博碩士論文 110324086 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:12 、訪客IP:3.143.5.121
姓名 黃文哲(Wun-Jhe Huang)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 基於第四型深共熔溶劑通過陽離子橋連結的可拉伸和導電物理共熔凝膠
(Stretchable and conductive physical eutectogel based on type IV deep eutectic solvent through cation-bridging)
相關論文
★ 單一高分子在接枝表面的吸附現象-分子模擬★ 化學機械研磨的微觀機制探討
★ 界面活性劑與微脂粒的作用★ 家禽傳染性華氏囊病病毒與VP2次病毒顆粒對固定化鎳離子之異相吸附
★ 液滴潤濕與接觸角遲滯★ 親溶劑奈米粒子於高分子溶液中的自組裝現象
★ 具界面活性溶質之蒸發殘留圖形研究★ 奈米自泳動粒子之擴散行為
★ 抗氧化奈米銅粒子的製備及分析★ 柱狀自泳動粒子之擴散行為與沉降平衡
★ 過氧化氫的界面性質與穩定性★ 液橋分離與液面爬升物體之研究
★ 電潤濕動態行為探討★ 表面粗糙度對接觸角遲滯影響之效應
★ 以耗散粒子動力學法研究奈米自泳動粒子輸送現象★ 低溫還原氧化石墨烯薄膜
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2028-6-30以後開放)
摘要(中) 本研究展示了一種簡便的方法,通過直接將聚丙烯酸(PAA)分散在第四型深共熔溶劑(DES)中,製備可拉伸和導電的共熔凝膠。這些DES包含氯化金屬水合物,如MgCl2或ZnCl2作為氫鍵受體,以及甘油或乙二醇作為氫鍵供體。共熔凝膠表現出類似液體的行為,具有剪切稀化並具有屈服應力,而其凝膠狀行為則通過儲存模量大於損失模量來識別。此外,應力-應變曲線顯示了固狀的行為。DES的流變和機械性質在很大程度上取決於DES的組分和組成,以及PAA的濃度。第四型DES中的聚合物網絡形成歸因於陽離子橋機制,其中二價金屬離子作為交聯劑在PAA聚合物之間起作用。通過對共熔凝膠的離子導電度和紅外光譜分析,研究了交聯機制。由於陽離子橋和氫鍵的協同作用,共熔凝膠可以展現卓越的拉伸性(~1500%)和顯著的導電性(7.69 mS/cm)。
摘要(英) This study demonstrates the facile fabrication of stretchable and conductive eutectogels by directly dispersing poly(acrylic acid) (PAA) in type IV deep eutectic solvents (DESs). These DESs contain metal chloride hydrates like MgCl2 or ZnCl2 as hydrogen bond acceptor and glycerol or ethylene glycol as hydrogen bond donor. The eutectogel demonstrated liquid-like behavior, characterized by shear-thinning with a yield stress, while its gel-like behavior was identified by a storage modulus greater than the loss modulus. Additionally, the solid-like behavior was evidenced by the stress-strain curves. The rheological and mechanical properties of DESs were found to depend significantly on the component and composition of DESs, as well as the concentration of PAA. The polymer network formation in type IV DESs is attributed to the cation-bridge mechanism, where divalent metal ions act as cross-linking agents among PAA polymers. The cross-linking mechanism has been examined by the ionic conductivity and IR spectroscopy analyses of the eutectogel. Due to the synergistic cation-bridging and hydrogen bonding, the eutectogel can display exceptional stretchability (~1500%) and remarkable conductivity (7.69 mS/cm).
關鍵字(中) ★ 共熔凝膠
★ 深共熔溶劑
★ 流變性質
★ 應力-應變曲線
★ 陽離子橋
關鍵字(英) ★ Eutectogel
★ Deep eutectic solvent
★ Rheological properties
★ Stress-strain curve
★ Cation-bridging
論文目次 摘要.......................................................................................................................................................... i
Abstract ................................................................................................................................................... ii
誌謝........................................................................................................................................................ iii
Table of Contents.................................................................................................................................... v
List of Figures........................................................................................................................................ vi
List of Table ......................................................................................................................................... viii
Chapter 1 Introduction ............................................................................................................................ 1
Chapter 2 Experiments............................................................................................................................ 3
2-1 Materials ....................................................................................................................................... 3
2-2 Preparation of PAA physical eutectogels...................................................................................... 3
2-3 Rheological analysis ..................................................................................................................... 3
2-4 Mechanical test ............................................................................................................................. 4
2-5 Electrical measurement................................................................................................................. 4
2-6 Fourier Transform Infrared (FT-IR) spectroscopy analysis.......................................................... 5
Chapter 3 Results and Discussions.......................................................................................................... 6
3-1 Viscoelasticity of physical eutectogels......................................................................................... 6
3-2 Solid-like behavior: stress-strain relation of eutectogels............................................................ 11
3-3 Effect of DES composition ......................................................................................................... 14
3-4 Cross-linking mechanism based on cation-bridge ...................................................................... 16
Chapter 4 Conclusion............................................................................................................................ 20
References............................................................................................................................................. 22
參考文獻 [1] P. Akcora et al., "“Gel-like” Mechanical Reinforcement in Polymer Nanocomposite Melts," Macromolecules, vol. 43, no. 2, pp. 1003-1010, 2009, doi: 10.1021/ma902072d.
