博碩士論文 110326017 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:42 、訪客IP:3.21.244.95
姓名 吳佩珊(PEI-SHAN WU)  查詢紙本館藏   畢業系所 環境工程研究所
論文名稱 氮改質煅燒牡蠣殼提升水中亞甲基藍染料 吸附和光催化降解之研究
(Nitrogen-doped Calcined Oyster Shells as Adsorbents and Photocatalysts for the Removal of Methylene Blue Dye in Water)
相關論文
★ Advanced Wastewater Analysis: AI-Integrated Flow Injection Analysis (FIA) System for COD Online Monitoring★ 電混凝法應用於金屬表面處理廢水對於處理效率的影響
★ 聚乳酸塑膠在環境水體中的老化及重金屬吸附之探討★ 化學回收廢棄聚乳酸(PLA) 及製備聚氨酯材料
★ 錳改質牡蠣殼固定土壤中鎘和銅之研究★ 職業噪音暴露對人體健康影響研究-以玻璃纖維工廠為例
★ 反向電透析(RED)產電效能評估 -以濃度、流速、膜對數及流道厚度為操作參數★ 以反向電透析(RED)系統產電並去除氨氮
★ 比較電動堆高機語音式、間歇式、寬頻式警報裝置對作業場所工作者之安全效用探討,以C 造紙廠為例★ 煅燒條件對牡蠣殼抗菌能力之影響及抗菌物種- 單線態氧的檢測
★ 臺灣石門水庫及入庫河川表層水中微型塑膠時空分佈、組成與相關性調查★ Feasibility Study of Lanthanum-Modified Calcined Oyster Shells for Phosphorus Removal from Aquatic Environments
★ 桃園市三合一生質能中心提升一般廢棄物清除處理效能之研究★ 耐熱型聚乳酸與非耐熱型聚乳酸塑膠回收再利用過程之特性研究
★ 台灣石門水庫之表層、中層水與下游飲用水廠中微型塑膠之時空分佈、組成與相關性★ 桌上型能量分散式X射線螢光光譜儀(ED XRF)分析製程廢液之銅、鎳濃度方法開發
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2027-1-31以後開放)
摘要(中) 本研究的目的是以亞甲基藍(Methylene blue, MB)染料作為目標污染物,牡蠣殼 煅燒製備的生物氧化鈣(biogenic calcium oxide)作為光觸媒,進行 MB 的吸附和光催化 氧化降解研究。首先以高溫煅燒(Calcined)鹼洗後的牡蠣殼(uncalcined oyster shell, UOS),製備成氧化鈣(heated oyster shell, HOS),再加入 2%(w/w)、5%(w/w)、 10%(w/w)尿素(urea)以溶膠凝膠(sol-gel method)進行表面改質,再將此粉體於高溫爐 中以 600°C 煅燒 2 小時,合成氮摻雜氧化鈣(2%N-HOS、5%N-HOS、10%N-HOS)。 從 BET 比表面分析得知,比表面積從 2.9370 m2 g-1(UOS)提高至 72.3785 m2 g-1(HOS) 和 71.4240 m2 g-1(2%N-HOS)。XRD 及 EDS 結果證明氮元素成功參雜在 HOS 表面; 以 UV-vis 量測及 Talc plot 計算氮參雜氧化鈣粉體能隙值介在 4.37 - 4.45eV。
在光催化過程添加過氧化氫(hydrogen peroxide, H2O2),可以提高有機污染物的降 解效率,因為它還有多種優點,包括提高氫氧自由基(hydroxyl radical, •OH)量、防止 電子-電洞再結合。本研究探討在紫外光線(ultraviolet light, UV)、可見光(visible light, vis)及暗反應下,添加過氧化氫,氧化鈣對亞甲基藍(Methylene blue, MB)染料之光催 化降解效率。由可見光光催化實驗結果顯示,氮摻雜氧化鈣因帶隙距縮短,可有效 利用長波長能量小的可見光波段,故在 MB 濃度 10 mg L-1、添加 0.84 g L-1 的 2%N- HOS、H2O2 (0.23%)(將 H2O2 溶液添加在亞甲基藍染料中,經計算得出濃度約為 0.23%)、反應溫度為 60°C下,在反應時間在 120 min,2%N-HOS 具有最佳的光降解 效率,去除率達 99.8%。由氧化鈣及氮摻雜氧化鈣在添加過氧化氫對 MB 之動力實驗 結果顯示,反應遵循一階動力學模式,表示反應時間對降解 MB 為正相關。
摘要(英) The primary objective of this research is to investigate the adsorption and photocatalytic oxidation degradation of Methylene Blue dye using nitrogen-doped calcium oxide (N-HOS) as the photocatalyst. The procedure involves the initial conversion of oyster shells through calcination and alkali washing to produce heated oyster shell (HOS). Subsequently, surface modification is accomplished by introducing urea in varying proportions (2% (w/w), 5% (w/w), and 10% (w/w)) via the sol-gel method. The resulting powder undergoes high- temperature annealing at 600°C for 2 hours, resulting in the synthesis of nitrogen-doped calcium oxide (2%N-HOS, 5%N-HOS, 10%N-HOS). BET surface area analysis illustrates a substantial augmentation in surface area, progressing from 2.9370 m2 g-1 (UOS) to 72.3785 m2 g-1 (HOS) and 71.4240 m2 g-1 (2%N-HOS). Further substantiating this, XRD and EDS analyses confirm the successful integration of nitrogen onto the HOS surface. The evaluation of energy bandgap values, conducted through UV-visible measurements and Tauc plots revealed a bandgap energy of 4.5 eV for calcium oxide, whereas the bandgap of nitrogen- doped calcium oxide ranged from 4.37 to 4.45 eV. Nitrogen doping effectively reduced the bandgap, thereby enhancing light absorption capabilities.
