參考文獻 |
1. Roussanaly, S. and R. Anantharaman, Cost-Optimal CO2 Capture Ratio for Membrane-Based Capture from Different CO2 Sources. Chem. Eng. J., 2017. 327, 618-628.
2. Gatti, M., E. Martelli, D. Di Bona, M. Gabba, R. Scaccabarozzi, M. Spinelli, F. Vigano, and S. Consonni, Preliminary Performance and Cost Evaluation of Four Alternative Technologies for Post-Combustion CO2 Capture in Natural Gas-Fired Power Plants. Energies, 2020. 13(3), 543.
3. Yu, Y., G. Yang, F. Cheng, and S. Yang, Effects of Impurities N2 and O2 on CO2 Storage Efficiency and Costs in Deep Saline Aquifers. J. Hydrol., 2021. 597, 126187.
4. Miocic, J.M., S.M.V. Gilfillan, J.J. Roberts, K. Edlmann, C.I. McDermott, and R.S. Haszeldine, Controls on CO2 Storage Security in Natural Reservoirs and Implications for CO2 Storage Site Selection. Int. J. Greenh. Gas Control., 2016. 51, 118-125.
5. Valluri, S., V. Claremboux, and S. Kawatra, Opportunities and Challenges in CO2 Utilization. J Environ Sci (China), 2022. 113, 322-344.
6. Dindi, A., D.V. Quang, L.F. Vega, E. Nashef, and M.R.M. Abu-Zahra, Applications of Fly Ash for CO2 Capture, Utilization, and Storage. J. CO2 Util., 2019. 29, 82-102.
7. Guo, M., K. Feng, Y. Wang, and B. Yan, Unveiling the Role of Active Oxygen Species in Oxidative Dehydrogenation of Ethane with CO2 over NiFe/CeO2. ChemCatChem, 2021. 13(13), 3119-3131.
8. Ray, K., S. Sengupta, and G. Deo, Reforming and Cracking of CH4 over Al2O3 Supported Ni, Ni-Fe and Ni-Co Catalysts. Fuel Process. Technol., 2017. 156, 195-203.
9. Song, Z., Q. Wang, C. Guo, S. Li, W. Yan, W. Jiao, L. Qiu, X. Yan, and R. Li, Improved Effect of Fe on the Stable NiFe/Al2O3 Catalyst in Low-Temperature Dry Reforming of Methane. Ind. Eng. Chem. Res., 2020. 59(39), 17250-17258.
10. Al-Awadi, A.S., S.M. Al-Zahrani, A.M. El-Toni, and A.E. Abasaeed, Dehydrogenation of Ethane to Ethylene by CO2 over Highly Dispersed Cr on Large-Pore Mesoporous Silica Catalysts. Catalysts, 2020. 10(1), 97.
11. Xie, Q., C. Miao, T. Lei, W. Hua, Y. Yue, and Z. Gao, Dehydrogenation of Ethane Assisted by CO2 over Y-doped Ceria Supported Au Catalysts. React. Kinet. Mech. Catal., 2020. 132(1), 417-429.
12. Lei, T.Q., Y.H. Cheng, C.X. Miao, W.M. Hua, Y.H. Yue, and Z. Gao, Silica-Doped TiO2 as Support of Gallium Oxide for Dehydrogenation of Ethane with CO2. Fuel Process. Technol., 2018. 177, 246-254.
13. Xie, Z., Y. Xu, M. Xie, X. Chen, J.H. Lee, E. Stavitski, S. Kattel, and J.G. Chen, Reactions of CO2 and Ethane Enable CO Bond Insertion for Production of C3 Oxygenates. Nat. Commun., 2020. 11(1), 1887.
14. Xie, Z.H., H.Y. Guo, E.W. Huang, Z.T. Mao, X.B. Chen, P. Liu, and J.G. Chen, Catalytic Tandem CO2-Ethane Reactions and Hydroformylation for C3 Oxygenate Production. ACS Catal., 2022. 12(14), 8279-8290.
15. Gomez, E., X. Nie, J.H. Lee, Z. Xie, and J.G. Chen, Tandem Reactions of CO2 Reduction and Ethane Aromatization. J Am Chem Soc, 2019. 141(44), 17771-17782.
