博碩士論文 110326020 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:16 、訪客IP:3.133.155.48
姓名 黃怡瑄(YI-SYUAN HUANG)  查詢紙本館藏   畢業系所 環境工程研究所
論文名稱 應用爐外催化裂解技術轉換模擬農業薄膜為能源之可行性研究
(Feasibility on converting the stimulated agriculture plastic film to energy by ex-situ catalytic pyrolysis)
相關論文
★ 大學生對綠建材認知與態度之研究★ 塑膠廢棄物催化裂解產能效率與裂解油物種特性變化之評估研究
★ 應用高壓蒸氣技術製備抗菌輕質材料及其 特性評估研究★ 加速碳酸鹽反應對都市垃圾焚化灰渣捕捉二氧化碳之可行性評估研究
★ 應用無機聚合物技術探討都市垃圾焚化飛灰 無害化之可行性研究★ 動畫與教學介入對桃園市某國小六年級學童環境行動影響之研究
★ 下水污泥與工業區廢水污泥共同蒸氣氣化產能效率與重金屬分佈特性之研究★ 應用自製催化劑評估廢車破碎殘餘物氣化產能效率及污染物排放特性
★ 應用熱裂解技術評估廢車破碎殘餘物轉換能源效率及重金屬排放特性★ 應用揮發性有機物自動採樣技術評估工業區異味污染物來源及指紋之可行性研究
★ 評估傳統濕式洗滌塔對印刷電路板防焊製程之揮發性有機氣體去除效率之研究★ 污水處理廠逸散微粒之物理、化學及生物特性分析
★ 應用熱氣清淨系統提升稻稈氣化過程合成氣品質及污染物去除之可行性研究★ 台北都會區PM1.0微粒物理特徵描述與含碳氣膠來源分析
★ 以無人飛行載具(UAV)平台探討空氣污染物之垂直分佈特徵及搭載之氣膠儀器性能評估★ 應用高溫淨化技術提昇廢水污泥與沼渣共氣化產能效率及 重金屬去除之評估研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2028-12-31以後開放)
摘要(中) 本研究利用爐外催化裂解反應,探討低密度聚乙烯(Low-Density Polyethylene, LDPE)、高密度聚乙烯(High-Density Polyethylene, HDPE)、聚丙烯(Polypropylene, PP)以及聚乳酸(Polylactic Acid, PLA)等四種常見農業薄膜材質,轉換為能源之可行性。試驗條件分別控制反應溫度600℃,不同模擬農業薄膜材料之摻混比例(3:1、1:1及1:3),以及添加2.5%之自製鎳基催化劑等條件,期進一步評估共同裂解與催化裂解之產物分布及物種變化之影響。

研究結果顯示,試驗選擇之四種塑膠材質,經裂解反應之產物皆以氣體為主,產量可達80 wt.%以上。至於裂解油產量,其中LDPE及HDPE分別為6.71 w.t%及5.28 w.t%。由於裂解油品中出現類似蠟之產物,試驗經爐外催化裂解反應後,裂解油品中蠟產量明顯下降,且裂解油產量分別增加至13.31 w.t%及11.54 w.t%。此外,PP及PLA之裂解油產量,分別為7.61 wt.%及2.36 wt.%,然經氣相催化反應後,裂解油產量分別下降至6.14 wt.%及0.66 wt.%,此係受到催化劑促進液相產物轉換成氣相產物之影響,整體而言,隨爐外催化反應之影響,試驗四種塑膠之裂解油產量變化,主要原因在於鎳為高活性之金屬,有助於提供活性位點,並促進斷鍵反應之發生。

根據裂解油品之元素分析結果顯示,LDPE、HDPE及PP經裂解反應衍生之輕質油及重質油,主要為碳及氫元素,而PLA衍生之裂解油品,則以碳及氧元素為主。LDPE、HDPE與PP於不同試驗條件下,油品之熱值介於10,994 kcal/kg–11,580 kcal/kg,PLA油品之熱值則介於3,893 kcal/kg–5,386 kcal/kg,前述油品熱值之變化,主要受到油品中碳、氫及氧含量之影響。至於LDPE、HDPE及PP之H/C比及O/C比,分別介於1.74–1.99及0.00–0.03,而PLA之H/C及O/C比則分別介於1.74–2.19及0.45–0.81,受到結構中的氧元素影響,根據H/C比及O/C比之變化範圍可知,與LDPE共裂解衍生之裂解油,O/C比隨著PLA摻混比例增加而增加,有促進油品老化現象發生之潛勢。

輕質油及重質油之化合物物種分析結果顯示,碳數分布分別集中在C7–C9及C10–C16化合物,惟PLA衍生之輕質油及重質油,碳數分布分別集中在C5-C6及C7-C9化合物。LDPE及HDPE衍生之裂解油物種則以脂肪族為主;PP之裂解油物種,以脂肪族及芳香族為主;PLA衍生之裂解油物種則以含氧化合物為主。爐外催化試驗結果顯示,所有試驗之裂解油中>C21之化合物比例下降,並使芳香族化合物比例增加,顯示催化劑有助於斷鍵反應,並促使芳香化反應之發生。在產能評估結果中,氣體產物皆有最高之碳分布及能源密度,分別達78%及0.8以上,能達到能源轉換應用之目的。整體而言,本研究已成功模擬驗證LDPE、HDPE、PP及PLA等農膜塑膠材質,應用裂解及催化裂解轉換能源之可行性,並依據衍生裂解油之物種鑑定及能源密度之評估,將有助於提供後續工程應用之參考依據。
