博碩士論文 110324080 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:45 、訪客IP:18.117.107.150
姓名 林昀熲(Yun-Chiung Lin)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 銅/銀金屬催化蝕刻法製備可撓曲矽晶微米洞/ 奈米線異質結構及自驅動近紅外光感測之研究
相關論文
★ 規則氧化鋁模板及鎳金屬奈米線陣列製備之研究★ 電化學沉積法製備ZnO:Al奈米柱陣列結構及其性質研究
★ 溼式蝕刻製程製備矽單晶奈米結構陣列及其性質研究★ 氣體電漿表面改質及濕式化學蝕刻法結合微奈米球微影術製備位置、尺寸可調控矽晶二維奈米結構陣列之研究
★ 陽極氧化鋁模板法製備一維金屬與金屬氧化物奈米結構陣列及其性質研究★ 水熱法製備ZnO, AZO 奈米線陣列成長動力學以及性質研究
★ 新穎太陽能電池基板表面粗糙化結構之研究★ 規則準直排列純鎳金屬矽化物奈米線、奈米管及異質結構陣列之製備與性質研究
★ 鈷金屬與鈷金屬氧化物奈米結構製備及其性質研究★ 單晶矽碗狀結構及水熱法製備ZnO, AZO奈米線陣列成長動力學及其性質研究
★ 準直尖針狀矽晶及矽化物奈米線陣列之製備及其性質研究★ 奈米尺度鎳金屬點陣與非晶矽基材之界面反應研究
★ 在透明基材上製備抗反射陽極氧化鋁膜及利用陽極氧化鋁模板法製備雙晶銅奈米線之研究★ 準直矽化物奈米管陣列、超薄矽晶圓與矽單晶奈米線陣列轉附製程之研究
★ 尖針狀矽晶奈米線陣列及凖直鐵矽化物奈米結構之製備與性質研究★ 金屬氧化物奈米結構製備及其表面親疏水性質之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 在本研究中,我們首度導入銅/銀金屬催化蝕刻法在(001)矽單晶晶片上製備微米尺度之倒金字塔型結構,並在其結構表面製備準直矽奈米線陣列,形成大面積且具矽單晶奈米線/倒金字塔雙尺度結構,我們保留矽單晶奈米線底部之銀顆粒,接著再以無電鍍技術在矽奈米線上披覆銀金屬奈米顆粒,藉由表面電漿共振效應以及微奈米結構優異的高光捕獲率和大比表面積來增進可見光及紅外光之吸收率。由光學性質量測結果證實此結構於可見光至近紅外光波段(400-1650 nm)皆具有優異的寬波段光吸收特性,而以940 nm之近紅外光波段進行光感測性質之結果更進一步指出,本實驗所製備之新穎矽基光感測器可在不施加額外電壓下展現出優異的近紅外光響應度、高靈敏度、高穩定度及快速的響應恢復時間等特性。
接著為了製備出超薄可撓曲感光元件,本研究成功調配銅金屬催化蝕刻配方,在薄化試片的同時亦在表面製備出凹槽型結構,套用上述之製程技術,成功製備出超薄銀/矽蕭基接面光感測元件,相信本研究所開發簡單、快速之新穎銅/銀金屬催化蝕刻法之微奈米異質結構及無電鍍技術,對研發各種先進矽基光電元件及寬帶光感測器將能提供新製程設計及技術優化之參考。
摘要(英) Infrared detectors are commonly applied in various fields, such as security monitoring, biometric identification, and digital healthcare. Silicon is the most commonly used material in optical sensors, and fabrication of rough structures and nanowires on Si are known to increase the light trapping ability of visible light. However, the bandgap limitation of silicon at 1.12 eV makes it unable to effectively absorb infrared light. In order to overcome this shortcoming, this study introduced the copper/silver metal-assisted chemical etching method for the first time to prepare a micron-scale inverted-pyramid structure, followed by the fabrication of straight silicon nanowires (SiNWs) on the surface of the structure, forming an extensive SiNWs/inverted-pyramid dual-scale structure. Then, Ag nanoparticles (AgNPs) are deposited on the SiNWs using a non-electroplating technique, improving the absorption efficiency of visible and infrared light through surface plasmon resonance effects, the high light-trapping efficiency and large specific surface area of the nano-microstructure. The results of UV-Vis and NIR spectroscopic measurements confirmed that the structure has broadband light absorption characteristics from the visible to near-infrared region (400-1600 nm). Moreover, the results of photo-sensing properties at 940 nm near-infrared light further indicate that our novel silicon photodetector exhibits high near-infrared photo responsivity, good stability, and fast response and recovery time without applying additional voltage.
In order to fabricate ultra-thin and flexible photodetector, this study successfully formulated a copper metal-assisted-etching solution and simultaneously created grooved structures on the silicon surface while thinning the samples. By applying the aforementioned fabrication techniques, ultra-thin silver/silicon Schottky junction photodetectors were successfully developed. It is believed that the simple and original copper/silver metal-assisted chemical etching method of dual-scale structures and electroless plating technology developed in this study can provide a reference for new process design and technology optimization for the development of various advanced silicon-based optoelectronic devices and broadband photodetectors.
