博碩士論文 110324077 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:4 、訪客IP:3.138.123.143
姓名 賴弘宇(HONG-YU LAI)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 紫外線固化含改質金屬有機框架材料混合基質薄膜應用於產品包裝
(UV Curing Mixed Matrix Membrane Containing Modified Metal-Organic Frameworks for Product Packaging)
相關論文
★ 利用固相反應法與電鍍法製備鈣鈦礦太陽能電池之研究★ 設計以雙噻吩併環戊二烯為核心的電洞傳輸材料並製備高效率穩定鈣鈦礦太陽能電池
★ 反溶劑處理對於製備大面積鈣鈦礦太陽能電池影響★ 二氧化鈦奈米粒徑尺寸對介觀結構鈣鈦礦太陽能電池光伏特性之影響
★ 塗佈溫度與混合溶劑比例對於刮刀塗佈製備鈣鈦礦層影響及鈣鈦礦太陽能電池性能表現探討★ 熱處理效應對於混合陽離子鈣鈦礦太陽能電池之光電性質及電池穩定性影響
★ 蔗糖水熱碳化法及後續活化製備活性碳以及活性碳對空氣過濾的應用★ 雙金屬有機骨架結構混合基質膜合成及芳香烴吸附第一原理計算
★ 製膜溶劑對於混合基質膜中金屬有機框架結構沉澱影響與其氣體滲透特性之探討★ 金屬有機骨架材料與活性碳共填充之混和基材膜性質探討
★ 蒸氣相成長金屬有機框架材料合成★ 外表面積和靜電相互作用機理對MOFs染料吸附的重要性
★ 第一原理計算對於氮摻石墨烯在氧氣還原反應與拉曼增強的探討★ 金屬有機框架結構晶體形貌與缺陷對於混合基材薄膜特性與氣體滲透之探討
★ 鋯金屬有機框架結構之二氧化碳吸附性質探討★ 金屬有機框架結構晶體形貌與缺陷對於混合基材薄膜特性與氣體滲透之探討
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2028-6-30以後開放)
摘要(中) 包裝在許多領域扮演著重要的角色,例如食品、藥品、電子產品等。 此 外,氧氣阻隔性能有時是包裝材料最關鍵的討論因素。隨著技術的進步和行業 的進步,我們需要開發智能包裝以應用於不同的領域。
混合基質薄膜 (MMMs) 常用於分離混合氣體。 此外,混合基質薄膜通常是 通過澆鑄方法合成的,即將前體溶液倒在板上,然後通過蒸發去除溶劑。 這項 研究的重點是另一種通過紫外線固化製造膜的方法,與熱固化聚合物塗層相 比,它具有明顯的優勢。 除了固化時間快之外,紫外線固化還涉及較低的資本 投資和運營成本,並且是一種無溶劑工藝。
為了開發一種易於加工的合適的多功能包裝材料,我們在氧化石墨烯上原 位生長了正八面體 的 UiO-66-NH2, 以此作為填料。並使用快速的 UV 固化聚 合物聚乙二醇二丙烯酸酯和無溶劑工藝來製造混合基質薄膜。 並利用 X 射線衍 射儀 (XRD)、傅里葉轉換紅外光譜 (FTIR)、超高解析冷場發射掃描式電子顯微 鏡 (SEM)、動態光散射 (DLS)、熱重分析 (TGA)、Brunauer-Emmett-Teller (BET)、拉曼光譜、機械性能、單一氣體滲透實驗用於表徵填料和膜。
摘要(英) Packaging plays an important role in our daily life in many fields, such as food, medicine, and electronic products. Besides, oxygen barrier performance is sometimes the most critical discussion factor for packaging materials. With advances in technology and industry progress, we need to develop intelligent packaging to apply to different fields.
Mixed matrix membranes (MMMs) are popular for separating mixed gases. Moreover, MMMs are synthesized using a casting method, wherein the precursor solution is poured onto a plate, and then the solvent is removed through evaporation. This research focuses on another way to fabricate membranes via UV curing, which provides distinct advantages compared to thermally cured polymer coatings. In addition to the fast curing time, UV curing also involves lower capital investment and operating costs and is a solvent-free process.