To intensify the concentration of hydroxyl radicals (•OH) during photocatalytic reactions, hydrogen peroxide (H2O2) is introduced into the aqueous solution. Subsequent assessments encompass the investigation of the photocatalytic degradation efficiency of Methylene Blue (MB) under different conditions, encompassing ultraviolet light (UV), visible light (vis), and dark adsorption. The experiments pertaining to visible light photocatalysis underscore the multifaceted attributes of nitrogen-doped calcium oxide, highlighting its competence in MB adsorption and visible light photocatalysis. Specifically,
II
under conditions characterized by a 10 mg L-1 MB concentration, 0.84 g L-1 of 2%N-HOS, and 0.23% H2O2 (calculated concentration), executed at a reaction temperature of 60°C, and sustained for a duration of 120 minutes, 2%N-HOS emerges as the most proficient photocatalyst, delivering a remarkable removal efficiency of 99.8%.
關鍵字(中) ★ 牡蠣殼
★ 氧化鈣
★ 氮摻雜
★ 紫外/可見光催化氧化法
★ 過氧化氫
★ 亞甲基藍
關鍵字(英)
論文目次 摘要 ............................................................................................................................................ I Abstract...................................................................................................................................... II 致謝 ..........................................................................................................................................IV 目錄 ........................................................................................................................................... V 圖目錄 ................................................................................................................................... VIII 表目錄 ....................................................................................................................................... X 第壹章 前言 ...............................................................................................................................1
1.1 研究緣起及背景 ..............................................................................................................1 1.2 研究目的 ..........................................................................................................................2 1.3 研究創新性 ......................................................................................................................3
第貳章 文獻回顧 .......................................................................................................................4 2.1 牡蠣殼(Oyster shell) ........................................................................................................4 2.2 氧化鈣(Calcium Oxide, CaO) ..........................................................................................5 2.3 染整產業污染水體 ..........................................................................................................6 2.4 染料 ..................................................................................................................................7
2.4.1 亞甲基藍(Methylene blue, MB) .......................................................................8
2.4.2 染色原理 ...........................................................................................................9 2.5 光觸媒特性 ....................................................................................................................11 2.6 氮摻雜氧化鈣復合光觸媒 ............................................................................................11
2.6.1 摻雜非金屬氮元素 .........................................................................................12 2.6.2 以尿素作為氮元素摻雜來源 .........................................................................13 2.6.3 非金屬摻雜方法 .............................................................................................15
2.7 高級氧化處理程序 ........................................................................................................16 2.7.1 光催化氧化法(Photocatalytic Oxidation, PCO)機制.....................................16 2.7.2 氮摻雜光觸媒對光催化反應機制 .................................................................18 2.7.3 染料分子受光催化氧化反應之程序 .............................................................19 2.7.4 過氧化氫直接氧化 .........................................................................................20 2.7.5 氫氧自由基(hydroxyl radical) 氧化 ...............................................................20
2.8 影響光催化氧化程序之影響因子 ................................................................................22 2.8.1 光觸媒的特性 .................................................................................................22 2.8.2 光源強度和光照時間 .....................................................................................23 2.8.3 水溶液酸鹼值(pH 值) ..................................................................................... 23 2.8.4 添加劑 .............................................................................................................24
V
2.8.5 溫度和壓力 .....................................................................................................25 2.9 光觸媒重複試驗 ............................................................................................................25 2.10 光催化降解模式之探討 ..............................................................................................25
2.10.1 染料濃度測定(Determination of dye concentration)....................................25 2.10.2 動力學模式(Kinetic model)..........................................................................26 2.10.3 能隙(Band gap) .............................................................................................27
第參章 研究架構與規劃 .........................................................................................................29 3.1 研究架構與流程 ............................................................................................................29 3.2 實驗材料 ........................................................................................................................31
3.2.1 牡蠣殼來源 .....................................................................................................31 3.3 氧化鈣製備及氮改質方法 ............................................................................................31 3.3.1 氧化鈣製備 .....................................................................................................31 3.3.2 氮摻雜氧化鈣製備 .........................................................................................31 3.4 亞甲基藍溶液配置 ........................................................................................................33 3.5 光催化降解實驗 ............................................................................................................33 3.5.1 空白背景實驗 .................................................................................................34 3.5.2 吸附實驗 .........................................................................................................36 3.5.3 光催化實驗 .....................................................................................................37 3.5.4 重複實驗 .........................................................................................................39 3.6 實驗藥品及設備 ............................................................................................................40 3.6.1 實驗藥品 .........................................................................................................40 3.6.2 實驗設備 .........................................................................................................41 3-7 材料特性分析量測儀器 ................................................................................................ 42 第肆章 研究結果與討論 .........................................................................................................46 4.1 光觸媒表徵物化特性分析 ............................................................................................46 4.1.1 SEM 分析 ........................................................................................................ 46 4.1.2 EDS 分析.........................................................................................................49 4.1.3 BET 分析.........................................................................................................51 4.1.4 XRD 分析........................................................................................................53 4.1.5 FT-IR 分析 ......................................................................................................54 4.1.6 XPS 分析 ......................................................................................................... 55 4.1.7 光譜特性分析 .................................................................................................58 4.2 光觸媒對 MB 之光催化降解實驗................................................................................59 4.2.1 空白背景實驗 .................................................................................................59 4.2.2 暗反應吸附實驗 .............................................................................................60
VI

4.2.3 氧化鈣之光催化實驗 .....................................................................................61 4.2.4 不同操作變因下,對 MB 降解的研究 .........................................................65 4.2.5 氮摻雜氧化鈣對 MB 降解之研究 .................................................................73 4.2.6 光催化之降解動力學 .....................................................................................85 4.2.7 MB 在可見光光催化過程中,紫外-可見光吸收光譜及分解副產物的分析 .................................................................................................................................. 90
4.3 相關文獻之探討 ............................................................................................................98 第伍章 結論與建議 ...............................................................................................................101 5.1 結論 ..............................................................................................................................101 5.2 建議 ..............................................................................................................................103 參考文獻 ................................................................................................................................105 附錄一 紫外可見光光譜儀 ..................................................................................................117 附錄二 學位考試委員意見回覆表 ......................................................................................118
參考文獻 林聖賢. (2015). 以牡蠣殼粉結合二氧化鈦光觸媒降解 PCBs 之研究. 國立屏東科技大學環境工程 與科學系-碩士學位論文, 134.
