博碩士論文 110324068 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:41 、訪客IP:18.219.116.93
姓名 陳佳吟(Jia-Yin Chen)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 分子自組裝結構對雙離子高分子醫療塗層穩定性與抗汙功能的影響
(Effect of Molecular Self-assembly on Stability and Antifouling Properties of Polyzwitterion Medical Coatings)
相關論文
★ 聚(4-乙烯基吡啶)和聚(2-乙烯基吡啶)薄膜的表面不穩定性★ 利用小角度X光散射和廣角度X光繞射探討聚環氧乙烷於醇類中的結晶現象
★ 溶劑品質對聚(苯乙烯-b-環氧乙烷)在四氫呋喃/醇類共溶劑中的鏈聚集、自組裝、微胞化的影響★ 可控矽烷化:以耐水解甲基丙烯酸酯氮矽三環 於矽基材上作為功能性高分子之構成單元
★ 含磷酸膽鹼雙離子之功能性嵌段共聚物塗層於熱塑型聚氨酯導管★ 光交聯及生物啟發磷膽鹽雙離子共聚物連續沉積醫療塗層於熱塑型聚氨酯材料
★ 基於動態鍵的多功能丙烯酸交聯劑★ 連續微流道反應器中進行防污聚合物篩選
★ 用於聚氨酯植入物表面功能化具有潤滑和抗污性能之光交聯醫用塗層★ 高度纏結的雙離子水凝膠
★ Lubricant and Anti-fouling Coatings for Silicone Catheter★ 可聚合界面活性劑:膠囊化有機色料於水相溶液中展現膠體穩定性及於纖維素上的防水性能
★ 聚胜肽電解質材料合成及其性質研究分析★ 建立耐氧光聚合連續流反應器
★ 建立多功能芳香族雙硫鍵交聯丙烯酸彈性聚合物★ 熱誘導混合聚丙烯薄膜含雙離子共聚物的製備研究及其抗污性能的探討
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2028-7-31以後開放)
摘要(中) 316 不銹鋼是一種廣泛應用的醫療級不銹鋼,適用於手術設備、食品行業、沿海設施、廚具等領域。由於在 316 不銹鋼中添加了鉬,其耐腐蝕性和高溫強度得到了很大的提高。以往的研究已經通過表面修飾來擴大基材的應用範圍,比如將矽片上應用矽烷、金表面上應用磷酸等。具有不同頭基和不同烷基鏈長的分子已被廣泛應用於許多不同的金屬表面。在本研究中,我們合成了三種具有不同烷基鏈的羧酸丙烯醯胺分子,分別是丙烯醯胺基乙酸 (2-AE)、6-丙烯醯胺基己酸 (6-AH) 和 11-丙烯醯胺基十一酸 (11-AU)。在單體的修飾過程中,存在兩個區域:(1) 極性丙烯醯胺 (2) 疏水烷基鏈。這兩個區域之間的相互作用將決定整體結構和有序性。通過氫鍵作用,內部二級醯胺被用來控制分子定向和提高單層穩定性。此外,丙烯酸酯結構可以通過聚合技術構建具有可調性性質的各種分子結構。2-甲基丙烯酰氧乙基磷酸膽鹼 (MPC) 具有抗菌和抗污染的作用。然而,它缺乏機械穩定性。為了提高穩定性,一種好的方法是將我們合成的三種單體進行聚合。核磁共振光譜 (1H NMR) 可用於表徵三種不同單體的化學結構。此外,我們可以通過循環伏安法 (CV) 和傅立葉轉換紅外光譜 (FT-IR) 了解不同烷基鏈的羧酸丙烯醯胺分子在 316 不銹鋼上的結合親和力。在與 MPC 進行聚合並修飾在 316 不銹鋼上之後,我們可以通過使用 FT-IR、1H NMR、X 射線光電子能譜 (XPS) 和小角度 X 射線散射(SAXS) 來檢測功能基團和分子狀態。最後,我們將修飾後的 316 不銹鋼基材進行細菌和蛋白質貼附測試,確定以哪種高分子修飾會得到最佳效果。
摘要(英) The 316 stainless steel is a widely used medical-grade stainless steel. It suits surgical equipment, the food industry, coastal facilities, kitchenware, etc. Due to the addition of molybdenum to 316 stainless steel, its corrosion resistance and high-temperature strength have been greatly improved. Previous studies have been conducted to expand the application range of substrates by surface modification, such as silane applied to silicon wafers, phosphonic acid applied to gold surfaces, etc. Molecules with different head groups and different alkyl chain lengths have been widely used in many different metal surfaces. In this study, we have