參考文獻 |
林聖賢. (2015). 以牡蠣殼粉結合二氧化鈦光觸媒降解 PCBs 之研究. 國立屏東科技大學環境工程 與科學系-碩士學位論文, 134.
范仲翔. (2022). 錳改質牡蠣殼固定土壤中鎘和銅之研究. 國立中央大學環境工程與所-碩士學位 論文,.
劉國柱, 易新鼎, 林玉君, & 童維莉. (2001). 環境科學大辭典. 文景書局有限公司.
Abas, N., & Khan, N. (2014). Carbon conundrum, climate change, CO2 capture and consumptions.
Journal of CO2 Utilization, 8, 39-48. https://doi.org/https://doi.org/10.1016/j.jcou.2014.06.005 Abou-Gamra, Z. M., & Ahmed, M. A. (2016). Synthesis of mesoporous TiO2–curcumin nanoparticles
for photocatalytic degradation of methylene blue dye. Journal of Photochemistry and Photobiology B: Biology, 160, 134-141. https://doi.org/https://doi.org/10.1016/j.jphotobiol.2016.03.054
Ahmadi, A., Hajilou, M., Zavari, S., & Yaghmaei, S. (2023). A comparative review on adsorption and photocatalytic degradation of classified dyes with metal/non-metal-based modification of graphitic carbon nitride nanocomposites: Synthesis, mechanism, and affecting parameters. Journal of Cleaner Production, 382, 134967. https://doi.org/https://doi.org/10.1016/j.jclepro.2022.134967
Ahuja, T., Brighu, U., & Saxena, K. (2023). Recent advances in photocatalytic materials and their applications for treatment of wastewater: A review. Journal of Water Process Engineering, 53, 103759. https://doi.org/https://doi.org/10.1016/j.jwpe.2023.103759
Al-Mamun, M. R., Kader, S., Islam, M. S., & Khan, M. Z. H. (2019). Photocatalytic activity improvement and application of UV-TiO2 photocatalysis in textile wastewater treatment: A review. Journal of Environmental Chemical Engineering, 7(5), 103248. https://doi.org/https://doi.org/10.1016/j.jece.2019.103248
Ameta, R., Kumar, D., & Jhalora, P. (2014). Photocatalytic degradation of methylene blue using calcium oxide. Acta chim Pharma Indica, 4(1), 20-28.
An, H. R., Park, S. Y., Kim, H., Lee, C. Y., Choi, S., Lee, S. C., Seo, S., Park, E. C., Oh, Y. K., Song, C. G., Won, J., Kim, Y. J., Lee, J., Lee, H. U., & Lee, Y. C. (2016). Advanced nanoporous TiO2 photocatalysts by hydrogen plasma for efficient solar-light photocatalytic application. Sci Rep, 6, 29683. https://doi.org/10.1038/srep29683
Arora, I., Chawla, H., Chandra, A., Sagadevan, S., & Garg, S. (2022). Advances in the strategies for enhancing the photocatalytic activity of TiO2: Conversion from UV-light active to visible-light active photocatalyst. Inorganic Chemistry Communications, 143, 109700.
https://doi.org/https://doi.org/10.1016/j.inoche.2022.109700
Asahi, R., Morikawa, T., Ohwaki, T., Aoki, K., & Taga, Y. (2001). Visible-light photocatalysis in
nitrogen-doped titanium oxides. Science, 293(5528), 269-271.
