參考文獻 |
[1] P. Akcora et al., "“Gel-like” Mechanical Reinforcement in Polymer Nanocomposite Melts," Macromolecules, vol. 43, no. 2, pp. 1003-1010, 2009, doi: 10.1021/ma902072d.
[2] K. Almdal, J. Dyre, S. Hvidt, and O. Kramer, "Towards a phenomenological definition of the term ‘gel’," Polymer gels and networks, vol. 1, no. 1, pp. 5-17, 1993.
[3] Y. Osada and J.-P. Gong, "Soft and Wet Materials: Polymer Gels," Advanced Materials, vol. 10, no. 11, pp. 827-837, 1998, doi: 10.1002/(sici)1521-4095(199808)10:11<827::Aid-adma827>3.0.Co;2-l.
[4] J. Shi, H. Hu, Y. Xia, Y. Liu, and Z. Liu, "Polyimide matrix-enhanced cross-linked gel separator with three-dimensional heat-resistance skeleton for high-safety and high-power lithium ion batteries," Journal of Materials Chemistry A, vol. 2, no. 24, 2014, doi: 10.1039/c4ta00808a.
[5] V. Trappe and P. Sandkühler, "Colloidal gels—low-density disordered solid-like states," Current Opinion in Colloid & Interface Science, vol. 8, no. 6, pp. 494-500, 2004, doi: 10.1016/j.cocis.2004.01.002.
[6] A. H. Muhr and J. M. Blanshard, "Diffusion in gels," Polymer, vol. 23, no. 7, pp. 1012-1026, 1982.
[7] R. Parhi, "Cross-Linked Hydrogel for Pharmaceutical Applications: A Review," Adv Pharm Bull, vol. 7, no. 4, pp. 515-530, Dec 2017, doi: 10.15171/apb.2017.064.
[8] S. R. Raghavan and J. F. Douglas, "The conundrum of gel formation by molecular nanofibers, wormlike micelles, and filamentous proteins: gelation without cross-links?," Soft Matter, vol. 8, no. 33, 2012, doi: 10.1039/c2sm25107h.
[9] X. Ding and Y. Wang, "Weak Bond-Based Injectable and Stimuli Responsive Hydrogels for Biomedical Applications," J Mater Chem B, vol. 5, no. 5, pp. 887-906, Feb 7 2017, doi: 10.1039/C6TB03052A.
[10] X. Ji, M. Ahmed, L. Long, N. M. Khashab, F. Huang, and J. L. Sessler, "Adhesive supramolecular polymeric materials constructed from macrocycle-based host-guest interactions," Chem Soc Rev, vol. 48, no. 10, pp. 2682-2697, May 20 2019, doi: 10.1039/c8cs00955d.
[11] B. Li, T. He, Y. Fan, X. Yuan, H. Qiu, and S. Yin, "Recent developments in the construction of metallacycle/metallacage-cored supramolecular polymers via hierarchical self-assembly," Chem Commun (Camb), vol. 55, no. 56, pp. 8036-8059, Jul 9 2019, doi: 10.1039/c9cc02472g.
[12] M. D. Segarra-Maset, V. J. Nebot, J. F. Miravet, and B. Escuder, "Control of molecular gelation by chemical stimuli," Chem Soc Rev, vol. 42, no. 17, pp. 7086-98, Sep 7 2013, doi: 10.1039/c2cs35436e.
[13] L. Leibler, M. Rubinstein, and R. H. Colby, "Dynamics of reversible networks," Macromolecules, vol. 24, no. 16, pp. 4701-4707, 1991.
[14] J. Maitra and V. K. Shukla, "Cross-linking in hydrogels-a review," Am. J. Polym. Sci, vol. 4, no. 2, pp. 25-31, 2014.
[15] M. Hamidi, A. Azadi, and P. Rafiei, "Hydrogel nanoparticles in drug delivery," Advanced drug delivery reviews, vol. 60, no. 15, pp. 1638-1649, 2008.
[16] T. R. Hoare and D. S. Kohane, "Hydrogels in drug delivery: Progress and challenges," Polymer, vol. 49, no. 8, pp. 1993-2007, 2008, doi: 10.1016/j.polymer.2008.01.027.
[17] J. Lei et al., "Facile Fabrication of Biocompatible Gelatin-Based Self-Healing Hydrogels," ACS Applied Polymer Materials, vol. 1, no. 6, pp. 1350-1358, 2019, doi: 10.1021/acsapm.9b00143.