16. Niu, X.R., X.W. Nie, C.H. Yang, and J.G. Chen, CO2-Assisted Propane Aromatization over Phosphorus-Modified Ga/ZSM-5 Catalysts. Catal Sci Technol, 2020. 10(6), 1881-1888.
17. Thomas, M., T. Partridge, B.H. Harthorn, and N. Pidgeon, Deliberating the Perceived Risks, Benefits, and Societal Implications of Shale Gas and Oil Extraction by Hydraulic Fracturing in the US and UK. Nat Energy, 2017. 2(5), 17054.
18. Yao, S.Y., B.H. Yan, Z. Jiang, Z.Y. Liu, Q.Y. Wu, J.H. Lee, and J.G. Chen, Combining CO2 Reduction with Ethane Oxidative Dehydrogenation by Oxygen-Modification of Molybdenum Carbide. ACS Catal., 2018. 8(6), 5374-5381.
19. Zhang, T., Z.C. Liu, Y.C. Ye, Y. Wang, H.Q. Yang, H.X. Gao, and W.M. Yang, Dry Reforming of Ethane over FeNi/Al-Ce-O Catalysts: Composition-Induced Strong Metal-Support Interactions. Engineering, 2022. 18, 173-185.
20. Xu, X., S.K. Megarajan, Y. Zhang, and H. Jiang, Ordered Mesoporous Alumina and Their Composites Based on Evaporation Induced Self-Assembly for Adsorption and Catalysis. Chem. Mater., 2019. 32(1), 3-26.
21. Gärtner, C.A., A.C. van Veen, and J.A. Lercher, Oxidative Dehydrogenation of Ethane: Common Principles and Mechanistic Aspects. ChemCatChem, 2013. 5(11), 3196-3217.
22. Chin, S.Y., Y.-H. Chin, and M.D. Amiridis, Hydrogen Production via the Catalytic Cracking of Ethane over Ni/SiO2 Catalysts. Applied Catalysis A: General, 2006. 300(1), 8-13.
23. Rodríguez, M.L., D.E. Ardissone, E. López, M.N. Pedernera, and D.O. Borio, Reactor Designs for Ethylene Production via Ethane Oxidative Dehydrogenation: Comparison of Performance. Ind. Eng. Chem. Res., 2010. 50(5), 2690-2697.
24. Bugrova, T.A., V.V. Dutov, V.A. Svetlichnyi, V.C. Corberan, and G.V. Mamontov, Oxidative Dehydrogenation of Ethane with CO2 over CrOx Catalysts Supported on Al2O3, ZrO2, CeO2 and CexZr1-xO2. Catalysis Today, 2019. 333, 71-80.
25. Lei, T.Q., C.X. Miao, W.M. Hua, Y.H. Yue, and Z. Gao, Oxidative Dehydrogenation of Ethane with CO2 over Au/CeO2 Nanorod Catalysts. Catal Letters, 2018. 148(6), 1634-1642.
26. Koirala, R., R. Buechel, F. Krumeich, S.E. Pratsinis, and A. Baiker, Oxidative Dehydrogenation of Ethane with CO2 over Flame-Made Ga-Loaded TiO2. ACS Catal., 2014. 5(2), 690-702.
27. Beck, J.S., J.C. Vartuli, W.J. Roth, M.E. Leonowicz, C.T. Kresge, K.D. Schmitt, C.T.W. Chu, D.H. Olson, E.W. Sheppard, S.B. McCullen, J.B. Higgins, and J.L. Schlenker, A New Family of Mesoporous Molecular Sieves Prepared with Liquid Crystal Templates. Journal of the American Chemical Society, 1992. 114(27), 10834-10843.
28. Wu, J., F. Xu, S. Li, P. Ma, X. Zhang, Q. Liu, R. Fu, and D. Wu, Porous Polymers as Multifunctional Material Platforms toward Task-Specific Applications. Adv. Mater., 2019. 31(4), e1802922.
29. Malgras, V., H. Ataee-Esfahani, H. Wang, B. Jiang, C. Li, K.C. Wu, J.H. Kim, and Y. Yamauchi, Nanoarchitectures for Mesoporous Metals. Adv. Mater., 2016. 28(6), 993-1010.
30. Deng, Y., J. Wei, Z. Sun, and D. Zhao, Large-pore Ordered Mesoporous Materials Templated from Non-Pluronic Amphiphilic Block Copolymers. Chem Soc Rev, 2013. 42(9), 4054-70.