To develop a suitable and multifunctional packaging material that is easily processable, we synthesized in-situ growth of octahedral amine-functionalized UiO- 66 on the surface of graphene oxide nanosheets as a filler and used UV curable polymer PEGDA and a solvent-free process to fabricate MMMs. X-Ray diffraction (XRD), Fourier-transform infrared (FTIR), scanning electron microscopy (SEM), dynamic light scattering (DLS), thermogravimetric analysis (TGA), Brunauer- Emmett-Teller (BET), Raman spectroscopy, mechanical properties and single gas permeability were used to characterize fillers and membranes.
關鍵字(中) ★ 紫外線固化工藝
★ 聚乙二醇二丙烯酸酯
★ 修飾金屬有機框架
★ 氧氣阻隔
關鍵字(英) ★ UV curable process
★ PEGDA
★ modified metal organic frameworks
★ oxygen barrier
論文目次 摘要 .......................................................................................................................................... i Abstract ...................................................................................................................................ii Acknowledgement..................................................................................................................iii Table of Contents ...................................................................................................................iv List of Figures ......................................................................................................................viii List of Tables..........................................................................................................................xi
Chapter 1 Introduction ............................................................................................................1
1-1. Background .................................................................................................................1
1-2. Review of Relevant Literature ....................................................................................2 1-2-1. Overview of membrane fabrication methods......................................................2 1-2-2. UV curing process and basic concept .................................................................5 1-2-3. Application of polyethylene glycol diacrylate (PEGDA) ................................... 7 1-2-4. Mixed matrix membranes (MMMs) and its challenge......................................10 1-2-5. Amine-functionalized UiO-66 and Graphene Oxide......................................... 11 1-2-6. Product packaging.............................................................................................13
1-3. Motivation.................................................................................................................14
Chapter 2 Experimental.........................................................................................................16 2-1. Materials and Reagents .............................................................................................16 2-2. Instruments................................................................................................................172-2-1. Amine-functionalized UiO-66 in-situ GO material preparation ....................... 17 2-2-2. Single gas permeation measurement system.....................................................17 2-2-3. Self-assemble UV-curing system for membrane synthesis ............................... 17
2-3. Analysis Instruments and Characterization ............................................................... 18 2-3-1. Fourier-transform infrared spectroscopy (FTIR) ..............................................18 2-3-2. X-ray diffraction (XRD)....................................................................................20 2-3-3. Scanning electron microscopy (SEM)...............................................................20 2-3-4. Energy-dispersive X-ray spectroscopy (EDS) ..................................................22 2-3-5. Dynamic light scattering (DLS) ........................................................................ 23 2-3-6. Thermogravimetric analysis (TGA) .................................................................. 23 2-3-7. Micropore Size and Surface Area Analysis.......................................................24 2-3-8. Mechanical properties ....................................................................................... 25 2-3-9. Raman spectroscopy..........................................................................................26 2-3-10. Single gas separation system...........................................................................27 2-3-11. Coating properties ...........................................................................................29
2-4. Synthesis of Fillers....................................................................................................30 2-4-1. Synthesis of GO ................................................................................................30 2-4-2. Synthesis of UiO-66-NH2 and UiO-66-NH2 in-situ GO ................................... 31
2-5. Preparation of Membranes ........................................................................................ 32 2-5-1. Pristine PEGDA membranes ............................................................................. 32 2-5-2. Mixed matrix membranes..................................................................................32