關鍵字(中) ★ 銅金屬催化蝕刻
★ 倒金字塔結構
★ 微奈米異質結構
★ 自驅動近紅外光感測元件
★ 超薄可撓曲感光元進
關鍵字(英)
論文目次 目錄
第一章 前言及文獻回顧 1
1-1 前言 1
1-2 矽單晶表面粗糙化結構之製備及應用 3
1-2-1 凸起型結構之製程技術 3
1-2-2 凹槽型結構之製程技術 4
1-3 一維矽單晶奈米線之製備及應用 6
1-4 可撓曲奈米線元件製備及應用 7
1-4-1 矽奈米線分散塗佈製程 7
1-4-2 矽奈米線轉附製程 7
1-4-3 矽基材減薄製程 8
1-5 超薄可撓曲型之感測元件 9
1-5-1 超薄可撓曲元件之應用 9
1-5-2 超薄可撓曲矽晶元件之製程 9
1-6 光感測元件 10
1-6-1 金屬與半導體之接觸理論 10
1-6-2 蕭基接面之光感測機制 12
1-7 紅外線光感測器 13
1-8 低維金屬半導體奈米材料之特性探討 14
1-9 研究動機及目標 15
第二章 實驗步驟及儀器設備 17
2-1 實驗步驟 17
2-1-1 矽單晶基材使用前處理 17
2-1-2 銅金屬催化蝕刻法製備矽單晶/倒金字塔及正金字塔結構 17
2-1-3 一步驟製備超薄可撓曲凹槽結構之矽單晶基材 18
2-1-4 兩步驟金屬催化無電鍍蝕刻法製備微奈米異質陣列結構 18
2-1-5 低溫無電鍍沉積銀金屬奈米粒子 19
2-1-6 濺鍍鋁金屬薄膜 19
2-1-7 光感測元件之製備 19
2-2 試片分析 19
2-2-1 掃描式電子顯微鏡 19
2-2-2 穿透式電子顯微鏡 20
2-2-3 可見光-近紅外光光譜儀 20
2-2-4 影像式水滴接觸角量測儀 21
2-2-5 近紅外光偵測系統 21
第三章 結果與討論 22
3-1製備矽單晶倒金字塔結構 22
3-1-1各蝕刻液濃度變化對矽單晶表面形貌之影響 23
3-1-2矽單晶倒金字塔結構形成之機制探討 25
3-2 雙面雙尺度一維矽單晶微奈米異質結構 27
3-2-1 雙面一維矽單晶奈米線/倒金字塔微奈米異質結構之製備 27
3-2-2可見光-近紅外光積分球光譜儀分析 28
3-3 矽晶異質結構之近紅外光偵測元件 30
3-3-1 銀/矽單晶微奈米異質結構之蕭基接面製備 30
3-3-2單面及雙面銀/矽單晶微奈米異質結構蕭基接面之近紅外光感測特性分析與探討 32
3-3-3 銀/矽單晶微奈米異質結構蕭基接面及其背電極結構於近紅外光感測之特性分析與探討 33
3-3-4 銀/矽單晶奈米線/倒金字塔及正金字塔微奈米異質結構蕭基接面之近紅外光感測特性分析與探討 34
3-4 超薄可撓曲之矽單晶微奈米異質結構之近紅外光偵測元件 38
3-4-1 超薄雙面矽單晶倒金字塔結構之可撓曲基材製備 38
3-4-2 超薄矽單晶基材上製備銀/矽單晶奈米線/倒金字塔及正金字塔微奈米異質結構 41
3-4-3 可見光-近紅外光積分球光譜儀分析 42
3-4-4 超薄可撓曲銀/矽單晶奈米線/倒金字塔及正金字塔微奈米異質結構蕭基接面近紅外光感測特性分析探討 43
3-4-5 超薄可撓曲矽晶近紅外光偵測元件之彎曲性能分析與探討 45
3-5 矽晶近紅外光偵測元件之靈敏度、響應度以及響應時間 45
第四章 結論與未來展望 48
參考文獻 49
表目錄 59
圖目錄 61
參考文獻 [1] S. Lin, Y. Lu, S. Feng, Z. Hao, and Y. Yan, "A high current density direct‐current generator based on a moving van der Waals Schottky diode." Adv. Mater., 31 (2019) 1804398.
[2] C. Langer, V. Bomke, M. Hausladen, R. Ławrowski, C. Prommesberger, M. Bachmann, and R. Schreiner,. "Silicon chip field emission electron source fabricated by laser micromachining." J. Vac. Sci. Technol, 38 (2020) (1).
[3] Y. F. Tzeng, H. C. Wu, P. S. Sheng, N. H. Tai, H. T. Chiu, C. Y. Lee, and I. N. Lin, "Stacked silicon nanowires with improved field enhancement factor." ACS Appl. Mater. Interfaces, 2(2) (2010) 331-334.
[4] G. Dong, Y. Zhou, H. Zhang, F. Liu, G. Li, and M. Zhu, "Passivation of high aspect ratio silicon nanowires by using catalytic chemical vapor deposition for radial heterojunction solar cell application." RSC Adv., 7(71) (2017) 45101-45106.
[5] E. C. Garnett, and P. Yang, "Silicon nanowire radial p− n junction solar cells. " J. Am. Chem. Soc., 130(29) (2008) 9224-9225.
[6] M. Akbari-Saatlu, M. Procek, C. Mattsson, G. Thungström, H. E. Nilsson, W. Xiong, and H. H. Radamson, "Silicon nanowires for gas sensing: A review." Nanomaterials, 10(11) (2020) 2215.
