參考文獻 |
參考文獻
1. Duan, X.; Zhu, W.; Ruan, Z.; Xie, M.; Chen, J.; Ren, X., Recycling of Lithium Batteries—A Review. Energies 2022, 15 (5), 1611.
2. Meng, F.; McNeice, J.; Zadeh, S. S.; Ghahreman, A., Review of Lithium Production and Recovery from Minerals, Brines, and Lithium-Ion Batteries. Miner. Process. Extr. Metall. Rev. 2019, 42 (2), 123-141.
3. Ahui Zhu, X. B., Weijiang Han, Dianxue Cao, Yong Wen, Kai Zhu, Shubin Wang, The Application of Deep Eutectic Solvents in Lithium-Ion Battery Recycling: A Comprehensive Review. Resour. Conserv. Recycl. 2023, 188, 106690.
4. Sommerville, R.; Zhu, P.; Rajaeifar, M. A.; Heidrich, O.; Goodship, V.; Kendrick, E., A Qualitative Assessment of Lithium Ion Battery Recycling Processes. Resour. Conserv. Recycl. 2021, 165, 105219.
5. Li, Y.; Lv, W.; Huang, H.; Yan, W.; Li, X.; Ning, P.; Cao, H.; Sun, Z., Recycling of Spent Lithium-Ion Batteries in View of Green Chemistry. Green Chem. 2021, 23 (17), 6139-6171.
6. Dadé, M.; Wallmach, T.; Laugier, O., Detailed Microparticle Analyses Providing Process Relevant Chemical and Microtextural Insights into the Black Mass. Minerals 2022, 12 (2), 119.
7. Punt, T.; Bradshaw, S. M.; van Wyk, P.; Akdogan, G., The Efficiency of Black Mass Preparation by Discharge and Alkaline Leaching for LIB Recycling. Minerals 2022, 12 (6), 753.
8. Larouche, F.; Tedjar, F.; Amouzegar, K.; Houlachi, G.; Bouchard, P.; Demopoulos, G. P.; Zaghib, K., Progress and Status of Hydrometallurgical and Direct Recycling of Li-Ion Batteries and Beyond. Materials 2020, 13 (3), 801.
9. Abbott, A. P.; Capper, G.; Davies, D. L.; Munro, H. L.; Rasheed, R. K.; Tambyrajah, V., Preparation of Novel, Moisture-Stable, Lewis-acidic Ionic Liquids Containing Quaternary Ammonium Salts with Functional Side Chains. Chem. Commun. 2001, (19), 2010-1.
10. El Achkar, T.; Greige-Gerges, H.; Fourmentin, S., Basics and Properties of Deep Eutectic Solvents: A Review. Environ. Chem. Lett. 2021, 19 (4), 3397-3408.
11. Smith, E. L.; Abbott, A. P.; Ryder, K. S., Deep Eutectic Solvents (DESs) and Their Applications. Chem. Rev. 2014, 114 (21), 11060-82.
12. Hammond, O. S.; Bowron, D. T.; Edler, K. J., Liquid Structure of the Choline Chloride-Urea Deep Eutectic Solvent (reline) from Neutron Diffraction and Atomistic Modelling. Green Chem. 2016, 18 (9), 2736-2744.
13. Hammond, O. S.; Bowron, D. T.; Jackson, A. J.; Arnold, T.; Sanchez-Fernandez, A.; Tsapatsaris, N.; Garcia Sakai, V.; Edler, K. J., Resilience of Malic Acid Natural Deep Eutectic Solvent Nanostructure to Solidification and Hydration. J. Phys. Chem. B 2017, 121 (31), 7473-7483.
14. Du, C.; Zhao, B.; Chen, X. B.; Birbilis, N.; Yang, H., Effect of Water Presence on Choline Chloride-2urea Ionic Liquid and Coating Platings from the Hydrated Ionic Liquid. Sci. Rep. 2016, 6, 29225.
15. Azizi, N.; Dezfooli, S.; Hashemi, M. M., A Sustainable Approach to the Ugi Reaction in Deep Eutectic Solvent. C. R. Chim. 2013, 16 (12), 1098-1102.
16. Zhekenov, T.; Toksanbayev, N.; Kazakbayeva, Z.; Shah, D.; Mjalli, F. S., Formation of Type III Deep Eutectic Solvents and Effect of Water on Their Intermolecular Interactions. Fluid Ph. Equilibria. 2017, 441, 43-48.