Chapter 3 Results and Discussion ......................................................................................... 33 3-1. Characterization of GO .............................................................................................33
3-1-1. X-ray diffraction................................................................................................34 3-1-2. FTIR spectrum...................................................................................................35 3-1-3. Raman spectrum................................................................................................36 3-1-4. Morphology.......................................................................................................37 3-1-5. N2 sorption and Surface area.............................................................................39 3-1-6. Thermogravimetric analysis..............................................................................40
3-2. Characterization of UN & UN@GO Powder............................................................41 3-2-1. X-ray diffraction................................................................................................41 3-2-2. FTIR spectrum...................................................................................................42 3-2-3. Raman spectrum................................................................................................43 3-2-4. N2 sorption and surface area.............................................................................44 3-2-5. Pore size distribution.........................................................................................46 3-2-6. Thermogravimetric analysis..............................................................................47 3-2-7. Morphology and Particle size............................................................................48
3-3. Characterization of pristine membranes and MMMs................................................50 3-3-1. X-ray diffraction................................................................................................50 3-3-2. FTIR spectrum...................................................................................................51 3-3-3. Thermogravimetric analysis..............................................................................52 3-3-4. Filler/Polymer interface.....................................................................................55 3-3-5. Filler distributions ............................................................................................. 59 3-3-6. Mechanical Properties.......................................................................................60
3-4. Single Gas Permeation Measurement .......................................................................61 3-5. Coating properties ..................................................................................................... 67
Chapter 4 Conclusions ..........................................................................................................70 Chapter 5 Future Work .......................................................................................................... 71 References ............................................................................................................................. 73
參考文獻 1. Risch, S.J., Food Packaging History and Innovations. Journal of agricultural and food chemistry, 2009. 57(18): p. 8089-8092.
2. Yu, J., K. Ruengkajorn, D.-G. Crivoi, et al., High Gas Barrier Coating Using Non-Toxic Nanosheet Dispersions for Flexible Food Packaging Film. Nature communications, 2019. 10(1): p. 2398.
3. Anukiruthika, T., P. Sethupathy, A. Wilson, et al., Multilayer Packaging: Advances in Preparation Techniques and Emerging Food Applications. Comprehensive Reviews in Food Science and Food Safety, 2020. 19(3): p. 1156-1186.
4. Rejeesh, C. and T. Anto, Packaging of Milk and Dairy Products: Approaches to Sustainable Packaging. Materials Today: Proceedings, 2023. 72: p. 2946-2951.
5. Katekhong, W., P. Wongphan, P. Klinmalai, et al., Thermoplastic Starch Blown Films Functionalized by Plasticized Nitrite Blended with Pbat for Superior Oxygen Barrier and Active Biodegradable Meat Packaging. Food Chemistry, 2022. 374: p. 131709.
6. Ploypetchara, N., P. Suppakul, D. Atong, et al., Blend of Polypropylene/Poly (Lactic Acid) for Medical Packaging Application: Physicochemical, Thermal, Mechanical, and Barrier Properties. Energy Procedia, 2014. 56: p. 201-210.
7. Jaime, S.B., R.M. Alves, and P.F. Bócoli, Moisture and Oxygen Barrier Properties of Glass, Pet and Hdpe Bottles for Pharmaceutical Products. Journal of Drug Delivery Science and Technology, 2022. 71: p. 103330.
8. Castro, D., P. Ingram, R. Kodzius, et al. Characterization of Solid Uv Cross-Linked Pegda for Biological Applications. in 2013 IEEE 26th International Conference on Micro Electro Mechanical Systems (MEMS). 2013. IEEE.
9. Yue, C., Y. Zhang, W. Lu, et al., Realizing the Curing of Polymer Composite Materials by Using Electrical Resistance Heating: A Review. Composites Part A: Applied Science and Manufacturing, 2022: p. 107181.
10. Rezakazemi, M., M. Sadrzadeh, and T. Matsuura, Thermally Stable Polymers for Advanced High-Performance Gas Separation
Membranes. Progress in Energy and Combustion Science, 2018.
66: p. 1-41.
11. Thiher, N.L., S.M. Schissel, and J.L. Jessop, Quantifying Uv/Eb
Dual Cure for Successful Mitigation of Oxygen Inhibition and Light Attenuation. Progress in Organic Coatings, 2020. 138: p. 105378.