范仲翔. (2022). 錳改質牡蠣殼固定土壤中鎘和銅之研究. 國立中央大學環境工程與所-碩士學位 論文,.
劉國柱, 易新鼎, 林玉君, & 童維莉. (2001). 環境科學大辭典. 文景書局有限公司.
Abas, N., & Khan, N. (2014). Carbon conundrum, climate change, CO2 capture and consumptions.
Journal of CO2 Utilization, 8, 39-48. https://doi.org/https://doi.org/10.1016/j.jcou.2014.06.005 Abou-Gamra, Z. M., & Ahmed, M. A. (2016). Synthesis of mesoporous TiO2–curcumin nanoparticles
for photocatalytic degradation of methylene blue dye. Journal of Photochemistry and Photobiology B: Biology, 160, 134-141. https://doi.org/https://doi.org/10.1016/j.jphotobiol.2016.03.054
Ahmadi, A., Hajilou, M., Zavari, S., & Yaghmaei, S. (2023). A comparative review on adsorption and photocatalytic degradation of classified dyes with metal/non-metal-based modification of graphitic carbon nitride nanocomposites: Synthesis, mechanism, and affecting parameters. Journal of Cleaner Production, 382, 134967. https://doi.org/https://doi.org/10.1016/j.jclepro.2022.134967
Ahuja, T., Brighu, U., & Saxena, K. (2023). Recent advances in photocatalytic materials and their applications for treatment of wastewater: A review. Journal of Water Process Engineering, 53, 103759. https://doi.org/https://doi.org/10.1016/j.jwpe.2023.103759
Al-Mamun, M. R., Kader, S., Islam, M. S., & Khan, M. Z. H. (2019). Photocatalytic activity improvement and application of UV-TiO2 photocatalysis in textile wastewater treatment: A review. Journal of Environmental Chemical Engineering, 7(5), 103248. https://doi.org/https://doi.org/10.1016/j.jece.2019.103248
Ameta, R., Kumar, D., & Jhalora, P. (2014). Photocatalytic degradation of methylene blue using calcium oxide. Acta chim Pharma Indica, 4(1), 20-28.
An, H. R., Park, S. Y., Kim, H., Lee, C. Y., Choi, S., Lee, S. C., Seo, S., Park, E. C., Oh, Y. K., Song, C. G., Won, J., Kim, Y. J., Lee, J., Lee, H. U., & Lee, Y. C. (2016). Advanced nanoporous TiO2 photocatalysts by hydrogen plasma for efficient solar-light photocatalytic application. Sci Rep, 6, 29683. https://doi.org/10.1038/srep29683
Arora, I., Chawla, H., Chandra, A., Sagadevan, S., & Garg, S. (2022). Advances in the strategies for enhancing the photocatalytic activity of TiO2: Conversion from UV-light active to visible-light active photocatalyst. Inorganic Chemistry Communications, 143, 109700.
https://doi.org/https://doi.org/10.1016/j.inoche.2022.109700
Asahi, R., Morikawa, T., Ohwaki, T., Aoki, K., & Taga, Y. (2001). Visible-light photocatalysis in
nitrogen-doped titanium oxides. Science, 293(5528), 269-271.
https://doi.org/10.1126/science.1061051
Aziztyana, A., Wardhani, S., Prananto, Y., Purwonugroho, D., & Darjito. (2019). Optimisation of
Methyl Orange Photodegradation Using TiO 2 -Zeolite Photocatalyst and H 2 O 2 in Acid Condition. IOP Conference Series: Materials Science and Engineering, 546, 042047. https://doi.org/10.1088/1757-899X/546/4/042047
Aziztyana, A. P., Wardhani, S., Prananto, Y. P., Purwonugroho, D., & Darjito. (2019). Optimisation of Methyl Orange Photodegradation Using TiO2-Zeolite Photocatalyst and H2O2 in Acid Condition. IOP Conference Series: Materials Science and Engineering, 546(4), 042047. https://doi.org/10.1088/1757-899X/546/4/042047
Bakre, P. V., Tilve, S. G., & Shirsat, R. N. (2020). Influence of N sources on the photocatalytic activity of N-doped TiO2. Arabian Journal of Chemistry, 13(11), 7637-7651. https://doi.org/https://doi.org/10.1016/j.arabjc.2020.09.001
Bathla, A., Singla, D., & Pal, B. (2019). Highly efficient CaCO3-CaO extracted from tap water distillation for effective adsorption and photocatalytic degradation of malachite green dye. Materials Research Bulletin, 116, 1-7. https://doi.org/https://doi.org/10.1016/j.materresbull.2019.04.010
Bôlla de Menezes, L., Cristine Ladwig Muraro, P., Moro Druzian, D., Patricia Moreno Ruiz, Y., Galembeck, A., Pavoski, G., Crocce Romano Espinosa, D., & Leonardo da Silva, W. (2024). Calcium oxide nanoparticles: Biosynthesis, characterization and photocatalytic activity for application in yellow tartrazine dye removal. Journal of Photochemistry and Photobiology A: Chemistry, 447, 115182. https://doi.org/https://doi.org/10.1016/j.jphotochem.2023.115182
Borghei, M., Laocharoen, N., Kibena-Põldsepp, E., Johansson, L.-S., Campbell, J., Kauppinen, E., Tammeveski, K., & Rojas, O. J. (2017). Porous N,P-doped carbon from coconut shells with high electrocatalytic activity for oxygen reduction: Alternative to Pt-C for alkaline fuel cells. Applied Catalysis B: Environmental, 204, 394-402. https://doi.org/https://doi.org/10.1016/j.apcatb.2016.11.029
Chen, Z., Tang, Y., Mai, C., Shi, J., Xie, Y., & Hu, H. (2020). Experimental study on the shear performance of brick masonry strengthened with modified oyster shell ash mortar. Case Studies in Construction Materials, 13, e00469. https://doi.org/https://doi.org/10.1016/j.cscm.2020.e00469
Cheng, X., Yu, X., Xing, Z., & Yang, L. (2016). Synthesis and characterization of N-doped TiO2 and its enhanced visible-light photocatalytic activity. Arabian Journal of Chemistry, 9, S1706- S1711. https://doi.org/https://doi.org/10.1016/j.arabjc.2012.04.052
Christwardana, M., Joelianingsih, J., Kuntolaksono, S., & Maulana, A. Y. (2023). Effect of NaOH concentration as activator on calcined eggshell and its application for yeast microbial fuel cell. Bioresource Technology Reports, 21, 101347. https://doi.org/https://doi.org/10.1016/j.biteb.2023.101347