17. Hammond, O. S.; Bowron, D. T.; Edler, K. J., The Effect of Water upon Deep Eutectic Solvent Nanostructure: An Unusual Transition from Ionic Mixture to Aqueous Solution. Angew. Chem., Int. Ed. Engl. 2017, 56 (33), 9782-9785.
18. Kumari, P.; Shobhna; Kaur, S.; Kashyap, H. K., Influence of Hydration on the Structure of Reline Deep Eutectic Solvent: A Molecular Dynamics Study. ACS Omega 2018, 3 (11), 15246-15255.
19. Al-Murshedi, A. Y. M.; Alesary, H. F.; Al-Hadrawi, R., Thermophysical Properties in Deep Eutectic Solvents with/without Water. J. Phys. Conf. Ser. 2019, 1294 (5), 052041.
20. Rozas, S.; Benito, C.; Alcalde, R.; Atilhan, M.; Aparicio, S., Insights on the Water Effect on Deep Eutectic Solvents Properties and Structuring: The Archetypical Case of Choline Chloride + Ethylene Glycol. J. Mol. Liq. 2021, 344, 117717.
21. Andrew P. Abbott, G. C., David L. Davies, Katy J. McKenzie, and Stephen U. Obi, Solubility of Metal Oxides in Deep Eutectic Solvents Based on Choline Chloride. J. Chem. Eng. 2006, 51, 1280-1282.
22. Chen, Y.; Han, X.; Liu, Z.; Yu, D.; Guo, W.; Mu, T., Capture of Toxic Gases by Deep Eutectic Solvents. ACS Sustain. Chem. Eng. 2020, 8 (14), 5410-5430.
23. Wen Cheng Su, D. S. H. W., and Meng Hui Li, Effect of Water on Solubility of Carbon Dioxide in (Aminomethanamide +2-Hydroxy-N,N,N-trimethylethanaminium Chloride. J. Chem. Eng. 2009, 54, 1951–1955.
24. Bernasconi, R.; Panzeri, G.; Accogli, A.; Liberale, F.; Nobili, L.; Magagnin, L., Electrodeposition from Deep Eutectic Solvents. Intech. Prog. Dev. Lon. Liq. 2017, 235-261.
25. Gao, W.; Liu, C.; Cao, H.; Zheng, X.; Lin, X.; Wang, H.; Zhang, Y.; Sun, Z., Comprehensive Evaluation on Effective Leaching of Critical Metals from Spent Lithium-Ion Batteries. Waste Manage. 2018, 75, 477-485.
26. Wang, M.; Tan, Q.; Liu, L.; Li, J., A Low-Toxicity and High-Efficiency Deep Eutectic Solvent for the Separation of Aluminum Foil and Cathode Materials from Spent Lithium-Ion Batteries. J. Hazard. Mater. 2019, 380, 120846.
27. Sun, L.; Qiu, K., Organic Oxalate as Leachant and Precipitant for the Recovery of Valuable Metals from Spent Lithium-Ion Batteries. Waste Manage. 2012, 32 (8), 1575-82.
28. Pateli, I. M.; Thompson, D.; Alabdullah, S. S. M.; Abbott, A. P.; Jenkin, G. R. T.; Hartley, J. M., The Effect of pH and Hydrogen Bond Donor on the Dissolution of Metal Oxides in Deep Eutectic Solvents. Green Chem. 2020, 22 (16), 5476-5486.
29. Chang, X.; Fan, M.; Gu, C. F.; He, W. H.; Meng, Q.; Wan, L. J.; Guo, Y. G., Selective Extraction of Transition Metals from Spent LiNi(x) Co(y) Mn(1-x-y) O(2) Cathode via Regulation of Coordination Environment. Angew. Chem., Int. Ed. Engl. 2022, 61 (24), e202202558.
30. Wang, S.; Zhang, Z.; Lu, Z.; Xu, Z., A Novel Method for Screening Deep Eutectic Solvent to Recycle the Cathode of Li-Ion Batteries. Green Chem. 2020, 22 (14), 4473-4482.
31. Damilano, G.; Laitinen, A.; Willberg-Keyrilainen, P.; Lavonen, T.; Hakkinen, R.; Dehaen, W.; Binnemans, K.; Kuutti, L., Effects of Thiol Substitution in Deep-Eutectic Solvents (DESs) as Solvents for Metal Oxides. RSC Adv. 2020, 10 (39), 23484-23490.