摘要(英) This research investigated the feasibility of converting common agriculture film materials, including Low-Density Polyethylene (LDPE), High-Density Polyethylene (HDPE), Polypropylene (PP), and Polylactic Acid (PLA), into energy by ex-situ catalytic pyrolysis. The condition operates at the temperature of 600°C, the blending ratio (3:1, 1:1, and 1:3) of stimulated agriculture film materials, and 2.5% prepared nickel-based catalyst addition. These conditions aim to investigate the influence of blending ratio and catalyst on the distribution and the variations in speciation of the pyrolysis products.

Experimental results showed that the gaseous product is dominant for four types of selected plastic materials after pyrolysis reaction, and the yield is up to 80 wt.%. Regarding pyrolytic oil, the yields of LDPE and HDPE are 6.71 wt.% and 5.28 wt.%, respectively. The wax-like products significantly appeared in the pyrolytic oil. However, the wax-like product yield also significantly decreased after catalytic reaction and increased the yield of pyrolytic oil to 13.31 wt.% and 11.54 wt.% for LDPE and HDPE, respectively. Furthermore, the yield of pyrolytic oil for PP and PLA are 7.61 wt.% and 2.36 wt.%, respectively. However, the pyrolytic oil yields also decreased to 6.14 wt.% and 0.66 wt.% for PP and PLA after the gas-phase catalytic reaction. This is attributed to the catalyst promoting the conversion of liquid-phase products into gas-phase products. Overall, the prepared nickel-based catalyst could provide highly active sites and facilitate the occurrence of cracking reactions in the pyrolysis of the tested plastic materials.

According to the elemental analysis of the pyrolytic oil, the light and heavy fractions of pyrolytic oil derived from LDPE, HDPE, and PP are mainly composed of carbon and hydrogen, while that of pyrolytic oil derived from PLA is composed of carbon and oxygen. Under different experimental conditions, the calorific values of oils derived from LDPE, HDPE, and PP ranged from 10,994 kcal/kg to 11,580 kcal/kg. However, the calorific value of oils derived from PLA ranged from 3,893 kcal/kg to 5,386 kcal/kg. The carbon, hydrogen, and oxygen content of pyrolytic oil primarily influences the variations in the calorific values. The H/C ratio and O/C ratio of the pyrolytic oil derived from LDPE, HDPE, and PP ranged from 1.74 to 1.99 and 0.00 to 0.03, respectively. In the case of pyrolytic oil derived from PLA, the H/C and O/C ratios ranged from 1.74 to 2.19 and 0.45 to 0.81, respectively. Based on the variation in H/C and O/C ratios, the result showed that the O/C ratio increases with the PLA blending ratio increasing in the co-pyrolysis of LDPE and PLA. It implied the potential for a promotion in the aging of the oil products due to the PLA containing oxygen.