31. Mandal, A.K., J. Mahmood, and J.B. Baek, Two-Dimensional Covalent Organic Frameworks for Optoelectronics and Energy Storage. Chemnanomat, 2017. 3(6), 373-391.
32. Lin, B., G. Yang, and L. Wang, Stacking-Layer-Number Dependence of Water Adsorption in 3D Ordered Close-Packed g-C3N4 Nanosphere Arrays for Photocatalytic Hydrogen Evolution. Angew. Chem. Int. Ed., 2019. 58(14), 4587-4591.
33. Wei, C., F. Xue, C. Miao, Y. Yue, W. Yang, W. Hua, and Z. Gao, Dehydrogenation of Isobutane with Carbon Dioxide over SBA-15-Supported Vanadium Oxide Catalysts. Catalysts, 2016. 6(11), 171.
34. Zhang, Y., J. Deng, L. Zhang, and H. Dai, Preparation and Catalytic Performance of Fe-SBA-15 and FeOx/SBA-15 for Toluene Combustion. Sci. Bull., 2014. 59(31), 3993-4002.
35. Al-Awadi, A.S., A.M. El-Toni, S.M. Al-Zahrani, A.E. Abasaeed, M. Alhoshan, A. Khan, J.P. Labis, and A. Al-Fatesh, Role of TiO2 Nanoparticle Modification of Cr/MCM41 Catalyst to Enhance Cr-Support Interaction for Oxidative Dehydrogenation of Ethane with Carbon Dioxide. Applied Catalysis a-General, 2019. 584, 117114.
36. Rahmani, F. and M. Haghighi, One-pot Hydrothermal Synthesis of ZSM-5-CeO2 Composite as a Support for Cr-Based Nanocatalysts: Influence of Ceria Loading and Process Conditions on CO2-Enhanced Dehydrogenation of Ethane. Rsc Adv, 2016. 6(92), 89551-89563.
37. Wu, Z., Q. Li, D. Feng, P.A. Webley, and D. Zhao, Ordered Mesoporous Crystalline γ-Al2O3 with Variable Architecture and Porosity from a Single Hard Template. J. Am. Chem. Soc., 2010. 132(34), 12042-12050.
38. Cai, W.Q., J.G. Yu, C. Anand, A. Vinu, and M. Jaroniec, Facile Synthesis of Ordered Mesoporous Alumina and Alumina-Supported Metal Oxides with Tailored Adsorption and Framework Properties. Chemistry of Materials, 2011. 23(5), 1147-1157.
39. Ma, Q.X., Y.X. Han, Q.H. Wei, S. Makpal, X.H. Gao, J.L. Zhang, and T.S. Zhao, Stabilizing Ni on Bimodal Mesoporous-Macroporous Alumina with Enhanced Coke Tolerance in Dry Reforming of Methane to Syngas. J. CO2 Util., 2020. 35, 288-297.
40. Yuan, Q., A.-X. Yin, C. Luo, L.-D. Sun, Y.-W. Zhang, W.-T. Duan, H.-C. Liu, and C.-H. Yan, Facile Synthesis for Ordered Mesoporous γ-Aluminas with High Thermal Stability. J. Am. Chem. Soc, 2008. 130(11), 3465-3472.
41. Li, C., Q. Li, Y.V. Kaneti, D. Hou, Y. Yamauchi, and Y. Mai, Self-Assembly of Block Copolymers Towards Mesoporous Materials for Energy Storage and Conversion Systems. Chem. Soc. Rev., 2020. 49(14), 4681-4736.
42. Ogawa, M., Formation of Novel Oriented Transparent Films of Layered Silica-Surfactant Nanocomposites. J. Am. Chem. Soc., 1994. 116(17), 7941-7942.
43. Templin, M., A. Franck, A. Du Chesne, H. Leist, Y. Zhang, R. Ulrich, V.V. Schadler, and U. Wiesner, Organically Modified Aluminosilicate Mesostructures From Block Copolymer Phases. Science, 1997. 278(5344), 1795-8.
44. Yang, P.D., D.Y. Zhao, D.I. Margolese, B.F. Chmelka, and G.D. Stucky, Generalized Syntheses of Large-Pore Mesoporous Metal Oxides with Semicrystalline Frameworks. Nature, 1998. 396(6707), 152-155.