[18] M. Tako, "The Principle of Polysaccharide Gels," Advances in Bioscience and Biotechnology, vol. 06, no. 01, pp. 22-36, 2015, doi: 10.4236/abb.2015.61004.
[19] Z. Lei, Q. Wang, and P. Wu, "A multifunctional skin-like sensor based on a 3D printed thermo-responsive hydrogel," Materials Horizons, vol. 4, no. 4, pp. 694-700, 2017, doi: 10.1039/c7mh00262a.
[20] M. Song et al., "Constructing stimuli-free self-healing, robust and ultrasensitive biocompatible hydrogel sensors with conductive cellulose nanocrystals," Chemical Engineering Journal, vol. 398, 2020, doi: 10.1016/j.cej.2020.125547.
[21] P. Calvert, "Hydrogels for Soft Machines," Advanced Materials, vol. 21, no. 7, pp. 743-756, 2009, doi: 10.1002/adma.200800534.
[22] G. Li et al., "A stretchable and adhesive ionic conductor based on polyacrylic acid and deep eutectic solvents," npj Flexible Electronics, vol. 5, no. 1, 2021, doi: 10.1038/s41528-021-00118-8.
[23] D. Zhang, H. Qiao, W. Fan, K. Zhang, Y. Xia, and K. Sui, "Self-powered ionic sensors overcoming the limitation of ionic conductors as wearable sensing devices," Materials Today Physics, vol. 15, 2020, doi: 10.1016/j.mtphys.2020.100246.
[24] A. Vioux, L. Viau, S. Volland, and J. Le Bideau, "Use of ionic liquids in sol-gel; ionogels and applications," Comptes Rendus Chimie, vol. 13, no. 1-2, pp. 242-255, 2010, doi: 10.1016/j.crci.2009.07.002.
[25] C. A. Angell, Y. Ansari, and Z. Zhao, "Ionic liquids: past, present and future," Faraday Discuss, vol. 154, pp. 9-27; discussion 81-96, 465-71, 2012, doi: 10.1039/c1fd00112d.
[26] Y. Jian, S. Handschuh-Wang, J. Zhang, W. Lu, X. Zhou, and T. Chen, "Biomimetic anti-freezing polymeric hydrogels: keeping soft-wet materials active in cold environments," Mater Horiz, vol. 8, no. 2, pp. 351-369, Feb 1 2021, doi: 10.1039/d0mh01029d.
[27] J. Lai et al., "Highly Stretchable, Fatigue-Resistant, Electrically Conductive, and Temperature-Tolerant Ionogels for High-Performance Flexible Sensors," ACS Appl Mater Interfaces, vol. 11, no. 29, pp. 26412-26420, Jul 24 2019, doi: 10.1021/acsami.9b10146.
[28] Z. Lei and P. Wu, "A highly transparent and ultra-stretchable conductor with stable conductivity during large deformation," Nat Commun, vol. 10, no. 1, p. 3429, Jul 31 2019, doi: 10.1038/s41467-019-11364-w.
[29] Q. Zhang, K. De Oliveira Vigier, S. Royer, and F. Jerome, "Deep eutectic solvents: syntheses, properties and applications," Chem Soc Rev, vol. 41, no. 21, pp. 7108-46, Nov 7 2012, doi: 10.1039/c2cs35178a.
[30] C. J. Clarke, W. C. Tu, O. Levers, A. Brohl, and J. P. Hallett, "Green and Sustainable Solvents in Chemical Processes," Chem Rev, vol. 118, no. 2, pp. 747-800, Jan 24 2018, doi: 10.1021/acs.chemrev.7b00571.
[31] D. Yu, Z. Xue, and T. Mu, "Deep eutectic solvents as a green toolbox for synthesis," Cell Reports Physical Science, vol. 3, no. 4, 2022, doi: 10.1016/j.xcrp.2022.100809.
[32] R. Cabezas et al., "Challenges and Possibilities of Deep Eutectic Solvent-Based Membranes," Industrial & Engineering Chemistry Research, vol. 61, no. 48, pp. 17397-17422, 2022, doi: 10.1021/acs.iecr.2c02747.