12. Schwalm, R., Uv Coatings: Basics, Recent Developments and New Applications. 2006.
13. Abliz, D., Y. Duan, L. Steuernagel, et al., Curing Methods for Advanced Polymer Composites-a Review. Polymers and Polymer Composites, 2013. 21(6): p. 341-348.
14. Liu, F., A. Liu, W. Tao, et al., Preparation of Uv Curable Organic/Inorganic Hybrid Coatings-a Review. Progress in Organic Coatings, 2020. 145: p. 105685.
15. Peng, S., Z. Wang, J. Lin, et al., Tailored and Highly Stretchable Sensor Prepared by Crosslinking an Enhanced 3d Printed Uv‐ Curable Sacrificial Mold. Advanced Functional Materials, 2021. 31(10): p. 2008729.
16. Mendes-Felipe, C., J. Barbosa, S. Gonçalves, et al., High Dielectric Constant Uv Curable Polyurethane Acrylate/Indium Tin Oxide Composites for Capacitive Sensing. Composites Science and Technology, 2020. 199: p. 108363.
17. Mendes‐Felipe, C., J. Oliveira, I. Etxebarria, et al., State‐of‐the‐Art and Future Challenges of Uv Curable Polymer‐Based Smart Materials for Printing Technologies. Advanced Materials Technologies, 2019. 4(3): p. 1800618.
18. Todorova, D., K. Dimitrov, and M. Herzog, Solvent Free Uv Curable Coating for Paper Protection. Sustainable Chemistry and Pharmacy, 2021. 24: p. 100543.
19. He, H.-W., L. Wang, X. Yan, et al., Solvent-Free Electrospinning of Uv Curable Polymer Microfibers. RSC advances, 2016. 6(35): p. 29423-29427.
20. Hong, S.Y., Y.C. Kim, M. Wang, et al., Experimental Investigation of Mechanical Properties of Uv-Curable 3d Printing Materials. Polymer, 2018. 145: p. 88-94.
21. Goss, B., Bonding Glass and Other Substrates with Uv Curing Adhesives. International journal of adhesion and adhesives, 2002. 22(5): p. 405-408.
22. Kim, D. and S.P. Nunes, Green Solvents for Membrane Manufacture: Recent Trends and Perspectives. Current Opinion in Green and Sustainable Chemistry, 2021. 28: p. 100427.
23. Xie, W., T. Li, A. Tiraferri, et al., Toward the Next Generation of Sustainable Membranes from Green Chemistry Principles. ACS Sustainable Chemistry & Engineering, 2020. 9(1): p. 50-75.
24. Hanna, K., O. Yasar-Inceoglu, and O. Yasar, Drug Delivered Poly (Ethylene Glycol) Diacrylate (Pegda) Hydrogels and Their Mechanical Characterization Tests for Tissue Engineering Applications. MRS Advances, 2018. 3(30): p. 1697-1702.
25. Roach, D.J., C. Roberts, J. Wong, et al., Surface Modification of Fused Filament Fabrication (Fff) 3d Printed Substrates by Inkjet Printing Polyimide for Printed Electronics. Additive Manufacturing, 2020. 36: p. 101544.
26. Liu, B., Z. Xu, C. Fan, et al., A Solvent‐Free and Water‐Resistant Dipole–Dipole Interaction‐Based Super Adhesive. Macromolecular Rapid Communications, 2021. 42(9): p. 2100010.
27. Lin, H., T. Kai, B.D. Freeman, et al., The Effect of Cross-Linking on Gas Permeability in Cross-Linked Poly (Ethylene Glycol Diacrylate). Macromolecules, 2005. 38(20): p. 8381-8393.
28. Ghadimi, A., S. Norouzbahari, V. Vatanpour, et al., An Investigation on Gas Transport Properties of Cross-Linked Poly (Ethylene Glycol Diacrylate)(Xlpegda) and Xlpegda/Tio2 Membranes with a Focus on Co2 Separation. Energy & Fuels, 2018. 32(4): p. 5418-5432.