Correia, L. M., Saboya, R. M. A., de Sousa Campelo, N., Cecilia, J. A., Rodríguez-Castellón, E., Cavalcante, C. L., & Vieira, R. S. (2014). Characterization of calcium oxide catalysts from natural sources and their application in the transesterification of sunflower oil. Bioresource Technology, 151, 207-213. https://doi.org/https://doi.org/10.1016/j.biortech.2013.10.046
Devarahosahalli Veeranna, K., Theeta Lakshamaiah, M., & Thimmasandra Narayan, R. (2014). Photocatalytic Degradation of Indigo Carmine Dye Using Calcium Oxide. International Journal of Photochemistry, 2014, 530570. https://doi.org/10.1155/2014/530570
Di Valentin, C., Finazzi, E., Pacchioni, G., Selloni, A., Livraghi, S., Paganini, M. C., & Giamello, E. (2007). N-doped TiO2: Theory and experiment. Chemical Physics, 339(1), 44-56. https://doi.org/https://doi.org/10.1016/j.chemphys.2007.07.020
Dong, Y., Wang, Y., Cai, T., Kou, L., Yang, G., & Yan, Z. (2014). Preparation and nitrogen-doping of three-dimensionally ordered macroporous TiO2 with enhanced photocatalytic activity. Ceramics International, 40(7, Part B), 11213-11219. https://doi.org/https://doi.org/10.1016/j.ceramint.2014.03.161
Echabbi, F., Hamlich, M., Harkati, S., Jouali, A., Tahiri, S., Lazar, S., Lakhmiri, R., & Safi, M. (2019). Photocatalytic degradation of methylene blue by the use of titanium-doped Calcined Mussel Shells CMS/TiO2. Journal of Environmental Chemical Engineering, 7(5), 103293. https://doi.org/https://doi.org/10.1016/j.jece.2019.103293
Edralin, E. J. M., Garcia, J. L., dela Rosa, F. M., & Punzalan, E. R. (2017). Sonochemical synthesis, characterization and photocatalytic properties of hydroxyapatite nano-rods derived from mussel shells. Materials Letters, 196, 33-36. https://doi.org/https://doi.org/10.1016/j.matlet.2017.03.016
Eskikaya, O., Gun, M., Bouchareb, R., Bilici, Z., Dizge, N., Ramaraj, R., & Balakrishnan, D. (2022). Photocatalytic activity of calcined chicken eggshells for Safranin and Reactive Red 180 decolorization. Chemosphere, 304, 135210. https://doi.org/https://doi.org/10.1016/j.chemosphere.2022.135210
Finkelstein, E., Rosen, G. M., & Rauckman, E. J. (1980). Spin trapping of superoxide and hydroxyl radical: Practical aspects. Archives of Biochemistry and Biophysics, 200(1), 1-16. https://doi.org/https://doi.org/10.1016/0003-9861(80)90323-9
He, X., Wang, A., Wu, P., Tang, S., Zhang, Y., Li, L., & Ding, P. (2020). Photocatalytic degradation of microcystin-LR by modified TiO2 photocatalysis: A review. Science of The Total Environment, 743, 140694. https://doi.org/https://doi.org/10.1016/j.scitotenv.2020.140694
He, X., Wang, S., & Jin, T. (2023). The microstructure and photocatalytic properties of nitrogen- doped nano titanium dioxide loaded on porous ceramics. Journal of Physics and Chemistry of Solids, 178, 111359. https://doi.org/https://doi.org/10.1016/j.jpcs.2023.111359
Hevira, L., Rahmi, A., Zein, R., Zilfa, Z., & Rahmayeni, R. (2020). The fast and of low-cost-adsorbent to the removal of cationic and anionic dye using chicken eggshell with its membrane. Mediterranean Journal of Chemistry.
Hong, Z., Farooq, A., Barbour, E. A., Davidson, D. F., & Hanson, R. K. (2009). Hydrogen Peroxide Decomposition Rate: A Shock Tube Study Using Tunable Laser Absorption of H2O near 2.5 μm. The Journal of Physical Chemistry A, 113(46), 12919-12925. https://doi.org/10.1021/jp907219f
Hu, C.-C., Hsu, T.-C., & Lu, S.-Y. (2013). Effect of nitrogen doping on the microstructure and visible light photocatalysis of titanate nanotubes by a facile cohydrothermal synthesis via urea treatment. Applied Surface Science, 280, 171-178. https://doi.org/https://doi.org/10.1016/j.apsusc.2013.04.120
Huang, J., Dou, L., Li, J., Zhong, J., Li, M., & Wang, T. (2021). Excellent visible light responsive photocatalytic behavior of N-doped TiO2 toward decontamination of organic pollutants. Journal of Hazardous Materials, 403, 123857. https://doi.org/https://doi.org/10.1016/j.jhazmat.2020.123857
Hynes, N. R. J., Kumar, J. S., Kamyab, H., Sujana, J. A. J., Al-Khashman, O. A., Kuslu, Y., Ene, A., & Suresh Kumar, B. (2020). Modern enabling techniques and adsorbents based dye removal with sustainability concerns in textile industrial sector -A comprehensive review. Journal of Cleaner Production, 272, 122636. https://doi.org/https://doi.org/10.1016/j.jclepro.2020.122636
Ikram, M., Muhammad Khan, A., Haider, A., Haider, J., Naz, S., Ul-Hamid, A., Shahzadi, A., Nabgan, W., Shujah, T., Shahzadi, I., & Ali, S. (2022). Facile Synthesis of La- and Chitosan- Doped CaO Nanoparticles and Their Evaluation for Catalytic and Antimicrobial Potential with Molecular Docking Studies. ACS Omega, 7(32), 28459-28470. https://doi.org/10.1021/acsomega.2c02790
Inthapanya, X., Wu, S., Han, Z., Zeng, G., Wu, M., & Yang, C. (2019). Adsorptive removal of anionic dye using calcined oyster shells: isotherms, kinetics, and thermodynamics. Environmental Science and Pollution Research, 26(6), 5944-5954. https://doi.org/10.1007/s11356-018-3980- 0
Islam, S. Z., Reed, A., Kim, D. Y., & Rankin, S. E. (2016). N2/Ar plasma induced doping of ordered mesoporous TiO2 thin films for visible light active photocatalysis. Microporous and Mesoporous Materials, 220, 120-128. https://doi.org/https://doi.org/10.1016/j.micromeso.2015.08.030