[2] K. Almdal, J. Dyre, S. Hvidt, and O. Kramer, "Towards a phenomenological definition of the term ‘gel’," Polymer gels and networks, vol. 1, no. 1, pp. 5-17, 1993.
[3] Y. Osada and J.-P. Gong, "Soft and Wet Materials: Polymer Gels," Advanced Materials, vol. 10, no. 11, pp. 827-837, 1998, doi: 10.1002/(sici)1521-4095(199808)10:11<827::Aid-adma827>3.0.Co;2-l.
[4] J. Shi, H. Hu, Y. Xia, Y. Liu, and Z. Liu, "Polyimide matrix-enhanced cross-linked gel separator with three-dimensional heat-resistance skeleton for high-safety and high-power lithium ion batteries," Journal of Materials Chemistry A, vol. 2, no. 24, 2014, doi: 10.1039/c4ta00808a.
[5] V. Trappe and P. Sandkühler, "Colloidal gels—low-density disordered solid-like states," Current Opinion in Colloid & Interface Science, vol. 8, no. 6, pp. 494-500, 2004, doi: 10.1016/j.cocis.2004.01.002.
[6] A. H. Muhr and J. M. Blanshard, "Diffusion in gels," Polymer, vol. 23, no. 7, pp. 1012-1026, 1982.
[7] R. Parhi, "Cross-Linked Hydrogel for Pharmaceutical Applications: A Review," Adv Pharm Bull, vol. 7, no. 4, pp. 515-530, Dec 2017, doi: 10.15171/apb.2017.064.
[8] S. R. Raghavan and J. F. Douglas, "The conundrum of gel formation by molecular nanofibers, wormlike micelles, and filamentous proteins: gelation without cross-links?," Soft Matter, vol. 8, no. 33, 2012, doi: 10.1039/c2sm25107h.
[9] X. Ding and Y. Wang, "Weak Bond-Based Injectable and Stimuli Responsive Hydrogels for Biomedical Applications," J Mater Chem B, vol. 5, no. 5, pp. 887-906, Feb 7 2017, doi: 10.1039/C6TB03052A.
[10] X. Ji, M. Ahmed, L. Long, N. M. Khashab, F. Huang, and J. L. Sessler, "Adhesive supramolecular polymeric materials constructed from macrocycle-based host-guest interactions," Chem Soc Rev, vol. 48, no. 10, pp. 2682-2697, May 20 2019, doi: 10.1039/c8cs00955d.
[11] B. Li, T. He, Y. Fan, X. Yuan, H. Qiu, and S. Yin, "Recent developments in the construction of metallacycle/metallacage-cored supramolecular polymers via hierarchical self-assembly," Chem Commun (Camb), vol. 55, no. 56, pp. 8036-8059, Jul 9 2019, doi: 10.1039/c9cc02472g.
[12] M. D. Segarra-Maset, V. J. Nebot, J. F. Miravet, and B. Escuder, "Control of molecular gelation by chemical stimuli," Chem Soc Rev, vol. 42, no. 17, pp. 7086-98, Sep 7 2013, doi: 10.1039/c2cs35436e.
[13] L. Leibler, M. Rubinstein, and R. H. Colby, "Dynamics of reversible networks," Macromolecules, vol. 24, no. 16, pp. 4701-4707, 1991.
[14] J. Maitra and V. K. Shukla, "Cross-linking in hydrogels-a review," Am. J. Polym. Sci, vol. 4, no. 2, pp. 25-31, 2014.
[15] M. Hamidi, A. Azadi, and P. Rafiei, "Hydrogel nanoparticles in drug delivery," Advanced drug delivery reviews, vol. 60, no. 15, pp. 1638-1649, 2008.