[7] B. R. Huang, Y. K. Yang, and H. L. Cheng, "Rice-straw-like structure of silicon nanowire arrays for a hydrogen gas sensor." Nanotechnology, 24(47) (2013) 475502.
[8] C. W. Hsu, W. C. Feng, F. C. Su, and G. J. Wang, "An electrochemical glucose biosensor with a silicon nanowire array electrode." J. Electrochem. Soc., 162(10) (2015) B264.
[9] M. Yaghoubi, F. Rahimi, B. Negahdari, A. H. Rezayan, and A. Shafiekhani, "A lectin-coupled porous silicon-based biosensor: label-free optical detection of bacteria in a real-time mode." Sci. Rep., 10(1) (2020) 16017.
[10] Y. An, A. Behnam, E. Pop, and A. Ural, "Metal-semiconductor-metal photodetectors based on graphene/p-type silicon Schottky junctions." Appl. Phys. Lett., 102(1) (2013).
[11] S. Zhong, B. Liu, Y. Xia, J. Liu, J. Liu, Z. Shen, and C. Li, "Influence of the texturing structure on the properties of black silicon solar cell." Sol. Energy Mater Sol. Cells, 108 (2013) 200-204.
[12] M. Moreno, D. Daineka, and P. R. i Cabarrocas, "Plasma texturing for silicon solar cells: From pyramids to inverted pyramids-like structures." Sol. Energy Mater Sol. Cells, 94(5) (2010) 733-737.
[13] Y. C. Lee, C. C. Chang, and Y. Y. Chou, "Fabrication of broadband anti-reflective sub-micron structures using polystyrene sphere lithography on a Si substrate." Photonics Nanostructures - Fundam. Appl., 12(1) (2014) 16-22.
[14] H. Lin, H. Y. Cheung, F. Xiu, F. Wang, S. Yip, N. Han, and C. Y. Wong, "Developing controllable anisotropic wet etching to achieve silicon nanorods, nanopencils and nanocones for efficient photon trapping." J. Mater. Chem. A., 1(34) (2013) 9942-9946.
[15] C. Li, Y. Ma, X. Zhang, X. Chen, F. Xi, S. Li, and Y. Chang, "Enhanced efficiency of graphene-silicon Schottky junction solar cell through pyramid arrays texturation." Silicon, (2022). 1-11
[16] I. Zubel, and M. Kramkowska, "Etch rates and morphology of silicon (hkl) surfaces etched in KOH and KOH saturated with isopropanol solutions." ens. Actuator A Phys., 115(2-3) (2004) 549-556.
[17] R. Barrio, N. González, J. Cárabe, and J. J. Gandía, "Optimisation of NaOH texturisation process of silicon wafers for heterojunction solar-cells applications." Sol. energy, 86(3) (2012) 845-854.
[18] L. Guan, G. Shen, Y. Liang, F. Tan, X. Xu, X. Tan, and X. Li, "Double-sided pyramid texturing design to reduce the light escape of ultrathin crystalline silicon solar cells." Opt. Laser Technol., 120 (2019) 105700.
[19] S. Thiyagu, H. J. Syu, C. C. Hsueh, C. T. Liu, T. C. Lin, and C. F. Lin, "Optical trapping enhancement from high density silicon nanohole and nanowire arrays for efficient hybrid organic–inorganic solar cells." RSC Adv., 5(17) (2015) 13224-13233.
[20] C. Lin, and M. L. Povinelli, "Detailed balance limit of silicon nanowire and nanohole array solar cells." In Next Generation (Nano) Photonic and Cell Technologies for Solar Energy Conversion II, Vol. 8111 (2011, September) 116-121.
[21] S. E. Han, and G. Chen, "Optical absorption enhancement in silicon nanohole arrays for solar photovoltaics." Nano Lett., 10(3) (2010) 1012-1015.
[22] X. Zhangyang, L. Liu, Z. Lv, F. Lu, and J. Tian, "Comparative analysis of light trapping GaN nanohole and nanorod arrays for UV detectors." J. Nanoparticle Res., 22 (2020) 1-10.
[23] L. Rahmasari, M. F. Abdullah, A. R. M. Zain, and A. M. Hashim, "Silicon nanohole arrays fabricated by electron beam lithography and reactive ion etching." Sains Malays., 48(6) (2019) 1157-1161.
[24] J. Ji, H. Zhang, Y. Qiu, L. Wang, Y. Wang, ad L. Hu, "Fabrication and photoelectrochemical properties of ordered Si nanohole arrays." Appl. Surf. Sci., 292 (2014) 86-92.
[25] X. Yang, W. Zhang, J. Choi, H. Q. Ta, Y. Bai, L. Chen, and L. Liu, "Influence of bowl-like nanostructures on the efficiency and module power of black silicon solar cells." Sol. Energy, 189 (2019) 67-73.
[26] Y. Wang, , L. Yang, Y. Liu, Z. Mei, W. Chen, J. Li, and D. Xiaolong, "Maskless inverted pyramid texturization of silicon." Sci. Rep., 5(1) (2015) 10843.
[27] E. Vazsonyi, K. De Clercq, R. Einhaus, E. Van Kerschaver, K. Said, J. Poortmans, and J. Nijs, "Improved anisotropic etching process for industrial texturing of silicon solar cells." Sol. Energy Mater. Sol. Cells, 57(2) (1999) 179-188.
[28] S. C. Baker‐Finch, and K. R. McIntosh, "Reflection of normally incident light from silicon solar cells with pyramidal texture." Prog. Photovolt.: Res. Appl., 19(4) (2011) 406-416.