Jain, S. N., & Gogate, P. R. (2017). Acid Blue 113 removal from aqueous solution using novel biosorbent based on NaOH treated and surfactant modified fallen leaves of Prunus Dulcis. Journal of Environmental Chemical Engineering, 5(4), 3384-3394. https://doi.org/https://doi.org/10.1016/j.jece.2017.06.047
Jain, S. N., & Gogate, P. R. (2018). Efficient removal of Acid Green 25 dye from wastewater using activated Prunus Dulcis as biosorbent: Batch and column studies. Journal of Environmental Management, 210, 226-238. https://doi.org/https://doi.org/10.1016/j.jenvman.2018.01.008
Janitabar-Darzi, S. (2014). Structural and Photocatalytic Activity of Mesoporous N-Doped TiO2 with Band-to-Band Visible Light Absorption Ability. Particulate Science and Technology, 32(5), 506-511. https://doi.org/10.1080/02726351.2014.920443
Janoš, P., & Šmídová, V. (2005). Effects of surfactants on the adsorptive removal of basic dyes from water using an organomineral sorbent—iron humate. Journal of Colloid and Interface Science, 291(1), 19-27. https://doi.org/https://doi.org/10.1016/j.jcis.2005.04.065
Jia, H., Liu, J., Zhong, S., Zhang, F., Xu, Z., Gong, X., & Lu, C. (2015). Manganese oxide coated river sand for Mn(II) removal from groundwater. Journal of Chemical Technology & Biotechnology, 90(9), 1727-1734. https://doi.org/10.1002/jctb.4524
Jiang, D., Cai, L., Ji, L., Zhang, H., & Song, W. (2018). Nano-Bi2MoO6/calcined mussel shell composites with enhanced photocatalytic performance under visible-light irradiation [https://doi.org/10.1049/mnl.2017.0905]. Micro & Nano Letters, 13(7), 1021-1025. https://doi.org/https://doi.org/10.1049/mnl.2017.0905
Kumar, K. S., Vaishnavi, K., Venkataswamy, P., Ravi, G., Ramaswamy, K., & Vithal, M. (2021). Photocatalytic degradation of methylene blue over N-doped MnWO4 under visible light irradiation. Journal of the Indian Chemical Society, 98(10), 100140. https://doi.org/https://doi.org/10.1016/j.jics.2021.100140
Li, P., Zhao, G., Zhao, K., Gao, J., & Wu, T. (2012). An efficient and energy saving approach to photocatalytic degradation of opaque high-chroma methylene blue wastewater by
electrocatalytic pre-oxidation. Dyes and Pigments, 92(3), 923-928.
https://doi.org/https://doi.org/10.1016/j.dyepig.2011.06.009
Li, Q., Li, L., Su, G., Huang, X., Zhao, Y., Li, B., Miao, X., & Zheng, M. (2016). Synergetic
inhibition of PCDD/F formation from pentachlorophenol by mixtures of urea and calcium oxide. Journal of Hazardous Materials, 317, 394-402. https://doi.org/https://doi.org/10.1016/j.jhazmat.2016.05.090
Lu, H., Reddy, E. P., & Smirniotis, P. G. (2006). Calcium Oxide Based Sorbents for Capture of Carbon Dioxide at High Temperatures. Industrial & Engineering Chemistry Research, 45(11), 3944-3949. https://doi.org/10.1021/ie051325x
Ma, L., Chen, A., Lu, J., Zhang, Z., He, H., & Li, C. (2014). In situ synthesis of CNTs/Fe–Ni/TiO2 nanocomposite by fluidized bed chemical vapor deposition and the synergistic effect in photocatalysis. Particuology, 14, 24-32. https://doi.org/https://doi.org/10.1016/j.partic.2013.04.002
Ma, X., Wang, C., Wang, G., Li, G., Li, S., Wang, J., & Song, Y. (2018). Three narrow band-gap semiconductors modified Z-scheme photocatalysts, Er3+:Y3Al5O12@NiGa2O4/(NiS, CoS2 or MoS2)/Bi2Sn2O7, for enhanced solar-light photocatalytic conversions of nitrite and sulfite. Journal of Industrial and Engineering Chemistry, 66, 141-157. https://doi.org/https://doi.org/10.1016/j.jiec.2018.05.024
Mohammadzadeh, A., Khoshghadam-Pireyousefan, M., Shokrianfard-Ravasjan, B., Azadbeh, M., Rashedi, H., Dibazar, M., & Mostafaei, A. (2020). Synergetic photocatalytic effect of high purity ZnO pod shaped nanostructures with H2O2 on methylene blue dye degradation. Journal of Alloys and Compounds, 845, 156333. https://doi.org/https://doi.org/10.1016/j.jallcom.2020.156333
Mohammed, R., Ali, M. E. M., Abdel-Moniem, S. M., & Ibrahim, H. S. (2022). Reusable and highly stable MoS2 nanosheets for photocatalytic, sonocatalytic and thermocatalytic degradation of organic dyes: Comparative study. Nano-Structures & Nano-Objects, 31, 100900. https://doi.org/https://doi.org/10.1016/j.nanoso.2022.100900
Narayan, R. B., Goutham, R., Srikanth, B., & Gopinath, K. P. (2018). A novel nano-sized calcium hydroxide catalyst prepared from clam shells for the photodegradation of methyl red dye. Journal of Environmental Chemical Engineering, 6(3), 3640-3647. https://doi.org/https://doi.org/10.1016/j.jece.2016.12.004
Natarajan, S., Bajaj, H. C., & Tayade, R. J. (2018). Recent advances based on the synergetic effect of adsorption for removal of dyes from waste water using photocatalytic process. Journal of Environmental Sciences, 65, 201-222. https://doi.org/https://doi.org/10.1016/j.jes.2017.03.011
Nath, A., Biswas, S., & Pal, A. (2023). Eggshell powder as an efficient recyclable catalyst generates H2O2 prompted radicals for selective oxidative mineralization of crystal violet dye at room temperature. Materials Chemistry and Physics, 303, 127785. https://doi.org/https://doi.org/10.1016/j.matchemphys.2023.127785