[33] B. Joos, T. Vranken, W. Marchal, M. Safari, M. K. Van Bael, and A. T. Hardy, "Eutectogels: A New Class of Solid Composite Electrolytes for Li/Li-Ion Batteries," Chemistry of Materials, vol. 30, no. 3, pp. 655-662, 2018, doi: 10.1021/acs.chemmater.7b03736.
[34] L. C. Tome and D. Mecerreyes, "Emerging Ionic Soft Materials Based on Deep Eutectic Solvents," J Phys Chem B, vol. 124, no. 39, pp. 8465-8478, Oct 1 2020, doi: 10.1021/acs.jpcb.0c04769.
[35] J. Wang, S. Zhang, Z. Ma, and L. Yan, "Deep eutectic solvents eutectogels: progress and challenges," Green Chemical Engineering, vol. 2, no. 4, pp. 359-367, 2021, doi: 10.1016/j.gce.2021.06.001.
[36] O. S. Hammond, D. T. Bowron, and K. J. Edler, "Structure and Properties of “Type IV” Lanthanide Nitrate Hydrate:Urea Deep Eutectic Solvents," ACS Sustainable Chemistry & Engineering, vol. 7, no. 5, pp. 4932-4940, 2019, doi: 10.1021/acssuschemeng.8b05548.
[37] B. B. Hansen et al., "Deep Eutectic Solvents: A Review of Fundamentals and Applications," Chem Rev, vol. 121, no. 3, pp. 1232-1285, Feb 10 2021, doi: 10.1021/acs.chemrev.0c00385.
[38] E. L. Smith, A. P. Abbott, and K. S. Ryder, "Deep eutectic solvents (DESs) and their applications," Chem Rev, vol. 114, no. 21, pp. 11060-82, Nov 12 2014, doi: 10.1021/cr300162p.
[39] J. Wang, B. Zhan, S. Zhang, Y. Wang, and L. Yan, "Freeze-Resistant, Conductive, and Robust Eutectogels of Metal Salt-Based Deep Eutectic Solvents with Poly(vinyl alcohol)," ACS Applied Polymer Materials, vol. 4, no. 3, pp. 2057-2064, 2022, doi: 10.1021/acsapm.1c01899.
[40] Y.-C. Chiu, T. H. Vo, Y.-J. Sheng, and H.-K. Tsao, "Spontaneous Formation of Microgels for a 3D Printing Supporting Medium," ACS Applied Polymer Materials, vol. 5, no. 1, pp. 764-774, 2022, doi: 10.1021/acsapm.2c01748.
[41] L. Bromberg, M. Temchenko, V. Alakhov, and T. A. Hatton, "Bioadhesive properties and rheology of polyether-modified poly(acrylic acid) hydrogels," Int J Pharm, vol. 282, no. 1-2, pp. 45-60, Sep 10 2004, doi: 10.1016/j.ijpharm.2004.05.030.
[42] W. H. Herschel and R. Bulkley, "Konsistenzmessungen von gummi-benzollösungen," Kolloid-Zeitschrift, vol. 39, pp. 291-300, 1926.
[43] A. P. Abbott, R. C. Harris, and K. S. Ryder, "Application of hole theory to define ionic liquids by their transport properties," The Journal of Physical Chemistry B, vol. 111, no. 18, pp. 4910-4913, 2007.
[44] J. Padró, L. Saiz, and E. Guardia, "Hydrogen bonding in liquid alcohols: a computer simulation study," Journal of Molecular Structure, vol. 416, no. 1-3, pp. 243-248, 1997.
[45] S. L. Perkins, P. Painter, and C. M. Colina, "Experimental and Computational Studies of Choline Chloride-Based Deep Eutectic Solvents," Journal of Chemical & Engineering Data, vol. 59, no. 11, pp. 3652-3662, 2014, doi: 10.1021/je500520h.
[46] S. Huang, P. Du, C. Min, Y. Liao, H. Sun, and Y. Jiang, "Poly(1-amino-5-chloroanthraquinone): highly selective and ultrasensitive fluorescent chemosensor for ferric ion," J Fluoresc, vol. 23, no. 4, pp. 621-7, Jul 2013, doi: 10.1007/s10895-013-1179-9.
[47] Y. Khan et al., "Effect of Charge Density on the Mechanical and Electrochemical Properties of Poly (acrylic acid) Hydrogel Electrolytes Based Flexible Supercapacitors," Materials Today Communications, vol. 25, 2020, doi: 10.1016/j.mtcomm.2020.101558.