[29] L. Yang, Y. Liu, Y. Wang, W. Chen, Q. Chen, J. Wu, and X. Du, "18.87%-efficient inverted pyramid structured silicon solar cell by one-step Cu-assisted texturization technique." Sol. Energy Mater. Sol. Cells, 166 (2017) 121-126.
[30] M. S. Choi, H. G. Na, A. Mirzaei, J. H. Bang, W. Oum, S. Han, and H. W. Kim, "Room-temperature NO2 sensor based on electrochemically etched porous silicon." J. Alloys Compd., 811 (2019) 151975.
[31] Y. Qin, D. Liu, T. Zhang, and Z. Cui, "Ultrasensitive silicon nanowire sensor developed by a special Ag modification process for rapid NH3 detection." ACS Appl. Mater. Interfaces, 9(34) (2017) 28766-28773.
[32] J. Y. Oh, H. J. Jang, W. J. Cho, and M. S. Islam, "Highly sensitive electrolyte-insulator-semiconductor pH sensors enabled by silicon nanowires with Al2O3/SiO2 sensing membrane." Sens. Actuators B Chem., 171 (2012) 238-243.
[33] R. Smith, S. M. Geary, and A. K. Salem, "Silicon nanowires and their impact on cancer detection and monitoring." ACS Appl. Nano Mater., 3(9) (2020) 8522-8536.
[34] Q. Hong, Y. Cao, J. Xu, H. Lu, J. He, and J. L. Sun, "Self-powered ultrafast broadband photodetector based on p–n heterojunctions of CuO/Si nanowire array." ACS Appl. Mater. Interfaces, 6(23) (2014) 20887-20894.
[35] Y. Huang, H. Liang, Y. Zhang, S. Yin, C. Cai, W. Liu, and T. Jia, "Vertical tip-to-tip interconnection p–n silicon nanowires for plasmonic hot electron-enhanced broadband photodetectors." ACS Appl. Nano Mater., 4(2) (2021) 1567-1575.
[36] G. Ma, R. Du, Y. N. Cai, C. Shen, X. Gao, Y. Zhang, and Y. Zhang, "Improved power conversion efficiency of silicon nanowire solar cells based on transition metal oxides." Sol. Energy Mater. Sol. Cells, 193 (2019) 163-168.
[37] C. Xie, B. Nie, L. Zeng, F. X. Liang, M. Z. Wang, L. Luo, and S. H. Yu, "Core–shell heterojunction of silicon nanowire arrays and carbon quantum dots for photovoltaic devices and self-driven photodetectors." Acs Nano, 8(4) (2014) 4015-4022.
[38] T. Arjmand, M. Legallais, T. T. T. Nguyen, P. Serre, M. Vallejo-Perez, F. Morisot, and C. Ternon, "Functional devices from bottom-up Silicon nanowires: A review." Nanomaterials, 12(7) (2022) 1043.
[39] S. Misra, L. Yu, W. Chen, M. Foldyna, and P. R. i Cabarrocas, "A review on plasma-assisted VLS synthesis of silicon nanowires and radial junction solar cells." J. Phys. D: Appl. Phys., 47(39) (2014) 393001..
[40] L. W. Chou, N. Shin, S. V. Sivaram, and M. A. Filler, "Tunable mid-infrared localized surface plasmon resonances in silicon nanowires." J. Am. Chem. Soc., 134(39) (2012) 16155-16158.
[41] L. Schubert, P. Werner, N. D. Zakharov, G. Gerth, F. M. Kolb, L. Long, and T. Y. Tan, "Silicon nanowhiskers grown on< 111> Si substrates by molecular-beam epitaxy." Appl. Phys. Lett., 84(24) (2004) 4968-4970.
[42] T. David, L. Roussel, T. Neisius, M. Cabie, M. Gailhanou, and C. Alfonso, "Gold coverage and faceting of MBE grown silicon nanowires." J. Cryst. Growth, 383 (2013) 151-157.
[43] R. A. Puglisi, C. Bongiorno, S. Caccamo, E. Fazio, G. Mannino, F. Neri, and A. La Magna, "Chemical vapor deposition growth of silicon nanowires with diameter smaller than 5 nm." ACS omega, 4(19) (2019) 17967-17971.
[44] J. V. Wittemann, W. Münchgesang, S. Senz, and V. Schmidt, Silver catalyzed ultrathin silicon nanowires grown by low-temperature chemical-vapor-deposition." J. Appl. Phys. 107 (2010) 096105.
[45] R. P. Seisyan, "Nanolithography in microelectronics: A review." Tech. Phys., 56 (2011) 1061-1073.
[46] L. R. Harriott, "Limits of lithography." Proc. IEEE, 89(3) (2001) 366-374.
[47] P. Hashemi, L. Gomez, and J. L. Hoyt, "Gate-all-around n-MOSFETs with uniaxial tensile strain-induced performance enhancement scalable to sub-10-nm nanowire diameter." IEEE Electron Device Lett., 30(4) (2009) 401-403.
[48] K. Trivedi, H. Yuk, H. C. Floresca, M. J. Kim, and W. Hu, "Quantum confinement induced performance enhancement in sub-5-nm lithographic Si nanowire transistors." Nano Lett., 11(4) (2011) 1412-1417.