synthesized three carboxyl acrylamide with different alkyl chains, acryloylglycine (2-AE), 6-acrylamidohexanoic acid (6-AH), and 11-acrylamidoundecanoic acid (11-AU). For the deposition of monomers, there are two regions:(1) the polar amide and (2) the hydrophobic alkyl chain. The interactions of these two regions will dictate the overall assembly structure and order. Internal secondary amides have been incorporated with the goals of controlling the molecular orientation and improving monolayer stability by hydrogen bonding interactions. Besides, an acrylate structure can build various molecular architectures with tunable properties via the polymerization technique. 2- Methacryloyloxyethyl phosphorylcholine (MPC) has the effect of antibacterial and antifouling. However, it lacks mechanical stability. To improve the stability, a good method is to do the polymerization with the three monomers we synthesized. Nuclear magnetic resonance spectroscopy (1H NMR) characterizes the chemical structure of three different monomers. Furthermore, we can know the binding affinity of carboxylic acid on the 316 stainless steel through cyclic voltammetry (CV) and FT-IR (SR80). After polymerization with MPC and coating on the 316 stainless steel, the functional groups and chemical states can be examined using various techniques such as FT-IR, 1H NMR, X-ray photoelectron spectroscopy (XPS), and Small Angle X-ray Scattering (SAXS). Subsequently, the modified 316 stainless steel substrates can be subjected to bacteria and protein adsorption tests to evaluate the effectiveness of different random copolymers and determine the one with the most favorable outcome.
關鍵字(中) ★ 316 不鏽鋼
★ 自組裝單層膜
★ 羧酸官能基
★ 非特異性吸附
★ 雙離子材料
關鍵字(英) ★ 316 stainless steel
★ self-assembled monolayer
★ carboxylic acid functional group
★ nonspecific adsorption
★ zwitterionic materials
論文目次 目錄
中文摘要 i
Abstract ii
致謝 iv
目錄 v
圖目錄 viii
表目錄 x
一、文獻回顧 1
1-1不鏽鋼316之結構與生醫應用 1
1-2自組裝單層膜 2
1-2-1羧酸官能基與金屬氧化表面之鍵結 3
1-2-2烷基鏈與末端官能基對於自組裝單層膜之影響 5
1-3抗非特異性吸附之材料 8
1-3-1非特異性吸附現象 8
1-3-2抗沾黏材料特性 9
1-3-3雙離子材料 9
1-3-4 PC類雙離子材料 10
二、研究目的 12
三、藥品清單與實驗設備 13
3-1 實驗藥品清單 13
3-2 實驗設備清單 14
3-3 材料合成 15
3-3-1丙烯醯胺基乙酸 (Acryloylglycine, 2-AE) 15
3-3-2丙烯醯胺基己酸 (6-acrylamidohexanoic acid, 6-AH) 15