https://doi.org/10.1126/science.1061051
Aziztyana, A., Wardhani, S., Prananto, Y., Purwonugroho, D., & Darjito. (2019). Optimisation of
Methyl Orange Photodegradation Using TiO 2 -Zeolite Photocatalyst and H 2 O 2 in Acid Condition. IOP Conference Series: Materials Science and Engineering, 546, 042047. https://doi.org/10.1088/1757-899X/546/4/042047
Aziztyana, A. P., Wardhani, S., Prananto, Y. P., Purwonugroho, D., & Darjito. (2019). Optimisation of Methyl Orange Photodegradation Using TiO2-Zeolite Photocatalyst and H2O2 in Acid Condition. IOP Conference Series: Materials Science and Engineering, 546(4), 042047. https://doi.org/10.1088/1757-899X/546/4/042047
Bakre, P. V., Tilve, S. G., & Shirsat, R. N. (2020). Influence of N sources on the photocatalytic activity of N-doped TiO2. Arabian Journal of Chemistry, 13(11), 7637-7651. https://doi.org/https://doi.org/10.1016/j.arabjc.2020.09.001
Bathla, A., Singla, D., & Pal, B. (2019). Highly efficient CaCO3-CaO extracted from tap water distillation for effective adsorption and photocatalytic degradation of malachite green dye. Materials Research Bulletin, 116, 1-7. https://doi.org/https://doi.org/10.1016/j.materresbull.2019.04.010
Bôlla de Menezes, L., Cristine Ladwig Muraro, P., Moro Druzian, D., Patricia Moreno Ruiz, Y., Galembeck, A., Pavoski, G., Crocce Romano Espinosa, D., & Leonardo da Silva, W. (2024). Calcium oxide nanoparticles: Biosynthesis, characterization and photocatalytic activity for application in yellow tartrazine dye removal. Journal of Photochemistry and Photobiology A: Chemistry, 447, 115182. https://doi.org/https://doi.org/10.1016/j.jphotochem.2023.115182
Borghei, M., Laocharoen, N., Kibena-Põldsepp, E., Johansson, L.-S., Campbell, J., Kauppinen, E., Tammeveski, K., & Rojas, O. J. (2017). Porous N,P-doped carbon from coconut shells with high electrocatalytic activity for oxygen reduction: Alternative to Pt-C for alkaline fuel cells. Applied Catalysis B: Environmental, 204, 394-402. https://doi.org/https://doi.org/10.1016/j.apcatb.2016.11.029
Chen, Z., Tang, Y., Mai, C., Shi, J., Xie, Y., & Hu, H. (2020). Experimental study on the shear performance of brick masonry strengthened with modified oyster shell ash mortar. Case Studies in Construction Materials, 13, e00469. https://doi.org/https://doi.org/10.1016/j.cscm.2020.e00469
Cheng, X., Yu, X., Xing, Z., & Yang, L. (2016). Synthesis and characterization of N-doped TiO2 and its enhanced visible-light photocatalytic activity. Arabian Journal of Chemistry, 9, S1706- S1711. https://doi.org/https://doi.org/10.1016/j.arabjc.2012.04.052
Christwardana, M., Joelianingsih, J., Kuntolaksono, S., & Maulana, A. Y. (2023). Effect of NaOH concentration as activator on calcined eggshell and its application for yeast microbial fuel cell. Bioresource Technology Reports, 21, 101347. https://doi.org/https://doi.org/10.1016/j.biteb.2023.101347
Correia, L. M., Saboya, R. M. A., de Sousa Campelo, N., Cecilia, J. A., Rodríguez-Castellón, E., Cavalcante, C. L., & Vieira, R. S. (2014). Characterization of calcium oxide catalysts from natural sources and their application in the transesterification of sunflower oil. Bioresource Technology, 151, 207-213. https://doi.org/https://doi.org/10.1016/j.biortech.2013.10.046
Devarahosahalli Veeranna, K., Theeta Lakshamaiah, M., & Thimmasandra Narayan, R. (2014). Photocatalytic Degradation of Indigo Carmine Dye Using Calcium Oxide. International Journal of Photochemistry, 2014, 530570. https://doi.org/10.1155/2014/530570
Di Valentin, C., Finazzi, E., Pacchioni, G., Selloni, A., Livraghi, S., Paganini, M. C., & Giamello, E. (2007). N-doped TiO2: Theory and experiment. Chemical Physics, 339(1), 44-56. https://doi.org/https://doi.org/10.1016/j.chemphys.2007.07.020
Dong, Y., Wang, Y., Cai, T., Kou, L., Yang, G., & Yan, Z. (2014). Preparation and nitrogen-doping of three-dimensionally ordered macroporous TiO2 with enhanced photocatalytic activity. Ceramics International, 40(7, Part B), 11213-11219. https://doi.org/https://doi.org/10.1016/j.ceramint.2014.03.161
Echabbi, F., Hamlich, M., Harkati, S., Jouali, A., Tahiri, S., Lazar, S., Lakhmiri, R., & Safi, M. (2019). Photocatalytic degradation of methylene blue by the use of titanium-doped Calcined Mussel Shells CMS/TiO2. Journal of Environmental Chemical Engineering, 7(5), 103293. https://doi.org/https://doi.org/10.1016/j.jece.2019.103293
Edralin, E. J. M., Garcia, J. L., dela Rosa, F. M., & Punzalan, E. R. (2017). Sonochemical synthesis, characterization and photocatalytic properties of hydroxyapatite nano-rods derived from mussel shells. Materials Letters, 196, 33-36. https://doi.org/https://doi.org/10.1016/j.matlet.2017.03.016
Eskikaya, O., Gun, M., Bouchareb, R., Bilici, Z., Dizge, N., Ramaraj, R., & Balakrishnan, D. (2022). Photocatalytic activity of calcined chicken eggshells for Safranin and Reactive Red 180 decolorization. Chemosphere, 304, 135210. https://doi.org/https://doi.org/10.1016/j.chemosphere.2022.135210
Finkelstein, E., Rosen, G. M., & Rauckman, E. J. (1980). Spin trapping of superoxide and hydroxyl radical: Practical aspects. Archives of Biochemistry and Biophysics, 200(1), 1-16. https://doi.org/https://doi.org/10.1016/0003-9861(80)90323-9
He, X., Wang, A., Wu, P., Tang, S., Zhang, Y., Li, L., & Ding, P. (2020). Photocatalytic degradation of microcystin-LR by modified TiO2 photocatalysis: A review. Science of The Total Environment, 743, 140694. https://doi.org/https://doi.org/10.1016/j.scitotenv.2020.140694
He, X., Wang, S., & Jin, T. (2023). The microstructure and photocatalytic properties of nitrogen- doped nano titanium dioxide loaded on porous ceramics. Journal of Physics and Chemistry of Solids, 178, 111359. https://doi.org/https://doi.org/10.1016/j.jpcs.2023.111359
Hevira, L., Rahmi, A., Zein, R., Zilfa, Z., & Rahmayeni, R. (2020). The fast and of low-cost-adsorbent to the removal of cationic and anionic dye using chicken eggshell with its membrane. Mediterranean Journal of Chemistry.