[49] J. H. Ahn, S. J. Choi, J. W. Han, T. J. Park, S. Y. Lee, and Y. K. Choi, "Double-gate nanowire field effect transistor for a biosensor." Nano Lett., 10(8) (2010) 2934-2938.
[50] J. Hållstedt, P. E. Hellström, and H. H. Radamson, "Sidewall transfer lithography for reliable fabrication of nanowires and deca-nanometer MOSFETs." Thin Solid Films, 517(1) (2008) 117-120.
[51] M. Naffeti, P. A. Postigo, R. Chtourou, and M. A. Zaïbi, "Elucidating the effect of etching time key-parameter toward optically and electrically-active silicon nanowires." Nanomaterials, 10(3) (2020) 404.
[52] R. P. Srivastava, and D. Y. Khang, "Structuring of Si into multiple scales by metal‐assisted chemical etching." Adv. Mater., 33(47) (2021) 2005932.
[53] G. Chen, W. Wang, C. Wang, T. Ding, and Q. Yang, "Controlled synthesis of ultrathin Sb2Se3 nanowires and application for flexible photodetectors." Adv. Sci., 2(10) (2015) 1500109.
[54] P. Serre, M. Mongillo, P. Periwal, T. Baron, and C. Ternon, "Percolating silicon nanowire networks with highly reproducible electrical properties." Nanotechnology, 26(1) (2014) 015201.
[55] B. Aksoy, S. Coskun, S. Kucukyildiz, and H. E. Unalan, "Transparent, highly flexible,all nanowire network germanium photodetectors." Nanotechnology, 23(32) (2012) 325202.
[56] M. Triplett, H. Nishimura, M. Ombaba, V. J. Logeeswarren, M. Yee, K. G. Polat, and M. S. Islam, "High-precision transfer-printing and integration of vertically oriented semiconductor arrays for flexible device fabrication." Nano Res., 7 (2014) 998-1006.
[57] S. C. Shiu, C. Y. Hsiao, C. H. Chao, S. C. Hung, and C. F. Lin, "Transfer of aligned single crystal silicon nanowires to transparent substrates." In Nanoscale Photonic and Cell Technologies for Photovoltaics, 7047 (2008, September) 58-65.
[58] J. M. Weisse, C. H. Lee, D. R. Kim, L. Cai, P. M. Rao, and X. Zheng, "Electroassisted transfer of vertical silicon wire arrays using a sacrificial porous silicon layer." Nano Lett., 13(9) (2013) 4362-4368.
[59] J. M. Weisse, D. R. Kim, C. H. Lee, and X. Zheng, "Vertical transfer of uniform silicon nanowire arrays via crack formation." Nano Lett., 11(3) (2011) 1300-1305.
[60] X. Xue, S. Yang, and Z. Wang, "Heat-depolymerizable polypropylene carbonate as a temporary bonding adhesive for fabrication of flexible silicon sensor chips." IEEE Trans. Compon. Packaging Manuf. Technol., 7(11) (2017) 1751-1758.
[61] K. Y. Byun, I. Ferain, S. Song, S. Holl, and C. Colinge, "Single-crystalline silicon layer transfer to a flexible substrate using wafer bonding." J. Electron. Mater., 39 (2010) 2233-2236.
[62] N. Watanabe, T. Miyazaki, M. Aoyagi, and K. Yoshikawa, "Silicon wafer thinning and backside via exposure by wet etching." In 2012 IEEE 14th Electronics Packaging Technology Conference (EPTC) (2012, December) 355-359.
[63] C. Li, Z. He, Q. Wang, J. Liu, S. Li, X. Chen, and Y. Chang, "Performance improvement of PEDOT: PSS/N-Si heterojunction solar cells by alkaline etching." Silicon (2021) 1-9.
[64] S. Wang, B. D. Weil, Y. Li, K. X. Wang, E. Garnett, S. Fan, and Y. Cui, "Large-area free-standing ultrathin single-crystal silicon as processable materials." Nano Lett., 13(9) (2013) 4393-4398.
[65] F. Bai, M. Li, D. Song, H. Yu, B. Jiang, and Y. Li, "Metal-assisted homogeneous etching of single crystal silicon: A novel approach to obtain an ultra-thin silicon wafer." Appl. Surfa. Sci., 273 (2013) 107-110.
[66] C. Yang, K. Moon, J. W. Song, J. Kim, J. H. Lee, J. H. Lim, and B. Yoo, "Spalling of thin Si layer via electroless and electrodeposit-assisted stripping (E2AS) with all-wet process for fabrication of low-cost flexible single-crystalline Si solar cell." J. Electrochem. Soc., 165(5) (2018) D243.
[67] N. Sun, C. Jiang, Q. Li, D. Tan, S. Bi, and J. Song, "Performance of OLED under mechanical strain: a review." J. Mater. Sci. Mater. Electron., 31 (2020) 20688-20729.
[68] N. Wen, L. Zhang, D. Jiang, Z. Wu, B. Li, C. Sun, and Z. Guo, "Emerging flexible sensors based on nanomaterials: Recent status and applications." J. Mater. Chem. A ., 8(48) (2020) 25499-25527.
[69] A. Ometov, V. Shubina, L. Klus, J. Skibińska, S. Saafi, P. Pascacio, and E. S. Lohan, "A survey on wearable technology: History, state-of-the-art and current challenges." Comput. Netw., 193 (2021) 108074.