32. Abbott, A. P.; Capper, G.; Gray, S., Design of Improved Deep Eutectic Solvents Using Hole Theory. Chemphyschem 2006, 7 (4), 803-6.
33. Morina, R.; Callegari, D.; Merli, D.; Alberti, G.; Mustarelli, P.; Quartarone, E., Cathode Active Material Recycling from Spent Lithium Batteries: A Green (Circular) Approach Based on Deep Eutectic Solvents. ChemSusChem 2022, 15 (2), e202102080.
34. D′Agostino, C.; Harris, R. C.; Abbott, A. P.; Gladden, L. F.; Mantle, M. D., Molecular Motion and Ion Diffusion in Choline Chloride Based Deep Eutectic Solvents Studied by 1H Pulsed Field Gradient NMR Spectroscopy. Phys. Chem. Chem. Phys. 2011, 13 (48), 21383-91.
35. Alcalde, R.; Atilhan, M.; Aparicio, S., On the Properties of (Choline Chloride + Lactic Acid) Deep Eutectic Solvent with Methanol Mixtures. J. Mol. Liq. 2018, 272, 815-820.
36. Florindo, C.; Oliveira, F. S.; Rebelo, L. P. N.; Fernandes, A. M.; Marrucho, I. M., Insights into the Synthesis and Properties of Deep Eutectic Solvents Based on Cholinium Chloride and Carboxylic Acids. ACS Sustain. Chem. Eng. 2014, 2 (10), 2416-2425.
37. Chang, X.; Fan, M.; Gu, C. F.; He, W. H.; Meng, Q.; Wan, L. J.; Guo, Y. G., Selective Extraction of Transition Metals from Spent LiNi(x) Co(y) Mn(1-x-y) O(2) Cathode via Regulation of Coordination Environment. Angew Chem Int Ed Engl 2022, 61 (24), e202202558.
38. Lai, Y.; Zhu, X.; Li, J.; Gou, Q.; Li, M.; Xia, A.; Huang, Y.; Zhu, X.; Liao, Q., Recovery and Regeneration of Anode Graphite from Spent Lithium-Ion Batteries through Deep Eutectic Solvent Treatment: Structural Characteristics, Electrochemical Performance and Regeneration Mechanism. J. Chem. Eng. 2023, 457, 141196.
39. Tran, M. K.; Rodrigues, M.-T. F.; Kato, K.; Babu, G.; Ajayan, P. M., Deep Eutectic Solvents for Cathode Recycling of Li-Ion Batteries. Nat. Energy 2019, 4 (4), 339-345.
40. Lu, Q.; Chen, L.; Li, X.; Chao, Y.; Sun, J.; Ji, H.; Zhu, W., Sustainable and Convenient Recovery of Valuable Metals from Spent Li-Ion Batteries by a One-Pot Extraction Process. ACS Sustain. Chem. Eng. 2021, 9 (41), 13851-13861.
41. Chen, L.; Chao, Y.; Li, X.; Zhou, G.; Lu, Q.; Hua, M.; Li, H.; Ni, X.; Wu, P.; Zhu, W., Engineering a Tandem Leaching System for the Highly Selective Recycling of Valuable Metals from Spent Li-Ion Batteries. Green Chem. 2021, 23 (5), 2177-2184.
42. Wang, K.; Hu, T.; Shi, P.; Min, Y.; Wu, J.; Xu, Q., Efficient Recovery of Value Metals from Spent Lithium-Ion Batteries by Combining Deep Eutectic Solvents and Coextraction. ACS Sustain. Chem. Eng. 2021, 10 (3), 1149-1159.
43. Thompson, D. L.; Pateli, I. M.; Lei, C.; Jarvis, A.; Abbott, A. P.; Hartley, J. M., Separation of Nickel from Cobalt and Manganese in Lithium Ion Batteries Using Deep Eutectic Solvents. Green Chem. 2022, 24 (12), 4877-4886.
44. Ma, C.; Svärd, M.; Forsberg, K., Recycling Cathode Material LiCo1/3Ni1/3Mn1/3O2 by Leaching with a Deep Eutectic Solvent and Metal Recovery with Antisolvent Crystallization. Resour. Conserv. Recycl. 2022, 186, 106579.