Hong, Z., Farooq, A., Barbour, E. A., Davidson, D. F., & Hanson, R. K. (2009). Hydrogen Peroxide Decomposition Rate: A Shock Tube Study Using Tunable Laser Absorption of H2O near 2.5 μm. The Journal of Physical Chemistry A, 113(46), 12919-12925. https://doi.org/10.1021/jp907219f
Hu, C.-C., Hsu, T.-C., & Lu, S.-Y. (2013). Effect of nitrogen doping on the microstructure and visible light photocatalysis of titanate nanotubes by a facile cohydrothermal synthesis via urea treatment. Applied Surface Science, 280, 171-178. https://doi.org/https://doi.org/10.1016/j.apsusc.2013.04.120
Huang, J., Dou, L., Li, J., Zhong, J., Li, M., & Wang, T. (2021). Excellent visible light responsive photocatalytic behavior of N-doped TiO2 toward decontamination of organic pollutants. Journal of Hazardous Materials, 403, 123857. https://doi.org/https://doi.org/10.1016/j.jhazmat.2020.123857
Hynes, N. R. J., Kumar, J. S., Kamyab, H., Sujana, J. A. J., Al-Khashman, O. A., Kuslu, Y., Ene, A., & Suresh Kumar, B. (2020). Modern enabling techniques and adsorbents based dye removal with sustainability concerns in textile industrial sector -A comprehensive review. Journal of Cleaner Production, 272, 122636. https://doi.org/https://doi.org/10.1016/j.jclepro.2020.122636
Ikram, M., Muhammad Khan, A., Haider, A., Haider, J., Naz, S., Ul-Hamid, A., Shahzadi, A., Nabgan, W., Shujah, T., Shahzadi, I., & Ali, S. (2022). Facile Synthesis of La- and Chitosan- Doped CaO Nanoparticles and Their Evaluation for Catalytic and Antimicrobial Potential with Molecular Docking Studies. ACS Omega, 7(32), 28459-28470. https://doi.org/10.1021/acsomega.2c02790
Inthapanya, X., Wu, S., Han, Z., Zeng, G., Wu, M., & Yang, C. (2019). Adsorptive removal of anionic dye using calcined oyster shells: isotherms, kinetics, and thermodynamics. Environmental Science and Pollution Research, 26(6), 5944-5954. https://doi.org/10.1007/s11356-018-3980- 0
Islam, S. Z., Reed, A., Kim, D. Y., & Rankin, S. E. (2016). N2/Ar plasma induced doping of ordered mesoporous TiO2 thin films for visible light active photocatalysis. Microporous and Mesoporous Materials, 220, 120-128. https://doi.org/https://doi.org/10.1016/j.micromeso.2015.08.030
Jain, S. N., & Gogate, P. R. (2017). Acid Blue 113 removal from aqueous solution using novel biosorbent based on NaOH treated and surfactant modified fallen leaves of Prunus Dulcis. Journal of Environmental Chemical Engineering, 5(4), 3384-3394. https://doi.org/https://doi.org/10.1016/j.jece.2017.06.047
Jain, S. N., & Gogate, P. R. (2018). Efficient removal of Acid Green 25 dye from wastewater using activated Prunus Dulcis as biosorbent: Batch and column studies. Journal of Environmental Management, 210, 226-238. https://doi.org/https://doi.org/10.1016/j.jenvman.2018.01.008
Janitabar-Darzi, S. (2014). Structural and Photocatalytic Activity of Mesoporous N-Doped TiO2 with Band-to-Band Visible Light Absorption Ability. Particulate Science and Technology, 32(5), 506-511. https://doi.org/10.1080/02726351.2014.920443
Janoš, P., & Šmídová, V. (2005). Effects of surfactants on the adsorptive removal of basic dyes from water using an organomineral sorbent—iron humate. Journal of Colloid and Interface Science, 291(1), 19-27. https://doi.org/https://doi.org/10.1016/j.jcis.2005.04.065
Jia, H., Liu, J., Zhong, S., Zhang, F., Xu, Z., Gong, X., & Lu, C. (2015). Manganese oxide coated river sand for Mn(II) removal from groundwater. Journal of Chemical Technology & Biotechnology, 90(9), 1727-1734. https://doi.org/10.1002/jctb.4524
Jiang, D., Cai, L., Ji, L., Zhang, H., & Song, W. (2018). Nano-Bi2MoO6/calcined mussel shell composites with enhanced photocatalytic performance under visible-light irradiation [https://doi.org/10.1049/mnl.2017.0905]. Micro & Nano Letters, 13(7), 1021-1025. https://doi.org/https://doi.org/10.1049/mnl.2017.0905