3-3-3丙烯醯胺基十一酸 (11-(acryloylamino)undecanoic acid, 11-AU) 16
3-3-4合成p(MPC-ran-2-AE) 高分子 16
3-3-5合成p(MPC-ran-6-AH) 高分子 17
3-3-6合成p(MPC-ran-11-AU) 高分子 18
3-4 實驗方法 19
3-4-1自組裝單層膜製備 19
3-4-2水接觸角之量測 (Water contact angle) 19
3-4-3薄膜厚度之量測 (Ellipsometry) 20
3-4-4表面元素之量測 (XPS) 20
3-4-5循環伏安法 (CV curve) 20
3-4-6小角度X光散射 (SAXS) 21
3-4-7臨界微胞濃度測量 (Critical micelle concentration, CMC) 21
3-4-8傅立葉轉換紅外光譜 (FTIR) 22
3-4-9水下摩擦力測試 (Friction test) 22
3-4-10細菌貼附測試 (Bacteria attachment) 23
3-4-11蛋白質貼附測試 (Protein adsorption) 23
3-4-12統計分析 24
四、結果與討論 25
4-1 單體化學結構鑑定與分析 25
4-1-1 丙烯醯胺基羧酸單體 (2-AE、6-AH、11-AU) 之液態核磁共振光譜分析 (1H NMR) 25
4-2比較使用2-AE、6-AH、11-AU進行表面修飾之差異 28
4-2-1丙烯醯胺基羧酸單體 (2-AE、6-AH、11-AU) 表面元素分析 28
4-2-2 丙烯醯胺基羧酸單體 (2-AE、6-AH、11-AU) 水接觸角之量測 29
4-2-3 丙烯醯胺基羧酸單體 (2-AE、6-AH、11-AU) 表面修飾之FTIR圖譜 29
4-2-4 丙烯醯胺基羧酸單體 (2-AE、6-AH、11-AU) 之循環伏安圖 (CV curve) 33
4-3 高分子化學結構鑑定與分析 34
4-3-1 p(MPC-ran-2-AE)、p(MPC-ran-6-AH)、p(MPC-ran-11-AU) 高分子之1H NMR圖譜 34
4-3-2 p(MPC-ran-2-AE)、p(MPC-ran-6-AH)、p(MPC-ran-11-AU) 高分子之數據比較 37
4-3-3 p(MPC-ran-2-AE)、p(MPC-ran-6-AH)、p(MPC-ran-11-AU) 高分子之小角度X光散射數據比較 39
4-3-4 p(MPC5-ran-6-AH5) 與p(MPC5-ran-11-AU5) 臨界微胞濃度 42
4-3-5 p(MPC-ran-2-AE)、p(MPC-ran-6-AH)、p(MPC-ran-11-AU) 高分子之水接觸角之量測 43
4-3-6 p(MPC-ran-2-AE)、p(MPC-ran-6-AH)、p(MPC-ran-11-AU) 高分子之薄膜厚度之量測 44
4-3-7 p(MPC-ran-2-AE)、p(MPC-ran-6-AH)、p(MPC-ran-11-AU) 高分子之表面元素分析 44
4-3-8 p(MPC-ran-2-AE)、p(MPC-ran-6-AH)、p(MPC-ran-11-AU) 高分子之水下摩擦力測試 48
4-3-9 p(MPC-ran-2-AE)、p(MPC-ran-6-AH)、p(MPC-ran-11-AU) 高分子之細菌貼附測試 50
4-3-10 p(MPC-ran-2-AE)、p(MPC-ran-6-AH)、p(MPC-ran-11-AU) 高分子之蛋白質貼附測試 52
五、結論 53
六、未來展望 54
七、參考文獻 55
參考文獻 [1] T. R. Hryniewicz, R.; Rokosz, K. , “Corrosion Characteristics of Medical-Grade AISI Type 316L Stainless Steel Surface After Electropolishing in a Magnetic Field,” CORROSION SCIENCE SECTION, vol. 64, no. 8, pp. 660-665, 2008.
[2] S. T. M. Ha¨ıdopoulos, C. Sarra-Bournet, G. Laroche, D. Mantovani, “Development of an optimized electrochemical process for subsequent coating of 316 stainless steel for stent applications,” J Mater Sci: Mater Med, vol. 17, no. 7, pp. 647-657, Jul, 2006.
[3] A. T. W. Z. M. A. P. Tschiptschin., “Correlations between microstructure and surface properties in a high nitrogen martensitic stainless steel,” Acta Materialia, vol. 51, no. 12, pp. 3363-3374, 2003.
