參考文獻 |
[1]. Yoshio Nishi, “The dawn of lithium-ion batteries”, The Electrochemical Society Interface, Vol 25, pp. 71, 2016.
[2]. Jun-ichi Yamaki, et al., “A consideration of the morphology of electrochemically deposited lithium in an organic electrolyte”, Journal of Power Sources, Vol 74, pp. 219-227, 1998.
[3]. JO Besenhard, M Hess, and P Komenda, “Dimensionally stable Li-alloy electrodes for secondary batteries”, Solid State Ionics, Vol 40, pp. 525-529, 1990.
[4]. Michael D Slater, et al., “Sodium‐ion batteries”, Advanced Functional Materials, Vol 23, pp. 947-958, 2013.
[5]. Alexander Bauer, et al., “The scale‐up and commercialization of nonaqueous Na‐ion battery technologies”, Advanced Energy Materials, Vol 8, pp. 1702869, 2018.
[6]. KJPC Mizushima, et al., “LixCoO2 (0< x<-1): A new cathode material for batteries of high energy density”, Materials Research Bulletin, Vol 15, pp. 783-789, 1980.
[7]. Bruce Dunn, Haresh Kamath, and Jean-Marie Tarascon, “Electrical energy storage for the grid: a battery of choices”, Science, Vol 334, pp. 928-935, 2011.
[8]. Shyue Ping Ong, et al., “Voltage, stability and diffusion barrier differences between sodium-ion and lithium-ion intercalation materials”, Energy & Environmental Science, Vol 4, pp. 3680-3688, 2011.
[9]. Damien Saurel, et al., “From charge storage mechanism to performance: a roadmap toward high specific energy sodium‐ion batteries through carbon anode optimization”, Advanced Energy Materials, Vol 8, pp. 1703268, 2018.
[10]. Clement Bommier, David Mitlin, and Xiulei Ji, “Internal structure–Na storage mechanisms–Electrochemical performance relations in carbons”, Progress in Materials Science, Vol 97, pp. 170-203, 2018.
[11]. Hui Xiong, et al., “Amorphous TiO2 nanotube anode for rechargeable sodium ion batteries”, The journal of physical chemistry letters, Vol 2, pp. 2560-2565, 2011.
[12]. Premkumar Senguttuvan, et al., “Na2Ti3O7: lowest voltage ever reported oxide insertion electrode for sodium ion batteries”, Chemistry of Materials, Vol 23, pp. 4109-4111, 2011.
[13]. Tahira Perveen, et al., “Prospects in anode materials for sodium ion batteries-A review”, Renewable and Sustainable Energy Reviews, Vol 119, pp. 109549, 2020.
[14]. DA Stevens and JR Dahn, “The mechanisms of lithium and sodium insertion in carbon materials”, Journal of The Electrochemical Society, Vol 148, pp. A803, 2001.
[15]. Naoaki Yabuuchi, et al., “Research development on sodium-ion batteries”, Chemical reviews, Vol 114, pp. 11636-11682, 2014.
[16]. Qiannan Liu, et al., “The cathode choice for commercialization of sodium‐ion batteries: layered transition metal oxides versus Prussian blue analogs”, Advanced Functional Materials, Vol 30, pp. 1909530, 2020.
[17]. Jian Peng, et al., “Prussian Blue analogues for sodium‐ion batteries: past, present, and future”, Advanced Materials, Vol 34, pp. 2108384, 2022.
[18]. Wei Luo, et al., “Ultrathin surface coating enables the stable sodium metal anode”, Advanced Energy Materials, Vol 7, pp. 1601526, 2017.
[19]. Markus Jäckle and Axel Groß, “Microscopic properties of lithium, sodium, and magnesium battery anode materials related to possible dendrite growth”, The Journal of chemical physics, Vol 141, pp. 2014.
[20]. Hongshuai Hou, et al., “Carbon anode materials for advanced sodium‐ion batteries”, Advanced energy materials, Vol 7, pp. 1602898, 2017.