Kumar, K. S., Vaishnavi, K., Venkataswamy, P., Ravi, G., Ramaswamy, K., & Vithal, M. (2021). Photocatalytic degradation of methylene blue over N-doped MnWO4 under visible light irradiation. Journal of the Indian Chemical Society, 98(10), 100140. https://doi.org/https://doi.org/10.1016/j.jics.2021.100140
Li, P., Zhao, G., Zhao, K., Gao, J., & Wu, T. (2012). An efficient and energy saving approach to photocatalytic degradation of opaque high-chroma methylene blue wastewater by
electrocatalytic pre-oxidation. Dyes and Pigments, 92(3), 923-928.
https://doi.org/https://doi.org/10.1016/j.dyepig.2011.06.009
Li, Q., Li, L., Su, G., Huang, X., Zhao, Y., Li, B., Miao, X., & Zheng, M. (2016). Synergetic
inhibition of PCDD/F formation from pentachlorophenol by mixtures of urea and calcium oxide. Journal of Hazardous Materials, 317, 394-402. https://doi.org/https://doi.org/10.1016/j.jhazmat.2016.05.090
Lu, H., Reddy, E. P., & Smirniotis, P. G. (2006). Calcium Oxide Based Sorbents for Capture of Carbon Dioxide at High Temperatures. Industrial & Engineering Chemistry Research, 45(11), 3944-3949. https://doi.org/10.1021/ie051325x
Ma, L., Chen, A., Lu, J., Zhang, Z., He, H., & Li, C. (2014). In situ synthesis of CNTs/Fe–Ni/TiO2 nanocomposite by fluidized bed chemical vapor deposition and the synergistic effect in photocatalysis. Particuology, 14, 24-32. https://doi.org/https://doi.org/10.1016/j.partic.2013.04.002
Ma, X., Wang, C., Wang, G., Li, G., Li, S., Wang, J., & Song, Y. (2018). Three narrow band-gap semiconductors modified Z-scheme photocatalysts, Er3+:Y3Al5O12@NiGa2O4/(NiS, CoS2 or MoS2)/Bi2Sn2O7, for enhanced solar-light photocatalytic conversions of nitrite and sulfite. Journal of Industrial and Engineering Chemistry, 66, 141-157. https://doi.org/https://doi.org/10.1016/j.jiec.2018.05.024
Mohammadzadeh, A., Khoshghadam-Pireyousefan, M., Shokrianfard-Ravasjan, B., Azadbeh, M., Rashedi, H., Dibazar, M., & Mostafaei, A. (2020). Synergetic photocatalytic effect of high purity ZnO pod shaped nanostructures with H2O2 on methylene blue dye degradation. Journal of Alloys and Compounds, 845, 156333. https://doi.org/https://doi.org/10.1016/j.jallcom.2020.156333
Mohammed, R., Ali, M. E. M., Abdel-Moniem, S. M., & Ibrahim, H. S. (2022). Reusable and highly stable MoS2 nanosheets for photocatalytic, sonocatalytic and thermocatalytic degradation of organic dyes: Comparative study. Nano-Structures & Nano-Objects, 31, 100900. https://doi.org/https://doi.org/10.1016/j.nanoso.2022.100900
Narayan, R. B., Goutham, R., Srikanth, B., & Gopinath, K. P. (2018). A novel nano-sized calcium hydroxide catalyst prepared from clam shells for the photodegradation of methyl red dye. Journal of Environmental Chemical Engineering, 6(3), 3640-3647. https://doi.org/https://doi.org/10.1016/j.jece.2016.12.004
Natarajan, S., Bajaj, H. C., & Tayade, R. J. (2018). Recent advances based on the synergetic effect of adsorption for removal of dyes from waste water using photocatalytic process. Journal of Environmental Sciences, 65, 201-222. https://doi.org/https://doi.org/10.1016/j.jes.2017.03.011
Nath, A., Biswas, S., & Pal, A. (2023). Eggshell powder as an efficient recyclable catalyst generates H2O2 prompted radicals for selective oxidative mineralization of crystal violet dye at room temperature. Materials Chemistry and Physics, 303, 127785. https://doi.org/https://doi.org/10.1016/j.matchemphys.2023.127785
Nguyen, D. K., On, V. V., Hoat, D. M., Rivas-Silva, J. F., & Cocoletzi, G. H. (2021). Structural, electronic, magnetic and optical properties of CaO induced by oxygen incorporation effects: A first-principles study. Physics Letters A, 397, 127241. https://doi.org/https://doi.org/10.1016/j.physleta.2021.127241