[16] T. R. Hoare and D. S. Kohane, "Hydrogels in drug delivery: Progress and challenges," Polymer, vol. 49, no. 8, pp. 1993-2007, 2008, doi: 10.1016/j.polymer.2008.01.027.
[17] J. Lei et al., "Facile Fabrication of Biocompatible Gelatin-Based Self-Healing Hydrogels," ACS Applied Polymer Materials, vol. 1, no. 6, pp. 1350-1358, 2019, doi: 10.1021/acsapm.9b00143.
[18] M. Tako, "The Principle of Polysaccharide Gels," Advances in Bioscience and Biotechnology, vol. 06, no. 01, pp. 22-36, 2015, doi: 10.4236/abb.2015.61004.
[19] Z. Lei, Q. Wang, and P. Wu, "A multifunctional skin-like sensor based on a 3D printed thermo-responsive hydrogel," Materials Horizons, vol. 4, no. 4, pp. 694-700, 2017, doi: 10.1039/c7mh00262a.
[20] M. Song et al., "Constructing stimuli-free self-healing, robust and ultrasensitive biocompatible hydrogel sensors with conductive cellulose nanocrystals," Chemical Engineering Journal, vol. 398, 2020, doi: 10.1016/j.cej.2020.125547.
[21] P. Calvert, "Hydrogels for Soft Machines," Advanced Materials, vol. 21, no. 7, pp. 743-756, 2009, doi: 10.1002/adma.200800534.
[22] G. Li et al., "A stretchable and adhesive ionic conductor based on polyacrylic acid and deep eutectic solvents," npj Flexible Electronics, vol. 5, no. 1, 2021, doi: 10.1038/s41528-021-00118-8.
[23] D. Zhang, H. Qiao, W. Fan, K. Zhang, Y. Xia, and K. Sui, "Self-powered ionic sensors overcoming the limitation of ionic conductors as wearable sensing devices," Materials Today Physics, vol. 15, 2020, doi: 10.1016/j.mtphys.2020.100246.
[24] A. Vioux, L. Viau, S. Volland, and J. Le Bideau, "Use of ionic liquids in sol-gel; ionogels and applications," Comptes Rendus Chimie, vol. 13, no. 1-2, pp. 242-255, 2010, doi: 10.1016/j.crci.2009.07.002.
[25] C. A. Angell, Y. Ansari, and Z. Zhao, "Ionic liquids: past, present and future," Faraday Discuss, vol. 154, pp. 9-27; discussion 81-96, 465-71, 2012, doi: 10.1039/c1fd00112d.
[26] Y. Jian, S. Handschuh-Wang, J. Zhang, W. Lu, X. Zhou, and T. Chen, "Biomimetic anti-freezing polymeric hydrogels: keeping soft-wet materials active in cold environments," Mater Horiz, vol. 8, no. 2, pp. 351-369, Feb 1 2021, doi: 10.1039/d0mh01029d.
[27] J. Lai et al., "Highly Stretchable, Fatigue-Resistant, Electrically Conductive, and Temperature-Tolerant Ionogels for High-Performance Flexible Sensors," ACS Appl Mater Interfaces, vol. 11, no. 29, pp. 26412-26420, Jul 24 2019, doi: 10.1021/acsami.9b10146.
[28] Z. Lei and P. Wu, "A highly transparent and ultra-stretchable conductor with stable conductivity during large deformation," Nat Commun, vol. 10, no. 1, p. 3429, Jul 31 2019, doi: 10.1038/s41467-019-11364-w.
[29] Q. Zhang, K. De Oliveira Vigier, S. Royer, and F. Jerome, "Deep eutectic solvents: syntheses, properties and applications," Chem Soc Rev, vol. 41, no. 21, pp. 7108-46, Nov 7 2012, doi: 10.1039/c2cs35178a.
[30] C. J. Clarke, W. C. Tu, O. Levers, A. Brohl, and J. P. Hallett, "Green and Sustainable Solvents in Chemical Processes," Chem Rev, vol. 118, no. 2, pp. 747-800, Jan 24 2018, doi: 10.1021/acs.chemrev.7b00571.
[31] D. Yu, Z. Xue, and T. Mu, "Deep eutectic solvents as a green toolbox for synthesis," Cell Reports Physical Science, vol. 3, no. 4, 2022, doi: 10.1016/j.xcrp.2022.100809.