[4] H. V. Ö. Kadir Gunoglu, İskender Akkurt, “Evaluation of gamma ray attenuation properties of boron carbide (B4C) doped AISI 316 stainless steel: Experimental, XCOM and Phy-X/PSD database software,” Materials Today Communications, vol. 29, 2021.
[5] G. S. KALIARAJ, VISHWAKARMA, V., RAMADOSS, A. et al., “Corrosion, haemocompatibility and bacterial adhesion behaviour of TiZrN-coated 316L SS for bioimplants.,” Bulletin of Materials Science, vol. 38, pp. 951–955, 2015.
[6] K. R. Yang, Yibin. , “Nickel-free austenitic stainless steels for medical applications.,” Science and Technology of Advanced Materials, vol. 11, no. 1, 2010.
[7] G. S. V. Kaliaraj, Vinita; Kirubaharan, A.M. Kamalan., “Biocompatible Zirconia‐Coated 316 stainless steel with anticorrosive behavior for biomedical application,” Ceramics International, vol. 44, no. 8, pp. 9780–9786, 2018.
[8] C. Vericat, Vela, M. E., Benitez, G., Carro, P., & Salvarezza, R. C., “ Self-assembled monolayers of thiols and dithiols on Gold: New Challenges for a well-known system,” Chemical Society Reviews, vol. 39, no. 5, 2010.
[9] X. Liu, Wang, Z., Zhao, C., Bu, W., & Na, H., “Preparation and characterization of silane-modified SIO2 particles reinforced resin composites with fluorinated acrylate polymer,” Journal of the Mechanical Behavior of Biomedical Materials, vol. 80, pp. 11-19, 2018.
[10] W. Gao, Dickinson, L., Grozinger, C., Morin, F. G., & Reven, L., “Self-assembled monolayers of alkylphosphonic acids on metal oxides,” Langmuir, vol. 12, no. 26, pp. 6429–6435, 1996.
[11] F. Ali, Roldán‐Carmona, C., Sohail, M., & Nazeeruddin, M. K., “Applications of self‐assembled monolayers for perovskite solar cells interface engineering to address efficiency and stability,” Advanced Energy Materials, vol. 10, no. 48, pp. 2002989, 2020.
[12] B. Farkaš, Terranova, U., & de Leeuw, N. H., “Binding modes of carboxylic acids on cobalt nanoparticles,” Physical Chemistry Chemical Physics, vol. 22, no. 3, pp. 985–996, 2020.
[13] X. Jia, Ma, J., Xia, F., Xu, Y., Gao, J., & Xu, J., “Carboxylic acid-modified metal oxide catalyst for selectivity-tunable aerobic ammoxidation,” Nature Communications, vol. 9, no. 1, 2018.
[14] S.-M. Zhang, Chang, Z., Hu, T.-L., & Bu, X.-H., “New three-dimensional porous metal organic framework with tetrazole functionalized aromatic carboxylic acid: Synthesis, structure, and gas adsorption properties,” Inorganic Chemistry, vol. 49, no. 24, pp. 11581–11586, 2010.
[15] A. Murray, & Örmeci, B., “ Use of polymeric sub-micron ion-exchange resins for removal of lead, copper, zinc, and nickel from natural waters,” Journal of Environmental Sciences, vol. 75, pp. 247–254, 2019.
[16] J. Wysocka, Cieslik, M., Krakowiak, S., & Ryl, J., “Carboxylic acids as efficient corrosion inhibitors of aluminium alloys in Alkaline Media,” Electrochimica Acta, vol. 289, pp. 175–192, 2018.
[17] G. Žerjav, & Milošev, I., “Corrosion Protection of brasses and zinc in simulated urban rain,” Materials and Corrosion, vol. 66, no. 12, pp. 1402–1413, 2015.