Nguyen, T. P., Tran, Q. B., Ly, Q. V., Thanh Hai, L., Le, D. T., Tran, M. B., Ho, T. T. T., Nguyen, X. C., Shokouhimehr, M., Vo, D.-V. N., Lam, S. S., Do, H.-T., Kim, S. Y., Van Tung, T., & Van Le, Q. (2020). Enhanced visible photocatalytic degradation of diclofen over N-doped TiO2 assisted with H2O2: A kinetic and pathway study. Arabian Journal of Chemistry, 13(11), 8361-8371. https://doi.org/https://doi.org/10.1016/j.arabjc.2020.05.023
Niu, J., Luo, L., Cui, J., Zhang, H., Guo, Y., Li, L., & Cheng, F. (2023). Impact of inherent calcium in coal on the structure and performance of activated carbon in flue gas activation: The enhanced mechanism of calcite on the methylene blue adsorption. Journal of Cleaner Production, 428, 139374. https://doi.org/https://doi.org/10.1016/j.jclepro.2023.139374
Nur, A. S. M., Sultana, M., Mondal, A., Islam, S., Robel, F. N., Islam, A., & Sumi, M. S. A. (2022). A review on the development of elemental and codoped TiO2 photocatalysts for enhanced dye degradation under UV–vis irradiation. Journal of Water Process Engineering, 47, 102728. https://doi.org/https://doi.org/10.1016/j.jwpe.2022.102728
Ohtani, B. (2013). Chapter 5 - Principle of Photocatalysis and Design of Active Photocatalysts. In S. L. Suib (Ed.), New and Future Developments in Catalysis (pp. 121-144). Elsevier. https://doi.org/https://doi.org/10.1016/B978-0-444-53872-7.00006-6
Oliveira, J. M. S., Sabatini, C. A., Santos-Neto, A. J., & Foresti, E. (2023). Broken into pieces: The challenges of determining sulfonated azo dyes in biological reactor effluents using LC-ESI- MS/MS analysis. Environmental Pollution, 318, 120877. https://doi.org/https://doi.org/10.1016/j.envpol.2022.120877
Pai, S., Kini, M. S., Rangasamy, G., & Selvaraj, R. (2023). Mesoporous calcium hydroxide nanoparticle synthesis from waste bivalve clamshells and evaluation of its adsorptive potential for the removal of Acid Blue 113 dye. Chemosphere, 313, 137476. https://doi.org/https://doi.org/10.1016/j.chemosphere.2022.137476
Pant, B., Park, M., & Park, S.-J. (2019). Recent Advances in TiO2 Films Prepared by Sol-Gel Methods for Photocatalytic Degradation of Organic Pollutants and Antibacterial Activities. Coatings, 9(10), 613. https://www.mdpi.com/2079-6412/9/10/613
Peng, Y.-P., Lo, S.-L., Ou, H.-H., & Lai, S.-W. (2010). Microwave-assisted hydrothermal synthesis of N-doped titanate nanotubes for visible-light-responsive photocatalysis. Journal of Hazardous Materials, 183(1), 754-758. https://doi.org/https://doi.org/10.1016/j.jhazmat.2010.07.090
Purkait, P. K., Majumder, S., Roy, S., Maitra, S., Chandra Das, G., & Chaudhuri, M. G. (2023). Enhanced heterogeneous photocatalytic degradation of florasulam in aqueous media using green synthesized TiO2 nanoparticle under UV light irradiation. Inorganic Chemistry Communications, 155, 111017. https://doi.org/https://doi.org/10.1016/j.inoche.2023.111017
QinQin, Li, M., Lan, P., Liao, Y., Sun, S., & Liu, H. (2021). Novel CaCO3/chitin aerogel: Synthesis and adsorption performance toward Congo red in aqueous solutions. International Journal of Biological Macromolecules, 181, 786-792. https://doi.org/https://doi.org/10.1016/j.ijbiomac.2021.03.116
Qu, T., Yao, X., Owens, G., Gao, L., & Zhang, H. (2022). A sustainable natural clam shell derived photocatalyst for the effective adsorption and photodegradation of organic dyes. Scientific Reports, 12(1), 2988. https://doi.org/10.1038/s41598-022-06981-3
Rahman, T. U., Roy, H., Fariha, A., Shoronika, A. Z., Al-Mamun, M. R., Islam, S. Z., Islam, M. S., Marwani, H. M., Islam, A., Alsukaibi, A. K. D., Rahman, M. M., & Awual, M. R. (2023). Progress in plasma doping semiconductor photocatalysts for efficient pollutant remediation and hydrogen generation. Separation and Purification Technology, 320, 124141. https://doi.org/https://doi.org/10.1016/j.seppur.2023.124141
