
[68] Zong, X., Kim, K., Fang, D., Ran, S., Hsiao, B. S., & Chu, B, “Structure and process relationship of electrospun bioabsorbable nanofiber membranes ”, polymer, 43(16), 4403-4412, 2002.
[69] Kong, Y., & Hay, J. N, “The measurement of the crystallinity of polymers by DSC ”, Polymer, 43(14), 3873-3878, 2002.
[70] Baird, J. A., & Taylor, L. S, “Evaluation of amorphous solid dispersion properties using thermal analysis techniques ”, Advanced drug delivery reviews, 64(5), 396-421, 2012.
[71] Kalogeras, I. M, “Glass‐Transition Phenomena in Polymer Blends ”, Encyclopedia of Polymer Blends: Volume 3: Structure, 1-134, 2016.
[72] Hodge, I. M, “Enthalpy relaxation and recovery in amorphous materials ”, Journal of Non-Crystalline Solids, 169(3), 211-266, 1994.
[73] Vyazovkin, S., & Sbirrazzuoli, N, “Isoconversional kinetic analysis of thermally stimulated processes in polymers ”, Macromolecular Rapid Communications, 27(18), 1515-1532, 2006.
[74] Fetters, L. J., Lohse, D. J., Richter, D., Witten, T. A., & Zirkel, A, “Connection between polymer molecular weight, density, chain dimensions, and melt viscoelastic properties ”, Macromolecules, 27(17), 4639-4647, 1994.
[75] Du, F., Scogna, R. C., Zhou, W., Brand, S., Fischer, J. E., & Winey, K. I, “Nanotube networks in polymer nanocomposites: rheology and electrical conductivity ”, Macromolecules, 37(24), 9048-9055, 2004.
[76] Goldansaz, H., Goharpey, F., Afshar-Taromi, F., Kim, I., Stadler, F. J., Van Ruymbeke, E., & Karimkhani, V, “Anomalous rheological behavior of dendritic nanoparticle/ linear polymer nanocomposites ”, Macromolecules, 48(10), 3368-3375, 2015.
[77] Van Ruymbeke, E., Liu, C. Y., & Bailly, C, “Quantitative tube model predictions for the linear viscoelasticity of linear polymers ”, Rheol. Rev, 39, 53-134, 2007.
[78] Duffy, J. (2015). Measuring the rheology of polymer solutions. 取自https://www.semanticscholar.org/paper/Measuring-the-rheology-of-polymer-solutions-Duffy/e63702d2fae3e4387d4bfa2c5181ad58e40cbd15
[79] Everaers, R., Sukumaran, S. K., Grest, G. S., Svaneborg, C., Sivasubramanian, A., & Kremer, K, “Rheology and microscopic topology of entangled polymeric liquids ”, Science, 303(5659), 823-826, 2004.
[80] Wu, D., Zhang, Y., Zhang, M., & Zhou, W, “Phase behavior and its viscoelastic response of polylactide/poly (ε-caprolactone) blend ”, European Polymer Journal, 44(7), 2171-2183, 2008.
[81] Lazaridou, A., Biliaderis, C. G., & Kontogiorgos, V, “Molecular weight effects on solution rheology of pullulan and mechanical properties of its films ”, Carbohydrate Polymers, 52(2), 151-166, 2003.
[82] Boudara, V. A., Read, D. J., & Ramírez, J, “Reptate rheology software: Toolkit for the analysis of theories and experiments ”, Journal of Rheology, 64(3), 709-722, 2020.
[83] Yu-Ho Wen:溫度對物質函數的影響,2022年4月12日,取自http://ricwen.blogspot.com/2019/07/effects-of-temperature-on-material.html
[84] Bacová, P., Lo Verso, F., Arbe, A., Colmenero, J., Pomposo, J. A., & Moreno, A. J, “The role of the topological constraints in the chain dynamics in all-polymer nanocomposites ”, Macromolecules, 50(4), 1719-1731, 2017.
指導教授 陳儀帆(Yi-Fan Chen) 審核日期 2023-8-11
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明