[21]. Nana Wang, et al., “Comprehensive new insights and perspectives into Ti‐based anodes for next‐generation alkaline metal (Na+, K+) ion batteries”, Advanced Energy Materials, Vol 8, pp. 1801888, 2018.
[22]. Mengmeng Lao, et al., “Alloy‐based anode materials toward advanced sodium‐ion batteries”, Advanced Materials, Vol 29, pp. 1700622, 2017.
[23]. Tim Luttrell, et al., “Why is anatase a better photocatalyst than rutile?-Model studies on epitaxial TiO2 films”, Scientific reports, Vol 4, pp. 4043, 2014.
[24]. Reza Katal, et al., “A review on the synthesis of the various types of anatase TiO2 facets and their applications for photocatalysis”, Chemical Engineering Journal, Vol 384, pp. 123384, 2020.
[25]. Lioz Etgar, et al., “High efficiency quantum dot heterojunction solar cell using anatase (001) TiO2 nanosheets”, Advanced Materials, Vol 24, pp. 2202-2206, 2012.
[26]. Dawei Su, Shixue Dou, and Guoxiu Wang, “Anatase TiO2: better anode material than amorphous and rutile phases of TiO2 for Na-ion batteries”, Chemistry of Materials, Vol 27, pp. 6022-6029, 2015.
[27]. Zhenguo Yang, et al., “Nanostructures and lithium electrochemical reactivity of lithium titanites and titanium oxides: A review”, Journal of Power Sources, Vol 192, pp. 588-598, 2009.
[28]. Yang Xu, et al., “Nanocrystalline anatase TiO2: a new anode material for rechargeable sodium ion batteries”, Chemical Communications, Vol 49, pp. 8973-8975, 2013.
[29]. Roel van de Krol, Albert Goossens, and Eric A Meulenkamp, “In situ X‐ray diffraction of lithium intercalation in nanostructured and thin film anatase TiO2”, Journal of the Electrochemical Society, Vol 146, pp. 3150, 1999.
[30]. Wei Li, et al., “A reversible phase transition for sodium insertion in anatase TiO2”, Chemistry of Materials, Vol 29, pp. 1836-1844, 2017.
[31]. Wen-Jin Yin, et al., “Excess electrons in reduced rutile and anatase TiO2”, Surface Science Reports, Vol 73, pp. 58-82, 2018.
[32]. Zhensheng Hong, et al., “Facile synthesis of rutile TiO2 mesocrystals with enhanced sodium storage properties”, Journal of Materials Chemistry A, Vol 3, pp. 17412-17416, 2015.
[33]. Yan Zhang, et al., “An electrochemical investigation of rutile TiO2 microspheres anchored by nanoneedle clusters for sodium storage”, Physical Chemistry Chemical Physics, Vol 17, pp. 15764-15770, 2015.
[34]. Yan Zhang, et al., “Graphene‐rich wrapped petal‐like rutile TiO2 tuned by carbon dots for high‐performance sodium storage”, Advanced Materials, Vol 28, pp. 9391-9399, 2016.
[35]. Corinne Arrouvel, Stephen C Parker, and M Saiful Islam, “Lithium insertion and transport in the TiO2− B anode material: a computational study”, Chemistry of Materials, Vol 21, pp. 4778-4783, 2009.
[36]. JA Dawson and J Robertson, “Improved calculation of Li and Na intercalation properties in anatase, rutile, and TiO2(B)”, The Journal of Physical Chemistry C, Vol 120, pp. 22910-22917, 2016.
[37]. Biao Chen, et al., “1D sub‐nanotubes with anatase/bronze TiO2 nanocrystal wall for high‐rate and long‐life sodium‐ion batteries”, Advanced Materials, Vol 30, pp. 1804116, 2018.
[38]. Liming Wu, et al., “Anatase TiO2 nanoparticles for high power sodium-ion anodes”, Journal of Power Sources, Vol 251, pp. 379-385, 2014.