Rajendran, K., Senthil Kumar, V., & Anitha Rani, K. (2014). Synthesis and characterization of immobilized activated carbon doped TiO2 thin films. Optik, 125(8), 1993-1996. https://doi.org/https://doi.org/10.1016/j.ijleo.2013.10.055
Rajput, R. B., Jamble, S. N., & Kale, R. B. (2022). A review on TiO2/SnO2 heterostructures as a photocatalyst for the degradation of dyes and organic pollutants. Journal of Environmental Management, 307, 114533. https://doi.org/https://doi.org/10.1016/j.jenvman.2022.114533
Ramos-Corona, A., Rangel, R., Lara-Romero, J., & Ramos-Carrazco, A. (2022). Nitrogen-plasma doped ZnO-graphene oxide compounds production and their photocatalytic performance. Advanced Powder Technology, 33(11), 103829. https://doi.org/https://doi.org/10.1016/j.apt.2022.103829
Rauf, M. A., & Ashraf, S. S. (2009). Fundamental principles and application of heterogeneous photocatalytic degradation of dyes in solution. Chemical Engineering Journal, 151(1), 10-18. https://doi.org/https://doi.org/10.1016/j.cej.2009.02.026
Rauf, M. A., Meetani, M. A., Khaleel, A., & Ahmed, A. (2010). Photocatalytic degradation of Methylene Blue using a mixed catalyst and product analysis by LC/MS. Chemical
Engineering Journal, 157(2), 373-378.
https://doi.org/https://doi.org/10.1016/j.cej.2009.11.017
Saien, J., & Soleymani, A. R. (2012). Feasibility of using a slurry falling film photo-reactor for
individual and hybridized AOPs. Journal of Industrial and Engineering Chemistry, 18(5),
1683-1688. https://doi.org/https://doi.org/10.1016/j.jiec.2012.03.014
Salleh, M. A. M., Mahmoud, D. K., Karim, W. A. W. A., & Idris, A. (2011). Cationic and anionic dye
adsorption by agricultural solid wastes: A comprehensive review. Desalination, 280(1), 1-13.
https://doi.org/https://doi.org/10.1016/j.desal.2011.07.019
Sang, T., Zhong, Y., Wang, D.-H., Hu, C.-H., Ye, J.-C., Wang, W.-Y., & Liu, H. (2023). Visible-light-
driven reduction of hexavalent chromium ions by CdS/CaCO3 semiconductor–insulator photocatalytic heterojunction. Journal of Molecular Structure, 1275, 134686. https://doi.org/https://doi.org/10.1016/j.molstruc.2022.134686
Savvidis, G., Zarkogianni, M., Karanikas, E., Lazaridis, N., Nikolaidis, N., & Tsatsaroni, E. (2013). Digital and conventional printing and dyeing with the natural dye annatto: optimisation and standardisation processes to meet future demands [https://doi.org/10.1111/cote.12004]. Coloration Technology, 129(1), 55-63. https://doi.org/https://doi.org/10.1111/cote.12004
Schaube, F., Koch, L., Wörner, A., & Müller-Steinhagen, H. (2012). A thermodynamic and kinetic study of the de- and rehydration of Ca(OH)2 at high H2O partial pressures for thermo- chemical heat storage. Thermochimica Acta, 538, 9-20. https://doi.org/https://doi.org/10.1016/j.tca.2012.03.003
Schmidt, A., Karas, M., & Dülcks, T. (2003). Effect of different solution flow rates on analyte ion signals in nano-ESI MS, or: when does ESI turn into nano-ESI? Journal of the American Society for Mass Spectrometry, 14(5), 492-500. https://doi.org/10.1016/S1044- 0305(03)00128-4
Sivapatarnkun, J., Hathaisamit, K., & Pudwat, S. (2017). High photocatalytic activity of F-TiO2 on activated carbon. Materials Today: Proceedings, 4(5, Part 2), 6495-6501. https://doi.org/https://doi.org/10.1016/j.matpr.2017.06.159
Sree, G. V., & Nagaraaj, P. (2022). Enhancement of PVA packaging properties using calcined eggshell waste as filler and nanonutrient. Materials Chemistry and Physics, 291, 126611. https://doi.org/https://doi.org/10.1016/j.matchemphys.2022.126611
Strydonck, M., Boudin, M., Hoefkens, M., & De Mulder, G. (2005). 14C-dating of cremated bones, why does it work? Lunula, 13, 3-10.