[48] A.-L. Kjøniksen and B. Nyström, "Effects of polymer concentration and cross-linking density on rheology of chemically cross-linked poly (vinyl alcohol) near the gelation threshold," Macromolecules, vol. 29, no. 15, pp. 5215-5222, 1996.
[49] B. Fennell and R. Hill, "The influence of poly (acrylic acid) molar mass and concentration on the properties of polyalkenoate cements Part III Fracture toughness and toughness," Journal of materials science, vol. 36, pp. 5185-5192, 2001.
[50] L. M. Fuhrer, S. Sun, V. Boyko, M. Kellermeier, and H. Colfen, "Tuning the properties of hydrogels made from poly(acrylic acid) and calcium salts," Phys Chem Chem Phys, vol. 22, no. 33, pp. 18631-18638, Sep 7 2020, doi: 10.1039/d0cp02649b.
[51] R. L. Gustafson and J. A. Lirio, "Binding of divalent metal ions by crosslinked polyacrylic acid," The Journal of Physical Chemistry, vol. 72, no. 5, pp. 1502-1505, 1968.
[52] S.-C. Han, K.-H. Choo, S.-J. Choi, and M. M. Benjamin, "Modeling manganese removal in chelating polymer-assisted membrane separation systems for water treatment," Journal of Membrane Science, vol. 290, no. 1-2, pp. 55-61, 2007, doi: 10.1016/j.memsci.2006.12.022.
[53] T. Tomida, K. Hamaguchi, S. Tunashima, M. Katoh, and S. Masuda, "Binding properties of a water-soluble chelating polymer with divalent metal ions measured by ultrafiltration. Poly (acrylic acid)," Industrial & engineering chemistry research, vol. 40, no. 16, pp. 3557-3562, 2001.
[54] J. Wang, Z. Ma, Y. Wang, J. Shao, and L. Yan, "Ultra-Stretchable, Self-Healing, Conductive, and Transparent PAA/DES Ionic Gel," Macromol Rapid Commun, vol. 42, no. 2, p. e2000445, Jan 2021, doi: 10.1002/marc.202000445.
[55] F. Wurm, B. Rietzler, T. Pham, and T. Bechtold, "Multivalent Ions as Reactive Crosslinkers for Biopolymers-A Review," Molecules, vol. 25, no. 8, Apr 16 2020, doi: 10.3390/molecules25081840.
[56] E. N. Economou, <The Physics of Solids.pdf>, 1 ed. (Graduate Texts in Physics). Springer Berlin, Heidelberg, 2010, pp. XIX, 865.
[57] J. L. Plawsky, Transport phenomena fundamentals. CRC press, 2020.
[58] Y. Tian, S. Chen, S. Ding, Q. Chen, and J. Zhang, "A highly conductive gel electrolyte with favorable ion transfer channels for long-lived zinc-iodine batteries," Chem Sci, vol. 14, no. 2, pp. 331-337, Jan 4 2023, doi: 10.1039/d2sc06035c.
[59] L. J. Kirwan, P. D. Fawell, and W. van Bronswijk, "In situ FTIR-ATR examination of poly (acrylic acid) adsorbed onto hematite at low pH," Langmuir, vol. 19, no. 14, pp. 5802-5807, 2003.
[60] R. Frost, Z. Ding, W. Martens, T. Johnson, and J. T. Kloprogge, "Molecular assembly in synthesised hydrotalcites of formula CuxZn6− xAl2 (OH) 16 (CO3)· 4H2O—a vibrational spectroscopic study," Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, vol. 59, no. 2, pp. 321-328, 2003.
[61] T. Seki et al., "The Bending Mode of Water: A Powerful Probe for Hydrogen Bond Structure of Aqueous Systems," J Phys Chem Lett, vol. 11, no. 19, pp. 8459-8469, Oct 1 2020, doi: 10.1021/acs.jpclett.0c01259.
[62] T. Alizadeh, M. Akhoundian, and B. Hoseinnejad, "Synthesis of dodecanol-anchored nano-sized magnesium imprinted polymer and its application as an efficient ionophore in Mg2+-selective PVC membrane electrode," Analytical and Bioanalytical Electrochemistry, vol. 13, no. 3, pp. 436-456, 2021. |