[39]. Jun Chen, et al., “Black anatase titania with ultrafast sodium-storage performances stimulated by oxygen vacancies”, ACS applied materials & interfaces, Vol 8, pp. 9142-9151, 2016.
[40]. Jagabandhu Patra, et al., “Hydrogenated anatase and rutile TiO2 for sodium-ion battery anodes”, ACS Applied Energy Materials, Vol 4, pp. 5738-5746, 2021.
[41]. Zaiyuan Le, et al., “Pseudocapacitive sodium storage in mesoporous single-crystal-like TiO2–graphene nanocomposite enables high-performance sodium-ion capacitors”, ACS nano, Vol 11, pp. 2952-2960, 2017.
[42]. Ying Wu, et al., “Nitrogen‐Doped Ordered Mesoporous Anatase TiO2 Nanofibers as Anode Materials for High Performance Sodium‐Ion Batteries”, Small, Vol 12, pp. 3522-3529, 2016.
[43]. Qingmeng Gan, et al., “Defect-assisted selective surface phosphorus doping to enhance rate capability of titanium dioxide for sodium ion batteries”, ACS nano, Vol 13, pp. 9247-9258, 2019.
[44]. Weifeng Zhang, et al., “Sulfur-doped anatase TiO2 as an anode for high-performance sodium-ion batteries”, ACS Applied Energy Materials, Vol 2, pp. 3791-3797, 2019.
[45]. Hanna He, et al., “Iron-doped cauliflower-like rutile TiO2 with superior sodium storage properties”, ACS Applied Materials & Interfaces, Vol 9, pp. 6093-6103, 2017.
[46]. Fei Zhao, et al., “Niobium doped anatase TiO2 as an effective anode material for sodium-ion batteries”, Journal of Materials Chemistry A, Vol 3, pp. 22969-22974, 2015.
[47]. Hiroyuki Usui, et al., “Nb-doped rutile TiO2: a potential anode material for Na-ion battery”, ACS applied materials & interfaces, Vol 7, pp. 6567-6573, 2015.
[48]. Hiroyuki Usui, et al., “Tantalum-doped titanium oxide with rutile structure as a novel anode material for sodium-ion battery”, ACS Applied Energy Materials, Vol 2, pp. 3056-3060, 2019.
[49]. Vignesh Kumaravel, et al., “Unravelling the impact of Ta doping on the electronic and structural properties of titania: A combined theoretical and experimental approach”, The Journal of Physical Chemistry C, Vol 126, pp. 2285-2297, 2022.
[50]. Marina V Koudriachova, Nicholas M Harrison, and Simon W de Leeuw, “Density-functional simulations of lithium intercalation in rutile”, Physical Review B, Vol 65, pp. 235423, 2002.
[51]. Benjamin J Morgan and Graeme W Watson, “GGA+ U description of lithium intercalation into anatase TiO2”, Physical Review B, Vol 82, pp. 144119, 2010.
[52]. Sten Lunell, et al., “Li and Na diffusion in TiO2 from quantum chemical theory versus electrochemical experiment”, Journal of the American Chemical Society, Vol 119, pp. 7374-7380, 1997.
[53]. Fleur Legrain, Oleksandr Malyi, and Sergei Manzhos, “Insertion energetics of lithium, sodium, and magnesium in crystalline and amorphous titanium dioxide: a comparative first-principles study”, Journal of Power Sources, Vol 278, pp. 197-202, 2015.
[54]. Benjamin J Morgan, David O Scanlon, and Graeme W Watson, “Small polarons in Nb-and Ta-doped rutile and anatase TiO2”, Journal of Materials Chemistry, Vol 19, pp. 5175-5178, 2009.
[55]. Pierre Hohenberg and Walter Kohn, “Inhomogeneous electron gas”, Physical review, Vol 136, pp. B864, 1964.
[56]. W Kohn and LJ Sham, “Quantum density oscillations in an inhomogeneous electron gas”, Physical Review, Vol 137, pp. A1697, 1965.