45. Abbott, A. P.; Capper, G.; Davies, D. L.; Rasheed, R. K.; Tambyrajah, V., Novel Solvent Properties of Choline Chloride/Urea Mixtures. ChemComm. 2003, (1), 70-1.
46. Delgado-Mellado, N.; Larriba, M.; Navarro, P.; Rigual, V.; Ayuso, M.; García, J.; Rodríguez, F., Thermal Stability of Choline Chloride Deep Eutectic Solvents by TGA/FTIR-ATR Analysis. J. Mol. Liq. 2018, 260, 37-43.
47. Al-Risheq, D. I. M.; Nasser, M. S.; Qiblawey, H.; Ba-Abbad, M. M.; Benamor, A.; Hussein, I. A., Destabilization of stable bentonite colloidal suspension using choline chloride based deep eutectic solvent: Optimization study. Journal of Water Process Engineering 2021, 40, 101885.
48. Wang, H.; Jia, Y.; Wang, X.; Yao, Y.; Jing, Y., Physical–Chemical Properties of Nickel Analogs Ionic Liquid Based on Choline Chloride. J. Therm. Anal. Calorim. 2013, 115 (2), 1779-1785.
49. Zhang, Y.; Han, J.; Liao, C., Insights into the Properties of Deep Eutectic Solvent Based on Reline for Ga-Controllable CIGS Solar Cell in One-Step Electrodeposition. J. Electrochem. Soc. 2016, 163 (13), D689-D693.
50. Schiavi, P. G.; Altimari, P.; Branchi, M.; Zanoni, R.; Simonetti, G.; Navarra, M. A.; Pagnanelli, F., Selective Recovery of Cobalt from Mixed Lithium Ion Battery Wastes Using Deep Eutectic Solvent. J. Chem. Eng. 2021, 417, 129249.
51. Hartley, J. M.; Ip, C. M.; Forrest, G. C.; Singh, K.; Gurman, S. J.; Ryder, K. S.; Abbott, A. P.; Frisch, G., EXAFS Study into the Speciation of Metal Salts Dissolved in Ionic Liquids and Deep Eutectic Solvents. Inorg. Chem. 2014, 53 (12), 6280-8.
52. Xing, T.; Li, L. H.; Hou, L.; Hu, X.; Zhou, S.; Peter, R.; Petravic, M.; Chen, Y., Disorder in Ball-Milled Graphite Revealed by Raman Spectroscopy. Carbon 2013, 57, 515-519.
53. Zhao, L.; Bennett, J. C.; Obrovac, M. N., Hexagonal Platelet Graphite and Its Application in Li-Ion Batteries. Carbon 2018, 134, 507-518.
54. Yang, J.; Fan, E.; Lin, J.; Arshad, F.; Zhang, X.; Wang, H.; Wu, F.; Chen, R.; Li, L., Recovery and Reuse of Anode Graphite from Spent Lithium-Ion Batteries via Citric Acid Leaching. ACS Appl. Energy Mater. 2021, 4 (6), 6261-6268.
55. Gao, Y.; Wang, C.; Zhang, J.; Jing, Q.; Ma, B.; Chen, Y.; Zhang, W., Graphite Recycling from the Spent Lithium-Ion Batteries by Sulfuric Acid Curing–Leaching Combined with High-Temperature Calcination. ACS Sustain. Chem. Eng. 2020, 8 (25), 9447-9455.
56. Wang, H.; Huang, Y.; Huang, C.; Wang, X.; Wang, K.; Chen, H.; Liu, S.; Wu, Y.; Xu, K.; Li, W., Reclaiming Graphite from Spent Lithium Ion Batteries Ecologically and Economically. Electrochim. Acta 2019, 313, 423-431.
57. Yang, K.; Gong, P.; Tian, Z.; Lai, Y.; Li, J., Recycling Spent Carbon Cathode by a Roasting Method and Its Application in Li-ion Batteries Anodes. J. Clean. Prod. 2020, 261, 121090.
58. Chen, Q.; Huang, L.; Liu, J.; Luo, Y.; Chen, Y., A New Approach to Regenerate High-Performance Graphite from Spent Lithium-Ion Batteries. Carbon 2022, 189, 293-304.
59. Wang, D.; Wang, Q.; Wang, T., Morphology-Controllable Synthesis of Cobalt Oxalates and Their Conversion to Mesoporous Co3O4 Nanostructures for Application in Supercapacitors. Inorg. Chem. 2011, 50 (14), 6482-92. |