29. Jannatabadi, A.A., D. Bastani, S. Norouzbahari, et al., Co2 and Ch4 Diffusivities through Synthesized Zif-8 Nanocrystals: An Experimental and Theoretical Investigation. Microporous and Mesoporous Materials, 2021. 324: p. 111292.
30. Lee, T.H., A. Ozcan, I. Park, et al., Disclosing the Role of Defect‐ Engineered Metal–Organic Frameworks in Mixed Matrix Membranes for Efficient Co2 Separation: A Joint Experimental‐
Computational Exploration. Advanced Functional Materials, 2021.
31(38): p. 2103973.
31. Elrasheedy, A., N. Nady, M. Bassyouni, et al., Metal Organic
Framework Based Polymer Mixed Matrix Membranes: Review on
Applications in Water Purification. Membranes, 2019. 9(7): p. 88.
32. Kamble, A.R., C.M. Patel, and Z. Murthy, A Review on the Recent
Advances in Mixed Matrix Membranes for Gas Separation Processes. Renewable and Sustainable Energy Reviews, 2021. 145: p. 111062.
33. Harami, H.R., F. Amirkhani, H. Abedsoltan, et al., Mixed Matrix Membranes for Sustainable Electrical Energy‐Saving Applications. ChemBioEng Reviews, 2021. 8(1): p. 27-43.
34. Dong, G., H. Li, and V. Chen, Challenges and Opportunities for Mixed-Matrix Membranes for Gas Separation. Journal of Materials Chemistry A, 2013. 1(15): p. 4610-4630.
35. Ma, L., F. Svec, Y. Lv, et al., Engineering of the Filler/Polymer Interface in Metal–Organic Framework‐Based Mixed‐Matrix Membranes to Enhance Gas Separation. Chemistry–An Asian Journal, 2019. 14(20): p. 3502-3514.
36. Lin, R., B.V. Hernandez, L. Ge, et al., Metal Organic Framework Based Mixed Matrix Membranes: An Overview on Filler/Polymer Interfaces. Journal of Materials Chemistry A, 2018. 6(2): p. 293- 312.
37. Zhao, Q., S. Lian, R. Li, et al., Architecting Mofs-Based Mixed Matrix Membrane for Efficient Co2 Separation: Ameliorating Strategies toward Non-Ideal Interface. Chemical Engineering Journal, 2022: p. 136290.
38. Amirkhani, F., M. Mosadegh, M. Asghari, et al., The Beneficial Impacts of Functional Groups of Cnt on Structure and Gas Separation Properties of Peba Mixed Matrix Membranes. Polymer Testing, 2020. 82: p. 106285.
39. Jo, J.H., C.O. Lee, G.Y. Ryu, et al., Hierarchical Amine- Functionalized Zif-8 Mixed-Matrix Membranes with an Engineered Interface and Transport Pathway for Efficient Gas Separation. ACS Applied Polymer Materials, 2022. 4(9): p. 6426-6439.
40. Chen, R., C.-a. Tao, Z. Zhang, et al., Layer-by-Layer Fabrication of Core–Shell Fe3o4@ Uio-66-Nh2 with High Catalytic Reactivity toward the Hydrolysis of Chemical Warfare Agent Simulants. ACS applied materials & interfaces, 2019. 11(46): p. 43156-43165.
41. Jones, N.B., B. Gibbons, A.J. Morris, et al., Reversible Dissociation for Effective Storage of Diborane Gas within the Uio- 66-Nh2 Metal–Organic Framework. ACS applied materials & interfaces, 2022. 14(6): p. 8322-8332.
42. Li, Z., W. Zhang, M. Tao, et al., In-Situ Growth of Uio-66-Nh2 in Porous Polymeric Substrates at Room Temperature for Fabrication of Mixed Matrix Membranes with Fast Molecular Separation Performance. Chemical Engineering Journal, 2022. 435: p. 134804.
43. Rabiee, N., A.M. Ghadiri, V. Alinezhad, et al., Synthesis of Green Benzamide-Decorated Uio-66-Nh2 for Biomedical Applications. Chemosphere, 2022. 299: p. 134359.