The speciation analysis of the light and heavy fractions of pyrolytic oil indicates that the carbon distribution dominates in C7–C9 and C10–C16. Except for the PLA conditions, the carbon distribution of the light and heavy fractions of oils dominates in C5–C6 and C7–C9. The main speciation of pyrolytic oil derived from LDPE and HDPE are aliphatic compounds. However, the speciation of the pyrolytic oil derived from PP is both aliphatic and aromatic compounds. On the other hand, oxygen-containing compounds are the dominate species of pyrolytic oil derived from PLA. In the results of the ex-situ catalytic experiments, the proportion of >C21 compounds in the pyrolytic oil decreased, while the proportion of aromatic compounds increased, indicating that the catalyst enhanced the cracking reactions and aromatic formation. Based on the energy density analysis results, the gaseous products have the highest carbon distribution and energy density, up to 78% and 0.8, implying that could provide a great energy conversion efficiency. Overall, this study successfully verified the feasibility of converting simulated agricultural film plastics such as LDPE, HDPE, PP, and PLA into energy through pyrolysis and catalytic pyrolysis. Meanwhile, based on the speciation identification and the energy density of pyrolytic products, the relevant results will be helpful for the subsequent selection of pyrolysis technologies and references for engineering applications.
關鍵字(中) ★ 農業薄膜
★ 熱裂解
★ 催化劑
★ 催化裂解
★ 爐外催化裂解
關鍵字(英) ★ agricultural film
★ pyrolysis
★ catalyst
★ catalytic pyrolysis
★ ex-situ catalytic pyrolysis
論文目次 摘 要 i
Abstract iii
誌 謝 vii
目 錄 ix
圖目錄 xiii
表目錄 xxi
第一章 前言 1
第二章 文獻回顧 5
2-1 農業薄膜使用現況 5
2-1-1 農業地膜(Mulching film) 7
2-1-2 溫室膜(Greenhouse film) 10
2-1-3 青貯膜(Silage film) 10
2-1-4 地工膜(Geomembrane) 11
2-2 塑膠廢棄物資源化處理技術 12
2-2-1 塑膠處理現況 12
2-2-2 熱裂解技術 13
2-2-3 熱裂解產物 20
2-2-4 熱裂解產物影響因素 20
第三章 研究材料與方法 37
3-1 研究材料 37
3-1-1 試驗原料 37
3-1-2 鎳基催化劑(NiAl2O4) 38
3-2 研究方法 40
3-2-1 研究設備與操作條件 40
3-2-2 熱裂解試驗操作流程及步驟 42
3-3 分析項目與方法 42
3-3-1 塑膠原料 42
3-3-2 熱裂解動力學分析 46
3-3-3 熱裂解產物 49
第四章 結果與討論 59
4-1 試驗材料基本特性分析 59
4-1-1 塑膠原料基本特性分析 59
4-1-2 金屬催化劑基本特性分析 60
4-2 塑膠原料熱裂解動力學分析 63
4-2-1 熱重損失分析 63
4-2-2 協同效應分析 74
4-2-3 反應特性及活化能分析 79
4-2-4 熱裂解氣體官能基分析 104
4-3 熱裂解產物產量分布特性 114
4-3-1 產物質量平衡 114
4-4 熱裂解產物特性分析 130
4-4-1 液體產物特性分析 130
4-4-2 固體產物特性分析 206
4-4-3 氣體產物特性分析 207
4-5 催化反應後之金屬催化劑特性分析 285
4-6 產能效率評估 289
第五章 結論與建議 307
5-1 結論 307
5-1-1 塑膠原料基本特性分析結果 307
5-1-2 熱裂解產物分布及特性 308
5-2 建議 310
參考文獻 311
附 錄 323
參考文獻 Abnisa, F., Alaba, P.A., 2021. Recovery of liquid fuel from fossil-based solid wastes via
pyrolysis technique: A review. Journal of Environmental Chemical Engineering 9.
Aboul-Enein, A.A., Soliman, F.S., Betiha, M.A., 2019. Co-production of hydrogen and
carbon nanomaterials using NiCu/SBA15 catalysts by pyrolysis of a wax by-product: Effect of Ni–Cu loading on the catalytic activity. International Journal of Hydrogen Energy 44, 31104-31120.
Acomb, J.C., Wu, C., Williams, P.T., 2016. The use of different metal catalysts for the
simultaneous production of carbon nanotubes and hydrogen from pyrolysis of plastic feedstocks. Applied Catalysis B: Environmental 180, 497-510.
Aisien, E.T., Otuya, I.C., Aisien, F.A., 2021. Thermal and catalytic pyrolysis of waste
polypropylene plastic using spent FCC catalyst. Environmental Technology & Innovation 22.