45. Li, X.Q., Z.Q. Yang, L. Zhang, Z.Q. He, R.M. Fang, Z.Q. Wang, Y.F. Yan, and J.Y. Ran, Effect of Pd Doping in (Fe/Ni)/CeO2 Catalyst for the Reaction Path in CO2 Oxidative Ethane Dehydrogenation/Reforming. Energy, 2021. 234, 121261.
46. Yan, B., S. Yao, S. Kattel, Q. Wu, Z. Xie, E. Gomez, P. Liu, D. Su, and J.G. Chen, Active Sites for Tandem Reactions of CO2 Reduction and Ethane Dehydrogenation. Proc. Natl. Acad. Sci. U.S.A., 2018. 115(33), 8278-8283.
47. Yan, B., X. Yang, S. Yao, J. Wan, M. Myint, E. Gomez, Z. Xie, S. Kattel, W. Xu, and J.G. Chen, Dry Reforming of Ethane and Butane with CO2 over PtNi/CeO2 Bimetallic Catalysts. ACS Catal., 2016. 6(11), 7283-7292.
48. Mutz, B., M. Belimov, W. Wang, P. Sprenger, M.-A. Serrer, D. Wang, P. Pfeifer, W. Kleist, and J.-D. Grunwaldt, Potential of an Alumina-Supported Ni3Fe Catalyst in the Methanation of CO2: Impact of Alloy Formation on Activity and Stability. ACS Catal., 2017. 7(10), 6802-6814.
49. Jabbour, K., P. Massiani, A. Davidson, S. Casale, and N. El Hassan, Ordered Mesoporous “One-Pot” Synthesized Ni-Mg(Ca)-Al2O3 as Effective and Remarkably Stable Catalysts for Combined Steam and Dry Reforming of Methane (CSDRM). Appl. Catal. B, 2017. 201, 527-542.
50. Pakhare, D. and J. Spivey, A Review of Dry CO2 Reforming of Methane over Noble Metal Catalysts. Chem. Soc. Rev., 2014. 43(22), 7813-37.
51. Lonergan, W.W., T. Wang, D.G. Vlachos, and J.G. Chen, Effect of Oxide Support Surface Area on Hydrogenation Activity: Pt/Ni Bimetallic Catalysts Supported on Low and High Surface Area Al2O3 and ZrO2. APPL CATAL A-GEN., 2011. 408(1-2), 87-95.
52. Yan, B., S. Yao, and J.G. Chen, Effect of Oxide Support on Catalytic Performance of FeNi‐based Catalysts for CO2-assisted Oxidative Dehydrogenation of Ethane. ChemCatChem, 2019. 12(2), 494-503.
53. Kim, K.H., Y.W. You, M.H. Jeong, B.G. Jung, M. Im, Y.J. Kim, I. Heo, T.S. Chang, and J.H. Lee, Influence of Support Acidity on CO2 Reforming of Ethane at High Temperature. J. CO2 Util., 2021. 53, 101713.
54. Seo, H.O., Recent Scientific Progress on Developing Supported Ni Catalysts for Dry (CO2) Reforming of Methane. Catalysts, 2018. 8(3), 110.
55. Das, S., M. Sengupta, J. Patel, and A. Bordoloi, A Study of the Synergy Between Support Surface Properties and Catalyst Deactivation for CO2 Reforming over Supported Ni Nanoparticles. Applied Catalysis A: General, 2017. 545, 113-126.
56. Li, B.T., Y. Luo, B. Li, X.Q. Yuan, and X.J. Wang, Catalytic Performance of Iron-Promoted Nickel-Based Ordered Mesoporous Alumina FeNiAl Catalysts in Dry Reforming of Methane. Fuel Process. Technol., 2019. 193, 348-360.
57. Zhang, R., H. Wang, S. Tang, C. Liu, F. Dong, H. Yue, and B. Liang, Photocatalytic Oxidative Dehydrogenation of Ethane Using CO2 as a Soft Oxidant over Pd/TiO2 Catalysts to C2H4 and Syngas. ACS Catal., 2018. 8(10), 9280-9286.
58. Yates, I.C. and C.N. Satterfield, Intrinsic Kinetics of the Fischer-Tropsch Synthesis on a Cobalt Catalyst. Energy Fuels, 1991. 5(1), 168-173. |