44. Zhong, K., L. Huang, H. Li, et al., Enhanced Oxygen Reduction Upon Ag/Fe Co-Doped Uio-66-Nh2-Derived Porous Carbon as Bacteriostatic Catalysts in Microbial Fuel Cells. Carbon, 2021. 183: p. 62-75.
45. Zhao, J., C. Wang, S. Wang, et al., Experimental and Dft Study of Selective Adsorption Mechanisms of Pb (Ii) by Uio-66-Nh2 Modified with 1, 8-Dihydroxyanthraquinone. Journal of Industrial and Engineering Chemistry, 2020. 83: p. 111-122.
46. Guo, H., J. Liu, Y. Li, et al., Post-Synthetic Modification of Highly Stable Uio-66-Nh2 Membranes on Porous Ceramic Tubes with Enhanced H2 Separation. Microporous and Mesoporous Materials, 2021. 313: p. 110823.
47. Jia, M., Y. Feng, J. Qiu, et al., Amine-Functionalized Mofs@ Go as Filler in Mixed Matrix Membrane for Selective Co2 Separation. Separation and Purification Technology, 2019. 213: p. 63-69.
48. Yu, W., L. Sisi, Y. Haiyan, et al., Progress in the Functional Modification of Graphene/Graphene Oxide: A Review. RSC advances, 2020. 10(26): p. 15328-15345.
49. Tian, Y., Z. Yu, L. Cao, et al., Graphene Oxide: An Emerging Electromaterial for Energy Storage and Conversion. Journal of Energy Chemistry, 2021. 55: p. 323-344.
50. Tian, W., X. Liu, and W. Yu, Research Progress of Gas Sensor Based on Graphene and Its Derivatives: A Review. Applied Sciences, 2018. 8(7): p. 1118.
51. Lee, J., J. Kim, S. Kim, et al., Biosensors Based on Graphene Oxide and Its Biomedical Application. Advanced drug delivery reviews, 2016. 105: p. 275-287.
52. Anjum, M.W., F. Vermoortele, A.L. Khan, et al., Modulated Uio- 66-Based Mixed-Matrix Membranes for Co2 Separation. ACS applied materials & interfaces, 2015. 7(45): p. 25193-25201.
53. Abdullah, S.I. and M. Ansari, Mechanical Properties of Graphene Oxide (Go)/Epoxy Composites. Hbrc Journal, 2015. 11(2): p. 151- 156.
54. Jia, M., Y. Feng, S. Liu, et al., Graphene Oxide Gas Separation Membranes Intercalated by Uio-66-Nh2 with Enhanced Hydrogen Separation Performance. Journal of Membrane Science, 2017. 539: p. 172-177.
55. Raheem, D., Application of Plastics and Paper as Food Packaging Materials-an Overview. Emirates Journal of Food and Agriculture, 2013: p. 177-188.
56. Kirwan, M.J., S. Plant, and J.W. Strawbridge, Plastics in Food Packaging, in Food and Beverage Packaging Technology. 2011. p. 157-212.
57. Al-Naamani, L., S. Dobretsov, and J. Dutta, Chitosan-Zinc Oxide Nanoparticle Composite Coating for Active Food Packaging Applications. Innovative Food Science & Emerging Technologies, 2016. 38: p. 231-237.
58. Fotie, G., S. Gazzotti, M.A. Ortenzi, et al., Implementation of High Gas Barrier Laminated Films Based on Cellulose Nanocrystals for Food Flexible Packaging. Applied Sciences, 2020. 10(9): p. 3201.
59. Pasquier, E., B.D. Mattos, H. Koivula, et al., Multilayers of Renewable Nanostructured Materials with High Oxygen and Water Vapor Barriers for Food Packaging. ACS applied materials & interfaces, 2022. 14(26): p. 30236-30245.
60. Zhan, Y., Y. Meng, Y. Li, et al., Poly (Vinyl Alcohol)/Reduced Graphene Oxide Multilayered Coatings: The Effect of Filler Content on Gas Barrier and Surface Resistivity Properties. Composites Communications, 2021. 24: p. 100670.