[70] G. Tong, H. Li, D. Li, Z. Zhu, E. Xu, G. Li, and Y. Jiang, "Dual‐Phase CsPbBr3–CsPb2Br5 Perovskite Thin Films via Vapor Deposition for High‐Performance Rigid and Flexible Photodetectors." Small, 14(7) (2018) 1702523.
[71] J. H. Kim, A. Mirzaei, H. W. Kim, and S. S. Kim, "Flexible and low power CO gas sensor with Au-functionalized 2D WS2 nanoflakes." Sens. Actuators B: Chem., 313 (2020) 128040.
[72] T. Li, L. Chen, X. Yang, X. Chen, Z. Zhang, T. Zhao, and J. Zhang, "A flexible pressure sensor based on an MXene–textile network structure." J. Mater. Chem. C, 7(4) (2019) 1022-1027.
[73] P. S. Priambodo, N. R. Poespawati, and D. Hartanto, "Solar cell." Chapters. (2011).
[74] T. Kan, Y. Ajiki, K. Matsumoto, and I. Shimoyama, "Si process compatible near-infrared photodetector using Au/Si nano-pillar array." In 2016 IEEE 29th International Conference on Micro Electro Mechanical Systems (MEMS), (2016, January) 624-627.
[75] Q. Wu, G. Cen, Y. Liu, Z. Ji, and W. Mai, "A simple-structured silicon photodetector possessing asymmetric Schottky junction for NIR imaging." Phys. lett., A, 412 (2021) 127586.
[76] M. Fidan, Ö. Ünverdi, and C. Çelebi, "Junction area dependent performance of graphene/silicon based self-powered Schottky photodiodes." Sens. Actuator A Phys., 331 (2021) 112829.
[77] Y. Guan, G. Cao, and X. Li, "Single-nanowire silicon photodetectors with core-shell radial Schottky junction for self-powering application." Appl. Phys. Lett., 118(15) (2021).
[78] Y. Ma, Y. Chang, B. Dong, J. Wei, W. Liu, and C. Lee, "Heterogeneously integrated graphene/silicon/halide waveguide photodetectors toward chip-scale zero-bias long-wave infrared spectroscopic sensing." ACS Nano, 15(6) (2021) 10084-10094.
[79] W. Chen, Z. Deng, D. Guo, Y. Chen, Y. I. Mazur, Y. Maidaniuk, and B. Chen, "Demonstration of InAs/InGaAs/GaAs quantum dots-in-a-well mid-wave infrared photodetectors grown on silicon substrate." J. Light. Technol., 36(13) (2018) 2572-2581.
[80] Y. Xu, Y. Ma, Y. Yu, S. Chen, Y. Chang, X. Chen, and G. Xu, "Self-powered, ultra-high detectivity and high-speed near-infrared photodetectors from stacked–layered MoSe2/Si heterojunction." Nanotechnology, 32(7) (2020) 075201.
[81] M. Bednorz, G. J. Matt, E. D. Głowacki, T. Fromherz, C. J. Brabec, M. C. Scharber, and N. S. Sariciftci, "Silicon/organic hybrid heterojunction infrared photodetector operating in the telecom regime." Organic electronics, 14(5) (2013) 1344-1350.
[82] X. Jin, Y. Sun, Q. Wu, Z. Jia, S. Huang, J. Yao, and J. Xu, "High-performance free-standing flexible photodetectors based on sulfur-hyperdoped ultrathin silicon." ACS Appl. Mater. Interf., 11(45) (2019) 42385-42391.
[83] J. F. Masson, "Portable and field-deployed surface plasmon resonance and plasmonic sensors." Analyst, 145(11) (2020) 3776-3800.
[84] S. A. Bansal, V. Kumar, J. Karimi, A. P. Singh, and S. Kumar, "Role of gold nanoparticles in advanced biomedical applications." Nanoscale Adv., 2(9) (2020) 3764-3787.
[85] A. Rónavári, N. Igaz, D. I. Adamecz, B. Szerencsés, C. Molnar, Z. Kónya, and M. Kiricsi, "Green silver and gold nanoparticles: Biological synthesis approaches and potentials for biomedical applications." Molecules, 26(4) (2021) 844.
[86] A. H. Chiou, J. L. Wei, and S. H. Chen, "Ag-Functionalized Si Nanowire Arrays Aligned Vertically for SERS Detection of Captured Heavy Metal Ions by BSA." Coatings, 11(6) (2021) 685.
[87] X. Dong, C. Xu, C. Yang, F. Chen, A. G. Manohari, Z. Zhu, and J. Chen, "Photoelectrochemical response to glutathione in Au-decorated ZnO nanorod array." J. Mater. Chem. C, 7(19) (2019) 5624-5629.
[88] D. B. Seo, T. N. Trung, D. O. Kim, D. V. Duc, S. Hong, Y. Sohn, and E. T. Kim, "Plasmonic Ag-decorated few-layer MoS2 nanosheets vertically grown on graphene for efficient photoelectrochemical water splitting." Nano-Micro Lett., 12 (2020) 1-14.
[89] D. Lin, Z. Wu, S. Li, W. Zhao, C. Ma, J. Wang, and X. Yang, "Large-area Au-nanoparticle-functionalized Si nanorod arrays for spatially uniform surface-enhanced Raman spectroscopy." ACS Nano, 11(2) (2017) 1478-1487.
[90] L. Wei, J. Lin, S. Xie, W. Ma, Q. Zhang, Z. Shen, and Y. Wang, "Photoelectrocatalytic reduction of CO2 to syngas over Ag nanoparticle modified p-Si nanowire arrays." Nanoscale, 11(26) (2019) 12530-12536.