[18] S. Thery, Jacquet, D., & Mantel, M., “A study of chemical interactions at the stainless steel/polymer interface by infrared spectroscopy. part 1: Interaction mechanisms between succinic anhydride and 304 stainless steel,” The Journal of Adhesion, vol. 56, no. 1-4, pp. 1-13, 1996.
[19] S. P. Pujari, Scheres, L., Marcelis, A. T., & Zuilhof, H., “Covalent surface modification of oxide surfaces,” Angewandte Chemie International Edition, vol. 53, no. 25, pp. 6322–6356, 2014.
[20] Q. Qu, Geng, H., Peng, R., Cui, Q., Gu, X., Li, F., & Wang, M., “Chemically binding carboxylic acids onto tio2 nanoparticles with adjustable coverage by Solvothermal strategy,” Langmuir, vol. 26, no. 12, pp. 9539–9546, 2010.
[21] N. S. Bhairamadgi, Pujari, S. P., Trovela, F. G., Debrassi, A., Khamis, A. A., Alonso, J. M., Al Zahrani, A. A., Wennekes, T., Al-Turaif, H. A., van Rijn, C., Alhamed, Y. A., & Zuilhof, H., “ Hydrolytic and thermal stability of organic monolayers on various inorganic substrates,” Langmuir, vol. 30, no. 20, pp. 5829–5839, 2014.
[22] E. Cooper, & Leggett, G. J., “Influence of tail-group hydrogen bonding on the stabilities of self-assembled monolayers of alkylthiols on gold,” Langmuir, vol. 15, no. 4, pp. 1024–1032, 1999.
[23] G. A. Buckholtz, & Gawalt, E. S., “Effect of alkyl chain length on carboxylic acid sams on ti-6al-4v,” Materials, vol. 5, no. 7, pp. 1206–1218, 2012.
[24] Y. T. Tao, “Structural comparison of self-assembled monolayers of N-alkanoic acids on the surfaces of silver, copper, and aluminum,” Journal of the American Chemical Society, vol. 115, no. 10, pp. 4350–4358, 1993.
[25] S. Jadhav, “Self-assembled monolayers (sams) of carboxylic acids: An overview,” Open Chemistry, vol. 9, no. 3, pp. 369–378, 2011.
[26] K. Tamada, Ishida, T., Knoll, W., Fukushima, H., Colorado, R., Graupe, M., Shmakova, O. E., & Lee, T. R., “Molecular packing of semifluorinated alkanethiol self-assembled monolayers on gold: influence of alkyl spacer length,” Langmuir, vol. 17, no. 6, pp. 1913–1921, 2001.
[27] W. Azzam, Bashir, A., Terfort, A., Strunskus, T., & Wöll, Ch., “Combined STM and FTIR characterization of Terphenylalkanethiol monolayers on au(111): effect of alkyl chain length and deposition temperature,” Langmuir, vol. 22, no. 8, pp. 3647–3655, 2006.
[28] R. S. Clegg, & Hutchison, J. E., “Hydrogen-bonding, self-assembled monolayers: ordered molecular films for study of through-peptide electron transfer,” Langmuir, vol. 12, no. 22, pp. 5239–5243, 1996.
[29] M. A. Ramin, Le Bourdon, G., Heuzé, K., Degueil, M., Buffeteau, T., Bennetau, B., & Vellutini, L., “Epoxy-terminated self-assembled monolayers containing internal urea or amide groups,” Langmuir, vol. 31, no. 9, pp. 2783–2789, 2015.
[30] R. Valiokas, Malysheva, L., Onipko, A., Lee, H.-H., Ruželė, Ž., Svedhem, S., Svensson, S. C. T., Gelius, U., & Liedberg, B., “On the quality and structural characteristics of oligo(ethylene glycol) assemblies on Gold: An Experimental and Theoretical Study,” Journal of Electron Spectroscopy and Related Phenomena, vol. 172, no. 1-3, pp. 9–20, 2009.