[32] R. Cabezas et al., "Challenges and Possibilities of Deep Eutectic Solvent-Based Membranes," Industrial & Engineering Chemistry Research, vol. 61, no. 48, pp. 17397-17422, 2022, doi: 10.1021/acs.iecr.2c02747.
[33] B. Joos, T. Vranken, W. Marchal, M. Safari, M. K. Van Bael, and A. T. Hardy, "Eutectogels: A New Class of Solid Composite Electrolytes for Li/Li-Ion Batteries," Chemistry of Materials, vol. 30, no. 3, pp. 655-662, 2018, doi: 10.1021/acs.chemmater.7b03736.
[34] L. C. Tome and D. Mecerreyes, "Emerging Ionic Soft Materials Based on Deep Eutectic Solvents," J Phys Chem B, vol. 124, no. 39, pp. 8465-8478, Oct 1 2020, doi: 10.1021/acs.jpcb.0c04769.
[35] J. Wang, S. Zhang, Z. Ma, and L. Yan, "Deep eutectic solvents eutectogels: progress and challenges," Green Chemical Engineering, vol. 2, no. 4, pp. 359-367, 2021, doi: 10.1016/j.gce.2021.06.001.
[36] O. S. Hammond, D. T. Bowron, and K. J. Edler, "Structure and Properties of “Type IV” Lanthanide Nitrate Hydrate:Urea Deep Eutectic Solvents," ACS Sustainable Chemistry & Engineering, vol. 7, no. 5, pp. 4932-4940, 2019, doi: 10.1021/acssuschemeng.8b05548.
[37] B. B. Hansen et al., "Deep Eutectic Solvents: A Review of Fundamentals and Applications," Chem Rev, vol. 121, no. 3, pp. 1232-1285, Feb 10 2021, doi: 10.1021/acs.chemrev.0c00385.
[38] E. L. Smith, A. P. Abbott, and K. S. Ryder, "Deep eutectic solvents (DESs) and their applications," Chem Rev, vol. 114, no. 21, pp. 11060-82, Nov 12 2014, doi: 10.1021/cr300162p.
[39] J. Wang, B. Zhan, S. Zhang, Y. Wang, and L. Yan, "Freeze-Resistant, Conductive, and Robust Eutectogels of Metal Salt-Based Deep Eutectic Solvents with Poly(vinyl alcohol)," ACS Applied Polymer Materials, vol. 4, no. 3, pp. 2057-2064, 2022, doi: 10.1021/acsapm.1c01899.
[40] Y.-C. Chiu, T. H. Vo, Y.-J. Sheng, and H.-K. Tsao, "Spontaneous Formation of Microgels for a 3D Printing Supporting Medium," ACS Applied Polymer Materials, vol. 5, no. 1, pp. 764-774, 2022, doi: 10.1021/acsapm.2c01748.
[41] L. Bromberg, M. Temchenko, V. Alakhov, and T. A. Hatton, "Bioadhesive properties and rheology of polyether-modified poly(acrylic acid) hydrogels," Int J Pharm, vol. 282, no. 1-2, pp. 45-60, Sep 10 2004, doi: 10.1016/j.ijpharm.2004.05.030.
[42] W. H. Herschel and R. Bulkley, "Konsistenzmessungen von gummi-benzollösungen," Kolloid-Zeitschrift, vol. 39, pp. 291-300, 1926.
[43] A. P. Abbott, R. C. Harris, and K. S. Ryder, "Application of hole theory to define ionic liquids by their transport properties," The Journal of Physical Chemistry B, vol. 111, no. 18, pp. 4910-4913, 2007.
[44] J. Padró, L. Saiz, and E. Guardia, "Hydrogen bonding in liquid alcohols: a computer simulation study," Journal of Molecular Structure, vol. 416, no. 1-3, pp. 243-248, 1997.
[45] S. L. Perkins, P. Painter, and C. M. Colina, "Experimental and Computational Studies of Choline Chloride-Based Deep Eutectic Solvents," Journal of Chemical & Engineering Data, vol. 59, no. 11, pp. 3652-3662, 2014, doi: 10.1021/je500520h.
[46] S. Huang, P. Du, C. Min, Y. Liao, H. Sun, and Y. Jiang, "Poly(1-amino-5-chloroanthraquinone): highly selective and ultrasensitive fluorescent chemosensor for ferric ion," J Fluoresc, vol. 23, no. 4, pp. 621-7, Jul 2013, doi: 10.1007/s10895-013-1179-9.