[91] Z. Qi, Y. Zhai, L. Wen, Q. Wang, Q. Chen, S. Iqbal, and Y. Tu, "Au nanoparticle-decorated silicon pyramids for plasmon-enhanced hot electron near-infrared photodetection." Nanotechnology, 28(27) (2017) 275202.
[92] M. A. Nazirzadeh, F. B. Atar, B. B. Turgut, and A. K. Okyay, "Random sized plasmonic nanoantennas on Silicon for low-cost broad-band near-infrared photodetection." Sci. Rep., 4(1) (2014) 7103.
[93] K. Ramachandran, S. Columbus, S. Chidambaram, K. Daoudi, M. A. El Khakani, and M. Gaidi, "Fabrication of highly oriented 1D SiNW arrays/Au for femto molar level detection of H1N1 protein." Mater. Lett., 300 (2021) 130184.
[94] M. Naffeti, P.A. Postigo, R. Chtourou, M.A. Zaïbi, "Highly Efficient Silicon Nanowire Surface Passivation by Bismuth Nano-Coating for Multifunctional Bi@SiNWs Heterostructures." Nanomaterials, 10 (2020) 1434.
[95] L. Mehrvar, M. Sadeghipari, S.H. Tavassoli, et al. "Optical and Surface Enhanced Raman Scattering properties of Ag modified silicon double nanocone array." Sci. Rep., 7 (2017) 12106.
[96] Y. Wang, Y. Liu, L. Yang, W. Chen, X. Du, and A. Kuznetsov, "Micro-structured inverted pyramid texturization of Si inspired by self-assembled Cu nanoparticles." Nanoscale, 9(2) (2017) 907-914.
[97] S. Hong, L. Ma, X. Chen, S. Li, W. Ma, and Y. Chang, "Surface Texturing Behavior of Nano-copper Particles under Various Copper Salts System during Copper-assisted Chemical Etching." Silicon, (2022) 1-9.
[98] S. D. Wang, S. Y. Chen, S. P. Hsu, P. Q. Shi, and C. G. Chen, "Effects of H2O2, Cu(NO3)2 and HF temperatures on surface texturization of diamond-wire-sawn multicrystalline silicon wafer." Sol. Energy Mater Sol. Cells, 212 (2020) 110583.
[99] S. Kubendhiran, G. Sison, H. P. Hsu, and C. W. Lan, "Copper assisted inverted pyramids texturization of monocrystalline silicon in a nitrogen bubbling bath for highly efficient light trapping." Silicon, 13 (2021) 3121-3129.
[100] D. Zhang, S. Jiang, K. Tao, R. Jia, H. Ge, X. Li, and Z. Jin, "Fabrication of inverted pyramid structure for high-efficiency silicon solar cells using metal assisted chemical etching method with CuSO4 etchant." Sol. Energy Mater Sol. Cells, 230 (2021) 111200.
[101] D. Widory, E. Petelet-Giraud, P. Négrel, and B. Ladouche, "Tracking the sources of nitrate in groundwater using coupled nitrogen and boron isotopes: a synthesis." Environ. Sci. Technol., 39(2) (2005) 539-548.
[102] S. Tait, W. P. Clarke, J. Keller, and D. J. Batstone, "Removal of sulfate from high-strength wastewater by crystallisation." Water Res., 43(3) (2009) 762-772.
[103] Y. Cao, Y. Zhou, F. Liu, Y. Zhou, Y. Zhang, Y. Liu, and Y. Guo, "Progress and mechanism of Cu assisted chemical etching of silicon in a low Cu2+ concentration region." ECS J. Solid State Sci. Technol., 4(8) (2015) 331.
[104] Y. Zhao, Y. Liu, W. Chen, J. Wu, Q. Chen, H. Tang, and X. Du, "Regulation of surface texturization through copper-assisted chemical etching for silicon solar cells." Sol. Energy, 201 (2020) 461-468.
[105] M. Treideris, A. Rėza, M. Kamarauskas, A. Mironas, V. Strazdienė, A. Maneikis, and A. Šetkus, "Minimization of optical reflectance by copper assisted etching of crystalline silicon surface." Phys. Status Solidi (A), 215(6) (2018) 1700600.
[106] B. Altinsoy, E. Donercark, A. Aliefendioglu, and R. Turan, "Single Step Inverted Pyramid Texturing of n-type Silicon by Copper Assisted Chemical Etching." In 2021 IEEE 48th Photovoltaic Specialists Conference (PVSC), (2021, June) 1631-1637.
[107] J. Y. Li, C. H. Hung, and C. Y. Chen, "Hybrid black silicon solar cells textured with the interplay of copper-induced galvanic displacement." Sci. Rep., 7(1) (2017) 17177.
[108] W. Chen, Y. Liu, L. Yang, J. Wu, Q. Chen, Y. Zhao, and X. Du, "Difference in anisotropic etching characteristics of alkaline and copper based acid solutions for single-crystalline Si." Sci. Rep., 8(1) (2018) 3408.
[109] P. J. Hesketh, C. Ju, S. Gowda, E. Zanoria, and S. Danyluk, "Surface free energy model of silicon anisotropic etching." J. Electrochem. Soc., 140(4) (1993) 1080.