Nguyen, D. K., On, V. V., Hoat, D. M., Rivas-Silva, J. F., & Cocoletzi, G. H. (2021). Structural, electronic, magnetic and optical properties of CaO induced by oxygen incorporation effects: A first-principles study. Physics Letters A, 397, 127241. https://doi.org/https://doi.org/10.1016/j.physleta.2021.127241
Nguyen, T. P., Tran, Q. B., Ly, Q. V., Thanh Hai, L., Le, D. T., Tran, M. B., Ho, T. T. T., Nguyen, X. C., Shokouhimehr, M., Vo, D.-V. N., Lam, S. S., Do, H.-T., Kim, S. Y., Van Tung, T., & Van Le, Q. (2020). Enhanced visible photocatalytic degradation of diclofen over N-doped TiO2 assisted with H2O2: A kinetic and pathway study. Arabian Journal of Chemistry, 13(11), 8361-8371. https://doi.org/https://doi.org/10.1016/j.arabjc.2020.05.023
Niu, J., Luo, L., Cui, J., Zhang, H., Guo, Y., Li, L., & Cheng, F. (2023). Impact of inherent calcium in coal on the structure and performance of activated carbon in flue gas activation: The enhanced mechanism of calcite on the methylene blue adsorption. Journal of Cleaner Production, 428, 139374. https://doi.org/https://doi.org/10.1016/j.jclepro.2023.139374
Nur, A. S. M., Sultana, M., Mondal, A., Islam, S., Robel, F. N., Islam, A., & Sumi, M. S. A. (2022). A review on the development of elemental and codoped TiO2 photocatalysts for enhanced dye degradation under UV–vis irradiation. Journal of Water Process Engineering, 47, 102728. https://doi.org/https://doi.org/10.1016/j.jwpe.2022.102728
Ohtani, B. (2013). Chapter 5 - Principle of Photocatalysis and Design of Active Photocatalysts. In S. L. Suib (Ed.), New and Future Developments in Catalysis (pp. 121-144). Elsevier. https://doi.org/https://doi.org/10.1016/B978-0-444-53872-7.00006-6
Oliveira, J. M. S., Sabatini, C. A., Santos-Neto, A. J., & Foresti, E. (2023). Broken into pieces: The challenges of determining sulfonated azo dyes in biological reactor effluents using LC-ESI- MS/MS analysis. Environmental Pollution, 318, 120877. https://doi.org/https://doi.org/10.1016/j.envpol.2022.120877
Pai, S., Kini, M. S., Rangasamy, G., & Selvaraj, R. (2023). Mesoporous calcium hydroxide nanoparticle synthesis from waste bivalve clamshells and evaluation of its adsorptive potential for the removal of Acid Blue 113 dye. Chemosphere, 313, 137476. https://doi.org/https://doi.org/10.1016/j.chemosphere.2022.137476
Pant, B., Park, M., & Park, S.-J. (2019). Recent Advances in TiO2 Films Prepared by Sol-Gel Methods for Photocatalytic Degradation of Organic Pollutants and Antibacterial Activities. Coatings, 9(10), 613. https://www.mdpi.com/2079-6412/9/10/613
Peng, Y.-P., Lo, S.-L., Ou, H.-H., & Lai, S.-W. (2010). Microwave-assisted hydrothermal synthesis of N-doped titanate nanotubes for visible-light-responsive photocatalysis. Journal of Hazardous Materials, 183(1), 754-758. https://doi.org/https://doi.org/10.1016/j.jhazmat.2010.07.090
Purkait, P. K., Majumder, S., Roy, S., Maitra, S., Chandra Das, G., & Chaudhuri, M. G. (2023). Enhanced heterogeneous photocatalytic degradation of florasulam in aqueous media using green synthesized TiO2 nanoparticle under UV light irradiation. Inorganic Chemistry Communications, 155, 111017. https://doi.org/https://doi.org/10.1016/j.inoche.2023.111017
QinQin, Li, M., Lan, P., Liao, Y., Sun, S., & Liu, H. (2021). Novel CaCO3/chitin aerogel: Synthesis and adsorption performance toward Congo red in aqueous solutions. International Journal of Biological Macromolecules, 181, 786-792. https://doi.org/https://doi.org/10.1016/j.ijbiomac.2021.03.116
Qu, T., Yao, X., Owens, G., Gao, L., & Zhang, H. (2022). A sustainable natural clam shell derived photocatalyst for the effective adsorption and photodegradation of organic dyes. Scientific Reports, 12(1), 2988. https://doi.org/10.1038/s41598-022-06981-3
Rahman, T. U., Roy, H., Fariha, A., Shoronika, A. Z., Al-Mamun, M. R., Islam, S. Z., Islam, M. S., Marwani, H. M., Islam, A., Alsukaibi, A. K. D., Rahman, M. M., & Awual, M. R. (2023). Progress in plasma doping semiconductor photocatalysts for efficient pollutant remediation and hydrogen generation. Separation and Purification Technology, 320, 124141. https://doi.org/https://doi.org/10.1016/j.seppur.2023.124141
Rajendran, K., Senthil Kumar, V., & Anitha Rani, K. (2014). Synthesis and characterization of immobilized activated carbon doped TiO2 thin films. Optik, 125(8), 1993-1996. https://doi.org/https://doi.org/10.1016/j.ijleo.2013.10.055
Rajput, R. B., Jamble, S. N., & Kale, R. B. (2022). A review on TiO2/SnO2 heterostructures as a photocatalyst for the degradation of dyes and organic pollutants. Journal of Environmental Management, 307, 114533. https://doi.org/https://doi.org/10.1016/j.jenvman.2022.114533
Ramos-Corona, A., Rangel, R., Lara-Romero, J., & Ramos-Carrazco, A. (2022). Nitrogen-plasma doped ZnO-graphene oxide compounds production and their photocatalytic performance. Advanced Powder Technology, 33(11), 103829. https://doi.org/https://doi.org/10.1016/j.apt.2022.103829
Rauf, M. A., & Ashraf, S. S. (2009). Fundamental principles and application of heterogeneous photocatalytic degradation of dyes in solution. Chemical Engineering Journal, 151(1), 10-18. https://doi.org/https://doi.org/10.1016/j.cej.2009.02.026
Rauf, M. A., Meetani, M. A., Khaleel, A., & Ahmed, A. (2010). Photocatalytic degradation of Methylene Blue using a mixed catalyst and product analysis by LC/MS. Chemical
Engineering Journal, 157(2), 373-378.