[31] S.-W. Tam-Chang, Biebuyck, H. A., Whitesides, G. M., Jeon, N., & Nuzzo, R. G., “Self-assembled monolayers on gold generated from alkanethiols with the structure RNHCOCH2SH,” Langmuir, vol. 11, no. 11, pp. 4371–4382, 1995.
[32] R. C. Sabapathy, Bhattacharyya, S., Leavy, M. C., Cleland, W. E., & Hussey, C. L., “Electrochemical and spectroscopic characterization of self-assembled monolayers of ferrocenylalkyl compounds with amide linkages,” Langmuir, vol. 14, no. 1, pp. 124–136, 1998.
[33] P. Lin, Lin, C.-W., Mansour, R., & Gu, F., “Improving biocompatibility by surface modification techniques on implantable bioelectronics,” Biosensors and Bioelectronics, vol. 47, pp. 451–460, 2013.
[34] M. J. Penna, Mijajlovic, M., & Biggs, M. J., “Molecular-level understanding of protein adsorption at the interface between water and a strongly interacting uncharged solid surface,” Journal of the American Chemical Society, vol. 136, no. 14, pp. 5323–5331, 2014.
[35] A. M. Maan, Hofman, A. H., Vos, W. M., & Kamperman, M., “Recent developments and practical feasibility of polymer‐based antifouling coatings,” Advanced Functional Materials, vol. 30, no. 32, pp. 2000936, 2020.
[36] J. Y. Lichtenberg, Ling, Y., & Kim, S., “Non-specific adsorption reduction methods in Biosensing,” Sensors, vol. 19, no. 11, pp. 2488, 2019.
[37] R. Ciriminna, Bright, F. V., & Pagliaro, M., “Ecofriendly antifouling marine coatings,” ACS Sustainable Chemistry & Engineering, vol. 3, no. 4, pp. 559–565, 2015.
[38] D. M. Yebra, Kiil, S., & Dam-Johansen, K., “Antifouling technology—past, present and future steps towards efficient and environmentally friendly antifouling coatings,” Progress in Organic Coatings, vol. 50, no. 2, pp. 75–104, 2004.
[39] A. B. Lowe, & McCormick, C. L., “Synthesis and solution properties of zwitterionic polymers,” Chemical Reviews, vol. 102, no. 11, pp. 4177–4190, 2002.
[40] S. Chen, & Jiang, S., “An New Avenue to nonfouling materials,” Advanced Materials, vol. 20, no. 2, pp. 335–338, 2008.
[41] J. B. Schlenoff, “Zwitteration: Coating surfaces with zwitterionic functionality to reduce nonspecific adsorption,” Langmuir, vol. 30, no. 32, pp. 9625–9636, 2014.
[42] W. Yang, Xue, H., Li, W., Zhang, J., & Jiang, S., “Pursuing “zero” protein adsorption of poly(carboxybetaine) from undiluted blood serum and plasma,” Langmuir, vol. 25, no. 19, pp. 11911–11916, 2009.
[43] J. Zhang, Zhu, Y., Song, J., Xu, T., Yang, J., Du, Y., & Zhang, L., “Rapid and long‐term glycemic regulation with a balanced charged immune‐evasive hydrogel in T1DM mice,” Advanced Functional Materials, vol. 29, no. 19, pp. 1900140, 2019.
[44] Q. Liu, Chiu, A., Wang, L., An, D., Li, W., Chen, E. Y., Zhang, Y., Pardo, Y., McDonough, S. P., Liu, L., Liu, W. F., Chen, J., & Ma, M., “Developing mechanically robust, triazole-zwitterionic hydrogels to mitigate foreign body response (FBR) for islet encapsulation,” Biomaterials, vol. 230, pp. 119640, 2020.
[45] R. S. Smith, Zhang, Z., Bouchard, M., Li, J., Lapp, H. S., Brotske, G. R., Lucchino, D. L., Weaver, D., Roth, L. A., Coury, A., Biggerstaff, J., Sukavaneshvar, S., Langer, R., & Loose, C., “Vascular catheters with a nonleaching poly-sulfobetaine surface modification reduce thrombus formation and microbial attachment,” Science Translational Medicine, vol. 4, no. 153, 2012.