[57]. John P Perdew, et al., “Erratum: Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation”, Physical Review B, Vol 48, pp. 4978, 1993.
[58]. John P Perdew, Kieron Burke, and Matthias Ernzerhof, “Generalized gradient approximation made simple”, Physical review letters, Vol 77, pp. 3865, 1996.
[59]. Axel D Becke, “Density-functional exchange-energy approximation with correct asymptotic behavior”, Physical review A, Vol 38, pp. 3098, 1988.
[60]. Vladimir I Anisimov, Jan Zaanen, and Ole K Andersen, “Band theory and Mott insulators: Hubbard U instead of Stoner I”, Physical Review B, Vol 44, pp. 943, 1991.
[61]. Mike C Payne, et al., “Iterative minimization techniques for ab initio total-energy calculations: molecular dynamics and conjugate gradients”, Reviews of modern physics, Vol 64, pp. 1045, 1992.
[62]. Graeme Henkelman, Blas P Uberuaga, and Hannes Jónsson, “A climbing image nudged elastic band method for finding saddle points and minimum energy paths”, The Journal of chemical physics, Vol 113, pp. 9901-9904, 2000.
[63]. Stewart J Clark, et al., “First principles methods using CASTEP”, Zeitschrift für kristallographie-crystalline materials, Vol 220, pp. 567-570, 2005.
[64]. David Vanderbilt, “Soft self-consistent pseudopotentials in a generalized eigenvalue formalism”, Physical review B, Vol 41, pp. 7892, 1990.
[65]. Kesong Yang, et al., “First-principles GGA+ U study of the different conducting properties in pentavalent-ion-doped anatase and rutile TiO2”, Journal of Physics D: Applied Physics, Vol 47, pp. 275101, 2014.
[66]. Dwi Panduwinata and Julian D Gale, “A first principles investigation of lithium intercalation in TiO2-B”, Journal of Materials Chemistry, Vol 19, pp. 3931-3940, 2009.
[67]. Thomas P Feist and Peter K Davies, “The soft chemical synthesis of TiO2(B) from layered titanates”, Journal of solid state chemistry, Vol 101, pp. 275-295, 1992.
[68]. Jeremy K Burdett, et al., “Structural-electronic relationships in inorganic solids: powder neutron diffraction studies of the rutile and anatase polymorphs of titanium dioxide at 15 and 295 K”, Journal of the American Chemical Society, Vol 109, pp. 3639-3646, 1987.
[69]. Marina V Koudriachova, Nicholas M Harrison, and Simon W de Leeuw, “Diffusion of Li-ions in rutile. An ab initio study”, Solid State Ionics, Vol 157, pp. 35-38, 2003.
[70]. Arvids Stashans, et al., “Theoretical study of lithium intercalation in rutile and anatase”, Physical Review B, Vol 53, pp. 159, 1996.
[71]. Marina V Koudriachova, Nicholas M Harrison, and Simon W de Leeuw, “Effect of diffusion on lithium intercalation in titanium dioxide”, Physical review letters, Vol 86, pp. 1275, 2001.
[72]. Benjamin J Morgan and Paul A Madden, “Lithium intercalation into TiO2(B)
: a comparison of LDA, GGA, and GGA+ U density functional calculations”, Physical Review B, Vol 86, pp. 035147, 2012.
[73]. Anthony G Dylla, Graeme Henkelman, and Keith J Stevenson, “Lithium insertion in nanostructured TiO2(B)
architectures”, Accounts of chemical research, Vol 46, pp. 1104-1112, 2013.
[74]. Ling-Ming KONG, et al., “First-principles study on TiO2-B with oxygen vacancies as a negative material of rechargeable lithium-ion batteries”, Acta Physico-Chimica Sinica, Vol 32, pp. 656-664, 2016.
[75]. Michele Sacerdoti, et al., “XAS investigation of tantalum and niobium in nanostructured TiO2 anatase”, Journal of Solid State Chemistry, Vol 177, pp. 1781-1788, 2004.