https://doi.org/https://doi.org/10.1016/j.cej.2009.11.017
Saien, J., & Soleymani, A. R. (2012). Feasibility of using a slurry falling film photo-reactor for
individual and hybridized AOPs. Journal of Industrial and Engineering Chemistry, 18(5),
1683-1688. https://doi.org/https://doi.org/10.1016/j.jiec.2012.03.014
Salleh, M. A. M., Mahmoud, D. K., Karim, W. A. W. A., & Idris, A. (2011). Cationic and anionic dye
adsorption by agricultural solid wastes: A comprehensive review. Desalination, 280(1), 1-13.
https://doi.org/https://doi.org/10.1016/j.desal.2011.07.019
Sang, T., Zhong, Y., Wang, D.-H., Hu, C.-H., Ye, J.-C., Wang, W.-Y., & Liu, H. (2023). Visible-light-
driven reduction of hexavalent chromium ions by CdS/CaCO3 semiconductor–insulator photocatalytic heterojunction. Journal of Molecular Structure, 1275, 134686. https://doi.org/https://doi.org/10.1016/j.molstruc.2022.134686
Savvidis, G., Zarkogianni, M., Karanikas, E., Lazaridis, N., Nikolaidis, N., & Tsatsaroni, E. (2013). Digital and conventional printing and dyeing with the natural dye annatto: optimisation and standardisation processes to meet future demands [https://doi.org/10.1111/cote.12004]. Coloration Technology, 129(1), 55-63. https://doi.org/https://doi.org/10.1111/cote.12004
Schaube, F., Koch, L., Wörner, A., & Müller-Steinhagen, H. (2012). A thermodynamic and kinetic study of the de- and rehydration of Ca(OH)2 at high H2O partial pressures for thermo- chemical heat storage. Thermochimica Acta, 538, 9-20. https://doi.org/https://doi.org/10.1016/j.tca.2012.03.003
Schmidt, A., Karas, M., & Dülcks, T. (2003). Effect of different solution flow rates on analyte ion signals in nano-ESI MS, or: when does ESI turn into nano-ESI? Journal of the American Society for Mass Spectrometry, 14(5), 492-500. https://doi.org/10.1016/S1044- 0305(03)00128-4
Sivapatarnkun, J., Hathaisamit, K., & Pudwat, S. (2017). High photocatalytic activity of F-TiO2 on activated carbon. Materials Today: Proceedings, 4(5, Part 2), 6495-6501. https://doi.org/https://doi.org/10.1016/j.matpr.2017.06.159
Sree, G. V., & Nagaraaj, P. (2022). Enhancement of PVA packaging properties using calcined eggshell waste as filler and nanonutrient. Materials Chemistry and Physics, 291, 126611. https://doi.org/https://doi.org/10.1016/j.matchemphys.2022.126611
Strydonck, M., Boudin, M., Hoefkens, M., & De Mulder, G. (2005). 14C-dating of cremated bones, why does it work? Lunula, 13, 3-10.
Su, H., Guo, X., Zhang, X., Zhang, Q., Huang, D., Lin, L., & Qiang, X. (2022). Ultrafine biosorbent from waste oyster shell: A comparative study of Congo red and Methylene blue adsorption.
Bioresource Technology Reports, 19, 101124.