[46] C. Diaz Blanco, Ortner, A., Dimitrov, R., Navarro, A., Mendoza, E., & Tzanov, T., “Building an antifouling zwitterionic coating on urinary catheters using an enzymatically triggered bottom-up approach,” ACS Applied Materials & Interfaces, vol. 6, no. 14, pp. 11385–11393, 2014.
[47] Q. Li, Wen, C., Yang, J., Zhou, X., Zhu, Y., Zheng, J., Cheng, G., Bai, J., Xu, T., Ji, J., Jiang, S., Zhang, L., & Zhang, P. , “Zwitterionic biomaterials,” Chemical Reviews, vol. 122, no. 23, pp. 17073–17154, 2022.
[48] Y. KADOMA, NAKABAYASHI, N., MASUHARA, E., & YAMAUCHI, J., “Synthesis and Hemolysis Test of the Polymer Containing Phosphorylcholine Groups,” KOBUNSHI RONBUNSHU, vol. 35, no. 7, pp. 423–427, 1978.
[49] K. Ishihara, Ueda, T., & Nakabayashi, N., “Preparation of phospholipid polylners and their properties as polymer hydrogel membranes,” Polymer Journal, vol. 22, no. 5, pp. 355–360, 1990.
[50] K. Ishihara, Fukumoto, K., Iwasaki, Y., & Nakabayashi, N., “Modification of polysulfone with phospholipid polymer for improvement of the blood compatibility. part 1. surface characterization,” Biomaterials, vol. 20, no. 17, pp. 1545–1551, 1999.
[51] K. Ishihara, “Successful development of biocompatible polymers designed by natures original inspiration,” Procedia Chemistry, vol. 4, pp. 34-38, 2012.
[52] J.-M. Ringeard, Griesmar, P., Caplain, E., Michiel, M., Serfaty, S., Huerou, J.-Y. L., Marinkova, D., & Yotova, L., “ Design of poly(n-acryloylglycine) materials for incorporation of microorganisms,” Journal of Applied Polymer Science, vol. 130, no. 2, pp. 835–841, 2013.
[53] N. Deepuppha, Khadsai, S., Rutnakornpituk, B., Wichai, U., & Rutnakornpituk, M., “Multiresponsive Poly(n-acryloyl glycine)-based nanocomposite and its drug release characteristics,” Journal of Nanomaterials, vol. 2019, pp. 1-12, 2019.
[54] R. Barbucci, Casolaro, M., Magnani, A., Roncolini, C., & Ferruti, P., “Vinyl polymers containing amido and carboxylic groups as side substituents: I. Synthesis of N-acryloyl-glycine and N-acryloyl-6-caproic acid and their grafting on cellulose membranes,” Polymer, vol. 30, no. 9, pp. 1751–1757, 1989.
[55] C. Gu, He, J., Jia, J., Fang, N., & Shamsi, S. A., “Surfactant-bound monolithic columns for CEC,” ELECTROPHORESIS, vol. 30, no. 22, pp. 3814–3827, 2009.
[56] K. W. Yeoh, Chew, C. H., Can, L. M., Koh, L. L., & Teo, H. H., “Synthesis and polymerization of surface-active sodium acrylamidoundecanoate,” Journal of Macromolecular Science: Part A - Chemistry, vol. 26, no. 4, pp. 663–680, 1989.
[57] E. Johansson, & Nyborg, L., “XPS study of carboxylic acid layers on oxidized metals with reference to particulate materials,” Surface and Interface Analysis, vol. 35, no. 4, pp. 375–381, 2003.
[58] M. Seo, Lee, J., & Lee, M., “Grating-coupled surface plasmon resonance on bulk stainless steel,” Optics Express, vol. 25, no. 22, pp. 26939, 2017.