61. Sangroniz, A., J.-B. Zhu, X. Tang, et al., Packaging Materials with Desired Mechanical and Barrier Properties and Full Chemical Recyclability. Nature Communications, 2019. 10(1): p. 3559.
62. Verma, M., S. Shakya, P. Kumar, et al., Trends in Packaging Material for Food Products: Historical Background, Current Scenario, and Future Prospects. Journal of food science and technology, 2021: p. 1-14.
63. Pan, T., S. Liu, L. Zhang, et al., Flexible Organic Optoelectronic Devices on Paper. Iscience, 2022: p. 103782.
64. Fang, X., S. Wu, Y. Wu, et al., High-Efficiency Adsorption of Norfloxacin Using Octahedral Uio-66-Nh2 Nanomaterials: Dynamics, Thermodynamics, and Mechanisms. Applied Surface Science, 2020. 518: p. 146226.
65. Sharma, N., V. Sharma, Y. Jain, et al. Synthesis and Characterization of Graphene Oxide (Go) and Reduced Graphene Oxide (Rgo) for Gas Sensing Application. in Macromolecular Symposia. 2017. Wiley Online Library.
66. Shahriary, L. and A.A. Athawale, Graphene Oxide Synthesized by Using Modified Hummers Approach. Int. J. Renew. Energy Environ. Eng, 2014. 2(01): p. 58-63.
67. Paulchamy, B., G. Arthi, and B. Lignesh, A Simple Approach to Stepwise Synthesis of Graphene Oxide Nanomaterial. J Nanomed Nanotechnol, 2015. 6(1): p. 1.
68. Manoratne, C., S. Rosa, and I. Kottegoda, Xrd-Hta, Uv Visible, Ftir and Sem Interpretation of Reduced Graphene Oxide Synthesized from High Purity Vein Graphite. Mater. Sci. Res. India, 2017. 14(1): p. 19-30.
69. Alam, S.N., N. Sharma, and L. Kumar, Synthesis of Graphene Oxide (Go) by Modified Hummers Method and Its Thermal Reduction to Obtain Reduced Graphene Oxide (Rgo). Graphene, 2017. 6(1): p. 1-18.
70. King, A.A., B.R. Davies, N. Noorbehesht, et al., A New Raman Metric for the Characterisation of Graphene Oxide and Its Derivatives. Scientific reports, 2016. 6(1): p. 19491.
71. Du, W., H. Wu, H. Chen, et al., Graphene Oxide in Aqueous and Nonaqueous Media: Dispersion Behaviour and Solution Chemistry. Carbon, 2020. 158: p. 568-579.
72. Wang, Z., Y. Jia, W. Song, et al., Optimization of Boron Adsorption from Desalinated Seawater onto Uio-66-Nh2/Go Composite Adsorbent Using Response Surface Methodology. Journal of Cleaner Production, 2021. 300: p. 126974.
73. Gómez, D.A., J. Coello, and S. Maspoch, The Influence of Particle Size on the Intensity and Reproducibility of Raman Spectra of Compacted Samples. Vibrational spectroscopy, 2019. 100: p. 48- 56.
74. Moore, T.T. and W.J. Koros, Non-Ideal Effects in Organic– Inorganic Materials for Gas Separation Membranes. Journal of Molecular Structure, 2005. 739(1-3): p. 87-98.
75. Li, J., G. Van Ewijk, D.J. Van Dijken, et al., Single-Step Application of Polyelectrolyte Complex Films as Oxygen Barrier Coatings. ACS applied materials & interfaces, 2021. 13(18): p. 21844-21853.
76. Schuchardt, D., M. Röhrl, S. Rosenfeldt, et al., Gas Barriers from in Situ Polymerized Poly (Ethylene Glycol) Diacrylate Clay Nanocomposites for Food Packaging. ACS Applied Polymer Materials, 2022.
指導教授 張博凱(Chang, Bor-Kae) 審核日期 2023-7-26
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明