[47] Y. Khan et al., "Effect of Charge Density on the Mechanical and Electrochemical Properties of Poly (acrylic acid) Hydrogel Electrolytes Based Flexible Supercapacitors," Materials Today Communications, vol. 25, 2020, doi: 10.1016/j.mtcomm.2020.101558.
[48] A.-L. Kjøniksen and B. Nyström, "Effects of polymer concentration and cross-linking density on rheology of chemically cross-linked poly (vinyl alcohol) near the gelation threshold," Macromolecules, vol. 29, no. 15, pp. 5215-5222, 1996.
[49] B. Fennell and R. Hill, "The influence of poly (acrylic acid) molar mass and concentration on the properties of polyalkenoate cements Part III Fracture toughness and toughness," Journal of materials science, vol. 36, pp. 5185-5192, 2001.
[50] L. M. Fuhrer, S. Sun, V. Boyko, M. Kellermeier, and H. Colfen, "Tuning the properties of hydrogels made from poly(acrylic acid) and calcium salts," Phys Chem Chem Phys, vol. 22, no. 33, pp. 18631-18638, Sep 7 2020, doi: 10.1039/d0cp02649b.
[51] R. L. Gustafson and J. A. Lirio, "Binding of divalent metal ions by crosslinked polyacrylic acid," The Journal of Physical Chemistry, vol. 72, no. 5, pp. 1502-1505, 1968.
[52] S.-C. Han, K.-H. Choo, S.-J. Choi, and M. M. Benjamin, "Modeling manganese removal in chelating polymer-assisted membrane separation systems for water treatment," Journal of Membrane Science, vol. 290, no. 1-2, pp. 55-61, 2007, doi: 10.1016/j.memsci.2006.12.022.
[53] T. Tomida, K. Hamaguchi, S. Tunashima, M. Katoh, and S. Masuda, "Binding properties of a water-soluble chelating polymer with divalent metal ions measured by ultrafiltration. Poly (acrylic acid)," Industrial & engineering chemistry research, vol. 40, no. 16, pp. 3557-3562, 2001.
[54] J. Wang, Z. Ma, Y. Wang, J. Shao, and L. Yan, "Ultra-Stretchable, Self-Healing, Conductive, and Transparent PAA/DES Ionic Gel," Macromol Rapid Commun, vol. 42, no. 2, p. e2000445, Jan 2021, doi: 10.1002/marc.202000445.
[55] F. Wurm, B. Rietzler, T. Pham, and T. Bechtold, "Multivalent Ions as Reactive Crosslinkers for Biopolymers-A Review," Molecules, vol. 25, no. 8, Apr 16 2020, doi: 10.3390/molecules25081840.
[56] E. N. Economou, <The Physics of Solids.pdf>, 1 ed. (Graduate Texts in Physics). Springer Berlin, Heidelberg, 2010, pp. XIX, 865.
[57] J. L. Plawsky, Transport phenomena fundamentals. CRC press, 2020.
[58] Y. Tian, S. Chen, S. Ding, Q. Chen, and J. Zhang, "A highly conductive gel electrolyte with favorable ion transfer channels for long-lived zinc-iodine batteries," Chem Sci, vol. 14, no. 2, pp. 331-337, Jan 4 2023, doi: 10.1039/d2sc06035c.
[59] L. J. Kirwan, P. D. Fawell, and W. van Bronswijk, "In situ FTIR-ATR examination of poly (acrylic acid) adsorbed onto hematite at low pH," Langmuir, vol. 19, no. 14, pp. 5802-5807, 2003.
[60] R. Frost, Z. Ding, W. Martens, T. Johnson, and J. T. Kloprogge, "Molecular assembly in synthesised hydrotalcites of formula CuxZn6− xAl2 (OH) 16 (CO3)· 4H2O—a vibrational spectroscopic study," Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, vol. 59, no. 2, pp. 321-328, 2003.
[61] T. Seki et al., "The Bending Mode of Water: A Powerful Probe for Hydrogen Bond Structure of Aqueous Systems," J Phys Chem Lett, vol. 11, no. 19, pp. 8459-8469, Oct 1 2020, doi: 10.1021/acs.jpclett.0c01259.
[62] T. Alizadeh, M. Akhoundian, and B. Hoseinnejad, "Synthesis of dodecanol-anchored nano-sized magnesium imprinted polymer and its application as an efficient ionophore in Mg2+-selective PVC membrane electrode," Analytical and Bioanalytical Electrochemistry, vol. 13, no. 3, pp. 436-456, 2021.
指導教授 曹恆光(Heng-Kwong Tsao) 審核日期 2023-6-12
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明