[59] F. Sinapi, Naji, A., Delhalle, J., & Mekhalif, Z., “ Assessment by XPS and electrochemical techniques of two molecular organosilane films prepared on stainless-steel surfaces,” Surface and Interface Analysis, vol. 36, no. 11, pp. 1484–1490, 2004.
[60] X. Cao, & Hamers, R. J., “Interactions of alkylamines with the silicon (001) surface,” Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, vol. 20, no. 4, pp. 1614, 2002.
[61] N. C. Maile, Shinde, S. K., Patil, R. T., Fulari, A. V., Koli, R. R., Kim, D.-Y., Lee, D. S., & Fulari, V. J., “Structural and morphological changes in binder-free MNCO2O4 electrodes for supercapacitor applications: Effect of deposition parameters,” Journal of Materials Science: Materials in Electronics, vol. 30, no. 4, pp. 3729–3743, 2019.
[62] M. Chávez, Sánchez-Obrero, G., Madueño, R., Sevilla, J. M., Blázquez, M., & Pineda, T., “Electrochemical evaluation of the grafting density of self-assembled monolayers of polyethylene glycol of different chain lengths formed by the grafting to approach under conditions close to the cloud point,” Journal of Electroanalytical Chemistry, vol. 913, pp. 116294, 2022.
[63] A. Kociubczyk, Mendez, C., Gregorutti, R., & Ares, A., “Electrochemical tests in stainless steel surgical implants,” Procedia Materials Science, vol. 9, pp. 335–340, 2015.
[64] D. J. Beltran-Villegas, Wessels, M. G., Lee, J. Y., Song, Y., Wooley, K. L., Pochan, D. J., & Jayaraman, A., “Computational reverse-engineering analysis for scattering experiments on Amphiphilic Block Polymer Solutions,” Journal of the American Chemical Society, vol. 141, no. 37, pp. 14916–14930, 2019.
[65] C. D. Putnam, Hammel, M., Hura, G. L., & Tainer, J. A., “X-ray solution scattering (SAXS) combined with crystallography and computation: Defining accurate macromolecular structures, conformations and assemblies in solution,” Quarterly Reviews of Biophysics, vol. 40, no. 3, pp. 191–285, 2007.
[66] A. G. Kikhney, & Svergun, D. I., “A practical guide to small angle X-ray scattering (SAXS) of flexible and intrinsically disordered proteins,” FEBS Letters, vol. 589, no. 19PartA, pp. 2570–2577, 2015.
[67] R. Pires-Oliveira, Tang, J., Percebom, A. M., Petzhold, C. L., Tam, K. C., & Loh, W., “Effect of molecular architecture and composition on the aggregation pathways of Poegma random copolymers in water,” Langmuir, vol. 36, no. 49, pp. 15018–15029, 2020.
[68] K. Matsumoto, Kubota, M., Matsuoka, H., & Yamaoka, H., “Water-soluble fluorine-containing amphiphilic block copolymer: synthesis and aggregation behavior in aqueous solution,” Macromolecules, vol. 32, no. 21, pp. 7122–7127, 1999.
[69] R. Tanaka, Sato, E., Hunt, J. E., Winans, R. E., Sato, S., & Takanohashi, T., “Characterization of asphaltene aggregates using X-ray diffraction and small-angle X-ray scattering,” Energy & Fuels, vol. 18, no. 4, pp. 1118–1125, 2004.
[70] T. J. Neal, Beattie, D. L., Byard, S. J., Smith, G. N., Murray, M. W., Williams, N. S., Emmett, S. N., Armes, S. P., Spain, S. G., & Mykhaylyk, O. O., “Self-assembly of Amphiphilic Statistical Copolymers and their aqueous rheological properties,” Macromolecules, vol. 51, no. 4, pp. 1474–1487, 2018.
[71] S. H. Shin, “Thermodynamics and structure of poly(ethylene oxide) in mixtures of water and ethanol,” Ph.D., University of Maryland, College Park, United States -- Maryland, 2011.
指導教授 黃俊仁(Chun-Jen Huang) 審核日期 2023-7-26
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明