[110] A. A. A. Omer, Y. Yang, G. Sheng, S. Li, J. Yu, W. Ma, and W. E. Kolaly, "Nano-texturing of silicon wafers via one-step copper-assisted chemical etching." Silicon, 12 (2020) 231-238.
[111] A. A. A. Omer, Z. He, S. Hong, Y. Chang, J. Yu, S. Li, and R. Chen, "Ultra-thin silicon wafers fabrication and inverted pyramid texturing based on cu-catalyzed chemical etching." Silicon, (2021) 13 351-359.
[112] G. Chatzigiannakis, A. Jaros, R. Leturcq, J. Jungclaus, T. Voss, S. Gardelis, and M. Kandyla, "Laser-microstructured ZnO/p-Si photodetector with enhanced and broadband responsivity across the ultraviolet–visible–near-infrared range." ACS Appl. Electron. Mater., 2(9) (2020) 2819-2828.
[113] H. J. Syu, Y. C. Huang, Z. C. Su, R. L. Sun, and C. F. Lin, "An Alternative to Compound Semiconductors Using a Si-Based IR Detector." IIEEE Trans. Electron Devices, 69(1) (2021) 205-211.
[114] K. X. Wang, Z. Yu, V. Liu, Y. Cui, and S. Fan, "Absorption enhancement in ultrathin crystalline silicon solar cells with antireflection and light-trapping nanocone gratings." Nano Lett., 12(3) (2012) 1616-1619.
[115] C. Y. Wu, Z. Q. Pan, Y. Y. Wang, C. W. Ge, Y. Q. Yu, J. Y. Xu, and L. B. Luo, "Core–shell silicon nanowire array–Cu nanofilm Schottky junction for a sensitive self-powered near-infrared photodetector." J. Mater. Chem. C, 4(46) (2016) 10804-10811.
[116] L. Wang, S. J. He, K. Y. Wang, H. H. Luo, J. G. Hu, Y. Q. Yu, and L. B. Luo, "Dual-plasmonic Au/graphene/Au-enhanced ultrafast, broadband, self-driven silicon Schottky photodetector." Nanotechnology, 29(50) (2018) 505203.
[117] Y. Wang, Y. Zhu, H. Gu, and X. Wang, "Enhanced Performances of n-ZnO Nanowires/p-Si Heterojunctioned Pyroelectric Near–Infrared Photodetectors via the Plasmonic Effect." ACS Appl. Mater. Interfaces, 13 (2021) 57750.
[118] X. Zhang, J. Shao, Y. Su, L. Wang, Y. Wang, X. Wang, and D. Wu, "In-situ prepared WSe2/Si 2D-3D vertical heterojunction for high performance self-driven photodetector." Ceram. Int., 48 (2022) 29722.
[119] S. Chaoudhary, A. Dewasi, V. Rastogi, R.N. Pereira, A. Sinopoli, B. Aïssa, and A. Mitra, "Laser ablation fabrication of a p-NiO/n-Si heterojunction for broadband and self-powered UV–Visible–NIR photodetection." Nanotechnology, 33 (2022) 255202.
[120] A.A. Ahmed, T.F. Qahtan, M. Hashim, A.T. Nomaan, N.H. Al-Hardan, and M. Rashid, "Eco-friendly ultrafast self-powered p-Si/n-ZnO photodetector enhanced by photovoltaic-pyroelectric coupling effect." Ceram. Int., 48 (2022) 16142.
[121] X. Xue, C. Ling, H. Ji, J. Wang, C. Wang, H. Lu, and W. Liu, "Self-Powered and Broadband Bismuth Oxyselenide/p-Silicon Heterojunction Photodetectors with Low Dark Current and Fast Response." ACS Appl. Mater. Interfaces, 15(4) (2023) 5411-5419.
[122] Y. Dai, X. Wang, W. Peng, C. Xu, C. Wu, K. Dong, R. Liu, and Z.L. Wang, "Self‐powered Si/CdS flexible photodetector with broadband response from 325 to 1550 nm based on pyro‐phototronic effect: an approach for photosensing below bandgap energy." Adva. Mater., 30 (2018) 1705893.
[123] M. Hossain, G.S. Kumar, S. Barimar Prabhava, E.D. Sheerin, D. McCloskey, S. Acharya, K. Rao, and J.J. Boland, "Transparent, flexible silicon nanostructured wire networks with seamless junctions for high-performance photodetector applications." ACS nano, 12 (2018) 4727.
[124] J.M. Choi, H.Y. Jang, A.R. Kim, J.D. Kwon, B. Cho, M.H. Park, and Y. Kim, "Ultra-flexible and rollable 2D-MoS2/Si heterojunction-based near-infrared photodetector via direct synthesis." Nanoscale, 13 (2021) 672.
[125] W.-H. Yang, X.-Y. Jiang, Y.-T. Xiao, C. Fu, J.-K. Wan, X. Yin, X.-W. Tong, D. Wu, L.-M. Chen, and L.-B. Luo, "Detection of wavelength in the range from ultraviolet to near infrared light using two parallel PtSe2/thin Si Schottky junctions." Mater. Horizons, 8 (2021) 1976.
[126] Y. Xu, H. Shen, Y. Li, Z. Yue, W. Zhang, Q. Zhao, and Z. Wang, "Self-Powered and Fast Response MoO3/n-Si Photodetectors on Flexible Silicon Substrates with Light-Trapping Structures." ACS Appl. Electron. Mater., 4(9) (2022) 4641-4652.
指導教授 鄭紹良 審核日期 2023-8-15
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明