Su, H., Guo, X., Zhang, X., Zhang, Q., Huang, D., Lin, L., & Qiang, X. (2022). Ultrafine biosorbent from waste oyster shell: A comparative study of Congo red and Methylene blue adsorption.
Bioresource Technology Reports, 19, 101124.
https://doi.org/https://doi.org/10.1016/j.biteb.2022.101124
Tahmasebizad, N., Hamedani, M., Shaban, M., & Pazhouhanfar, Y. (2020). Photocatalytic activity and
antibacterial behavior of TiO2 coatings Co-doped with copper and nitrogen via sol-gel method. Journal of Sol-Gel Science and Technology, 93. https://doi.org/10.1007/s10971-019- 05085-1
Tan, X., Wei, W., Xu, C., Meng, Y., Bai, W., Yang, W., & Lin, A. (2020). Manganese-modified biochar for highly efficient sorption of cadmium. Environ Sci Pollut Res Int, 27(9), 9126- 9134. https://doi.org/10.1007/s11356-019-07059-w
Tang, W. Z., & Huren, A. (1995). Photocatalytic degradation kinetics and mechanism of acid blue 40 by TiO2/UV in aqueous solution. Chemosphere, 31(9), 4171-4183. https://doi.org/https://doi.org/10.1016/0045-6535(95)80016-E
Thakur, S., Singh, S., & Pal, B. (2021). Superior adsorption removal of dye and high catalytic activity for transesterification reaction displayed by crystalline CaO nanocubes extracted from mollusc shells. Fuel Processing Technology, 213, 106707. https://doi.org/https://doi.org/10.1016/j.fuproc.2020.106707
Thulasi Karunakaran, S., Pavithran, R., Sajeev, M., & Mohan Mohan Rema, S. (2022). Photocatalytic degradation of methylene blue using a manganese based metal organic framework. Results in Chemistry, 4, 100504. https://doi.org/https://doi.org/10.1016/j.rechem.2022.100504
Tichapondwa, S. M., Newman, J. P., & Kubheka, O. (2020). Effect of TiO2 phase on the photocatalytic degradation of methylene blue dye. Physics and Chemistry of the Earth, Parts A/B/C, 118-119, 102900. https://doi.org/https://doi.org/10.1016/j.pce.2020.102900
Tsai, W. T., Yang, J. M., Lai, C. W., Cheng, Y. H., Lin, C. C., & Yeh, C. W. (2006). Characterization and adsorption properties of eggshells and eggshell membrane. Bioresource Technology, 97(3), 488-493. https://doi.org/https://doi.org/10.1016/j.biortech.2005.02.050
Vaiano, V., Sacco, O., Sannino, D., & Ciambelli, P. (2015). Nanostructured N-doped TiO2 coated on glass spheres for the photocatalytic removal of organic dyes under UV or visible light irradiation. Applied Catalysis B: Environmental, 170-171, 153-161. https://doi.org/https://doi.org/10.1016/j.apcatb.2015.01.039
Vanthana Sree, G., Nagaraaj, P., Kalanidhi, K., Aswathy, C. A., & Rajasekaran, P. (2020). Calcium oxide a sustainable photocatalyst derived from eggshell for efficient photo-degradation of organic pollutants. Journal of Cleaner Production, 270, 122294. https://doi.org/https://doi.org/10.1016/j.jclepro.2020.122294
Verma, G., Islam, M., & Gupta, A. (2022). Real-time degradation of methylene blue using bio- inspired superhydrophobic PDMS tube coated with Ta-ZnO composite. Chemical Engineering Journal Advances, 12, 100423. https://doi.org/https://doi.org/10.1016/j.ceja.2022.100423
Waheed, M., Butt, M. S., Shehzad, A., Adzahan, N. M., Shabbir, M. A., Rasul Suleria, H. A., & Aadil, R. M. (2019). Eggshell calcium: A cheap alternative to expensive supplements. Trends in Food Science & Technology, 91, 219-230. https://doi.org/https://doi.org/10.1016/j.tifs.2019.07.021