[76]. Hiroyuki Usui, et al., “Indium-doped rutile titanium oxide with reduced particle length and its sodium storage properties”, ACS omega, Vol 5, pp. 15495-15501, 2020.
[77]. Hanna He, et al., “Plasma‐induced amorphous shell and deep cation‐site S doping endow TiO2 with extraordinary sodium storage performance”, Advanced Materials, Vol 30, pp. 1801013, 2018.
[78]. N Aaron Deskins and Michel Dupuis, “Electron transport via polaron hopping in bulk Ti O 2: A density functional theory characterization”, Physical Review B, Vol 75, pp. 195212, 2007.
[79]. AR Elmaslmane, MB Watkins, and KP McKenna, “First-principles modeling of polaron formation in TiO2 polymorphs”, Journal of chemical theory and computation, Vol 14, pp. 3740-3751, 2018.
[80]. Szu-Nung Kao, et al., “Investigating lithium intercalation and diffusion in Nb-doped TiO2 by first principles calculations”, Journal of the Taiwan Institute of Chemical Engineers, Vol 125, pp. 314-322, 2021.
[81]. XJ Xiao, et al., “First principles study of the electronic and optical properties of high‐valence transition metal‐doped anatase titanium dioxide”, Materialwissenschaft und Werkstofftechnik, Vol 53, pp. 1551-1560, 2022.
[82]. Krzysztof Wohlfeld. Spin, Orbital, and Spin‐Orbital Polarons in Transition Metal Oxides. in AIP Conference Proceedings. 2009. American Institute of Physics.
[83]. Clarence Zener, “Interaction between the d-shells in the transition metals. II. Ferromagnetic compounds of manganese with perovskite structure”, Physical Review, Vol 82, pp. 403, 1951.
[84]. WP Su, “Spin polarons in the two-dimensional Hubbard model: A numerical study”, Physical Review B, Vol 37, pp. 9904, 1988.
[85]. EL Nagaev, “Spin polaron theory for magnetic semiconductors with narrow bands”, physica status solidi (b), Vol 65, pp. 11-60, 1974.
[86]. A Mauger, “Magnetic polaron: Theory and experiment”, Physical Review B, Vol 27, pp. 2308, 1983.
[87]. Amir Farzaneh, et al., “Optical and photocatalytic characteristics of Al and Cu doped TiO2: Experimental assessments and DFT calculations”, Journal of Physics and Chemistry of Solids, Vol 161, pp. 110404, 2022.
[88]. L Kavan, et al., “Electrochemical and photoelectrochemical investigation of single-crystal anatase”, Journal of the American Chemical Society, Vol 118, pp. 6716-6723, 1996.
[89]. G Betz, H Tributsch, and R Marchand, “Hydrogen insertion (intercalation) and light induced proton exchange at TiO2(B)-electrodes”, Journal of applied electrochemistry, Vol 14, pp. 315-322, 1984.
[90]. Andrivo Rusydi, et al., “Cationic-vacancy-induced room-temperature ferromagnetism in transparent, conducting anatase Ti1− x Ta x O2 (x∼ 0.05) thin films”, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, Vol 370, pp. 4927-4943, 2012.
[91]. Emanuele Finazzi, et al., “Excess electron states in reduced bulk anatase TiO2: comparison of standard GGA, GGA+ U, and hybrid DFT calculations”, The Journal of chemical physics, Vol 129, pp. 154113, 2008.
[92]. Taro Hitosugi, et al., “Ta-doped anatase TiO2 epitaxial film as transparent conducting oxide”, Japanese journal of applied physics, Vol 44, pp. L1063, 2005.
[93]. Meagen A Gillispie, et al., “Sputtered Nb-and Ta-doped TiO2 transparent conducting oxide films on glass”, Journal of Materials Research, Vol 22, pp. 2832-2837, 2007.
[94]. A Roy Barman, et al., “Multifunctional Ti 1− x Ta x O 2: Ta doping or alloying?”, Applied Physics Letters, Vol 98, pp. 072111, 2011. |