https://doi.org/https://doi.org/10.1016/j.biteb.2022.101124
Tahmasebizad, N., Hamedani, M., Shaban, M., & Pazhouhanfar, Y. (2020). Photocatalytic activity and
antibacterial behavior of TiO2 coatings Co-doped with copper and nitrogen via sol-gel method. Journal of Sol-Gel Science and Technology, 93. https://doi.org/10.1007/s10971-019- 05085-1
Tan, X., Wei, W., Xu, C., Meng, Y., Bai, W., Yang, W., & Lin, A. (2020). Manganese-modified biochar for highly efficient sorption of cadmium. Environ Sci Pollut Res Int, 27(9), 9126- 9134. https://doi.org/10.1007/s11356-019-07059-w
Tang, W. Z., & Huren, A. (1995). Photocatalytic degradation kinetics and mechanism of acid blue 40 by TiO2/UV in aqueous solution. Chemosphere, 31(9), 4171-4183. https://doi.org/https://doi.org/10.1016/0045-6535(95)80016-E
Thakur, S., Singh, S., & Pal, B. (2021). Superior adsorption removal of dye and high catalytic activity for transesterification reaction displayed by crystalline CaO nanocubes extracted from mollusc shells. Fuel Processing Technology, 213, 106707. https://doi.org/https://doi.org/10.1016/j.fuproc.2020.106707
Thulasi Karunakaran, S., Pavithran, R., Sajeev, M., & Mohan Mohan Rema, S. (2022). Photocatalytic degradation of methylene blue using a manganese based metal organic framework. Results in Chemistry, 4, 100504. https://doi.org/https://doi.org/10.1016/j.rechem.2022.100504
Tichapondwa, S. M., Newman, J. P., & Kubheka, O. (2020). Effect of TiO2 phase on the photocatalytic degradation of methylene blue dye. Physics and Chemistry of the Earth, Parts A/B/C, 118-119, 102900. https://doi.org/https://doi.org/10.1016/j.pce.2020.102900
Tsai, W. T., Yang, J. M., Lai, C. W., Cheng, Y. H., Lin, C. C., & Yeh, C. W. (2006). Characterization and adsorption properties of eggshells and eggshell membrane. Bioresource Technology, 97(3), 488-493. https://doi.org/https://doi.org/10.1016/j.biortech.2005.02.050
Vaiano, V., Sacco, O., Sannino, D., & Ciambelli, P. (2015). Nanostructured N-doped TiO2 coated on glass spheres for the photocatalytic removal of organic dyes under UV or visible light irradiation. Applied Catalysis B: Environmental, 170-171, 153-161. https://doi.org/https://doi.org/10.1016/j.apcatb.2015.01.039
Vanthana Sree, G., Nagaraaj, P., Kalanidhi, K., Aswathy, C. A., & Rajasekaran, P. (2020). Calcium oxide a sustainable photocatalyst derived from eggshell for efficient photo-degradation of organic pollutants. Journal of Cleaner Production, 270, 122294. https://doi.org/https://doi.org/10.1016/j.jclepro.2020.122294
Verma, G., Islam, M., & Gupta, A. (2022). Real-time degradation of methylene blue using bio- inspired superhydrophobic PDMS tube coated with Ta-ZnO composite. Chemical Engineering Journal Advances, 12, 100423. https://doi.org/https://doi.org/10.1016/j.ceja.2022.100423
Waheed, M., Butt, M. S., Shehzad, A., Adzahan, N. M., Shabbir, M. A., Rasul Suleria, H. A., & Aadil, R. M. (2019). Eggshell calcium: A cheap alternative to expensive supplements. Trends in Food Science & Technology, 91, 219-230. https://doi.org/https://doi.org/10.1016/j.tifs.2019.07.021
Wang, B., Wang, T., & Su, H. (2022). A dye-methylene blue (MB)-degraded by hydrodynamic cavitation (HC) and combined with other oxidants. Journal of Environmental Chemical Engineering, 10(3), 107877. https://doi.org/https://doi.org/10.1016/j.jece.2022.107877
Wetchakun, K., Wetchakun, N., & Sakulsermsuk, S. (2019). An overview of solar/visible light-driven heterogeneous photocatalysis for water purification: TiO2- and ZnO-based photocatalysts used in suspension photoreactors. Journal of Industrial and Engineering Chemistry, 71, 19-49. https://doi.org/https://doi.org/10.1016/j.jiec.2018.11.025
Witoon, T. (2011). Characterization of calcium oxide derived from waste eggshell and its application as CO2 sorbent. Ceramics International, 37(8), 3291-3298. https://doi.org/https://doi.org/10.1016/j.ceramint.2011.05.125
Witt, O. N. (1876). Zur Kenntniss des Baues und der Bildung färbender Kohlenstoffverbindungen. Berichte der deutschen chemischen Gesellschaft, 522-527. https://doi.org/https://doi.org/10.1002/cber.187600901164
Yabalak, E., Isik, Z., & Dizge, N. (2022). Catalytical efficiency, mechanism and characterization of hydrolysed waste eggshell in the subcritical water oxidation of pistachio processing wastewater. Journal of Environmental Management, 317, 115326. https://doi.org/https://doi.org/10.1016/j.jenvman.2022.115326
Yang, G., Jiang, Z., Shi, H., Xiao, T., & Yan, Z. (2010). Preparation of highly visible-light active N- doped TiO2 photocatalyst [10.1039/C0JM00376J]. Journal of Materials Chemistry, 20(25), 5301-5309. https://doi.org/10.1039/C0JM00376J
Yang, R., Zeng, G., Xu, Z., Zhou, Z., Huang, J., Fu, R., & Lyu, S. (2021). Comparison of naphthalene removal performance using H2O2, sodium percarbonate and calcium peroxide oxidants activated by ferrous ions and degradation mechanism. Chemosphere, 283, 131209. https://doi.org/https://doi.org/10.1016/j.chemosphere.2021.131209
You, Z., Pan, S.-Y., Sun, N., Kim, H., & Chiang, P.-C. (2019). Enhanced corn-stover fermentation for biogas production by NaOH pretreatment with CaO additive and ultrasound. Journal of Cleaner Production, 238, 117813. https://doi.org/https://doi.org/10.1016/j.jclepro.2019.117813
Yu, Z., Yin, L.-C., Xie, Y., Liu, G., Ma, X., & Cheng, H.-M. (2013). Crystallinity-dependent substitutional nitrogen doping in ZnO and its improved visible light photocatalytic activity. Journal of Colloid and Interface Science, 400, 18-23. https://doi.org/https://doi.org/10.1016/j.jcis.2013.02.046
Zhang, S., Zhu, A., Wan, X., Yu, M., Sun, D., Li, Z., Shi, G., Feng, Y., Yan, J., Zhao, C., & Wang, W. (2023). Zero-energy consuming fast decomposition of H2O2 over mullite oxide YMn2O5. Chemical Engineering Journal, 474, 145649. https://doi.org/https://doi.org/10.1016/j.cej.2023.145649
Zhao, B., Wang, X., Zhang, Y., Gao, J., Chen, Z., & Lu, Z. (2019). Synergism of oxygen vacancies, Ti3+ and N dopants on the visible-light photocatalytic activity of N-doped TiO2. Journal of Photochemistry and Photobiology A: Chemistry, 382, 111928. https://doi.org/https://doi.org/10.1016/j.jphotochem.2019.111928
Zheng, X., Zhang, B., Lai, W., Wang, M., Tao, X., Zou, M., Zhou, J., & Lu, G. (2023). Application of bovine bone meal and oyster shell meal to heavy metals polluted soil: Vegetable safety and bacterial community. Chemosphere, 313, 137501. https://doi.org/https://doi.org/10.1016/j.chemosphere.2022.137501
指導教授 林伯勳 審核日期 2024-1-23
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明