Wang, B., Wang, T., & Su, H. (2022). A dye-methylene blue (MB)-degraded by hydrodynamic cavitation (HC) and combined with other oxidants. Journal of Environmental Chemical Engineering, 10(3), 107877. https://doi.org/https://doi.org/10.1016/j.jece.2022.107877
Wetchakun, K., Wetchakun, N., & Sakulsermsuk, S. (2019). An overview of solar/visible light-driven heterogeneous photocatalysis for water purification: TiO2- and ZnO-based photocatalysts used in suspension photoreactors. Journal of Industrial and Engineering Chemistry, 71, 19-49. https://doi.org/https://doi.org/10.1016/j.jiec.2018.11.025
Witoon, T. (2011). Characterization of calcium oxide derived from waste eggshell and its application as CO2 sorbent. Ceramics International, 37(8), 3291-3298. https://doi.org/https://doi.org/10.1016/j.ceramint.2011.05.125
Witt, O. N. (1876). Zur Kenntniss des Baues und der Bildung färbender Kohlenstoffverbindungen. Berichte der deutschen chemischen Gesellschaft, 522-527. https://doi.org/https://doi.org/10.1002/cber.187600901164
Yabalak, E., Isik, Z., & Dizge, N. (2022). Catalytical efficiency, mechanism and characterization of hydrolysed waste eggshell in the subcritical water oxidation of pistachio processing wastewater. Journal of Environmental Management, 317, 115326. https://doi.org/https://doi.org/10.1016/j.jenvman.2022.115326
Yang, G., Jiang, Z., Shi, H., Xiao, T., & Yan, Z. (2010). Preparation of highly visible-light active N- doped TiO2 photocatalyst [10.1039/C0JM00376J]. Journal of Materials Chemistry, 20(25), 5301-5309. https://doi.org/10.1039/C0JM00376J
Yang, R., Zeng, G., Xu, Z., Zhou, Z., Huang, J., Fu, R., & Lyu, S. (2021). Comparison of naphthalene removal performance using H2O2, sodium percarbonate and calcium peroxide oxidants activated by ferrous ions and degradation mechanism. Chemosphere, 283, 131209. https://doi.org/https://doi.org/10.1016/j.chemosphere.2021.131209
You, Z., Pan, S.-Y., Sun, N., Kim, H., & Chiang, P.-C. (2019). Enhanced corn-stover fermentation for biogas production by NaOH pretreatment with CaO additive and ultrasound. Journal of Cleaner Production, 238, 117813. https://doi.org/https://doi.org/10.1016/j.jclepro.2019.117813
Yu, Z., Yin, L.-C., Xie, Y., Liu, G., Ma, X., & Cheng, H.-M. (2013). Crystallinity-dependent substitutional nitrogen doping in ZnO and its improved visible light photocatalytic activity. Journal of Colloid and Interface Science, 400, 18-23. https://doi.org/https://doi.org/10.1016/j.jcis.2013.02.046
Zhang, S., Zhu, A., Wan, X., Yu, M., Sun, D., Li, Z., Shi, G., Feng, Y., Yan, J., Zhao, C., & Wang, W. (2023). Zero-energy consuming fast decomposition of H2O2 over mullite oxide YMn2O5. Chemical Engineering Journal, 474, 145649. https://doi.org/https://doi.org/10.1016/j.cej.2023.145649
Zhao, B., Wang, X., Zhang, Y., Gao, J., Chen, Z., & Lu, Z. (2019). Synergism of oxygen vacancies, Ti3+ and N dopants on the visible-light photocatalytic activity of N-doped TiO2. Journal of Photochemistry and Photobiology A: Chemistry, 382, 111928. https://doi.org/https://doi.org/10.1016/j.jphotochem.2019.111928
Zheng, X., Zhang, B., Lai, W., Wang, M., Tao, X., Zou, M., Zhou, J., & Lu, G. (2023). Application of bovine bone meal and oyster shell meal to heavy metals polluted soil: Vegetable safety and bacterial community. Chemosphere, 313, 137501. https://doi.org/https://doi.org/10.1016/j.chemosphere.2022.137501 |