Al-Salem, S., Chandrasekaran, S.R., Dutta, A., Sharma, B.K., 2021. Study of the fuel
properties of extracted oils obtained from low and linear low density polyethylene pyrolysis. Fuel 304, 121396.
Al-Salem, S.M., 2019. Thermal pyrolysis of high density polyethylene (HDPE) in a
novel fixed bed reactor system for the production of high value gasoline range hydrocarbons (HC). Process Safety and Environmental Protection 127, 171-179.
Anuar Sharuddin, S.D., Abnisa, F., Wan Daud, W.M.A., Aroua, M.K., 2016. A review
on pyrolysis of plastic wastes. Energy Conversion and Management 115, 308-326.
Armenise, S., SyieLuing, W., Ramírez-Velásquez, J.M., Launay, F., Wuebben, D., Ngadi,
N., Rams, J., Muñoz, M., 2021. Plastic waste recycling via pyrolysis: A bibliometric survey and literature review. Journal of Analytical and Applied Pyrolysis 158.
Ayillath Kutteri, D., Wang, I.W., Samanta, A., Li, L., Hu, J., 2018. Methane
decomposition to tip and base grown carbon nanotubes and COx-free H2 over mono- and bimetallic 3d transition metal catalysts. Catalysis Science & Technology 8, 858-869.
Bhoi, P.R., Ouedraogo, A.S., Soloiu, V., Quirino, R., 2020. Recent advances on catalysts
for improving hydrocarbon compounds in bio-oil of biomass catalytic pyrolysis. Renewable and Sustainable Energy Reviews 121.
Bhoi, P.R., Rahman, M.H., 2022. Hydrocarbons recovery through catalytic pyrolysis of
compostable and recyclable waste plastics using a novel desk-top staged reactor. Environmental Technology & Innovation 27.
Cai, N., Li, X., Xia, S., Sun, L., Hu, J., Bartocci, P., Fantozzi, F., Williams, P.T., Yang,
H., Chen, H., 2021. Pyrolysis-catalysis of different waste plastics over Fe/Al2O3 catalyst: High-value hydrogen, liquid fuels, carbon nanotubes and possible reaction mechanisms. Energy Conversion and Management 229.
Chan, Y.H., Cheah, K.W., How, B.S., Loy, A.C.M., Shahbaz, M., Singh, H.K.G., Yusuf,
N.R., Shuhaili, A.F.A., Yusup, S., Ghani, W., Rambli, J., Kansha, Y., Lam, H.L., Hong, B.H., Ngan, S.L., 2019. An overview of biomass thermochemical conversion technologies in Malaysia. Sci Total Environ 680, 105-123.
Chang, S.H., 2023. Plastic waste as pyrolysis feedstock for plastic oil production: A
review. Sci Total Environ 877, 162719.
Chen, W., Shi, S., Zhang, J., Chen, M., Zhou, X., 2016. Co-pyrolysis of waste newspaper
with high-density polyethylene: Synergistic effect and oil characterization. Energy Conversion and Management 112, 41-48.
Dai, L., Zhou, N., Lv, Y., Cheng, Y., Wang, Y., Liu, Y., Cobb, K., Chen, P., Lei, H., Ruan,
R., 2022. Pyrolysis technology for plastic waste recycling: A state-of-the-art review. Progress in Energy and Combustion Science 93.
Das, P., Tiwari, P., 2018a. The effect of slow pyrolysis on the conversion of packaging
waste plastics (PE and PP) into fuel. Waste Manag 79, 615-624.
Das, P., Tiwari, P., 2018b. Valorization of packaging plastic waste by slow pyrolysis.
Resources, Conservation and Recycling 128, 69-77.
Data Bridge Market Research: Global Biodegradable Mulch Film Market – Industry
Trends and Forecast to 2028. Website: https://www.databridgemarketresearch.com
/reports/global-biodegradable-mulch-film-market
Data Bridge Market Research: Global Geomembranes Market – Industry Trends and
Forecast to 2028. Website: https://www.databridgemarketresearch.com/reports/
global-geomembranes-market
Data Bridge Market Research: Global Greenhouse Film Market – Industry Trends and
Forecast to 2029. Website: https://www.databridgemarketresearch.com/reports/
global-greenhouse-film-market
Di Mola, I., Ventorino, V., Cozzolino, E., Ottaiano, L., Romano, I., Duri, L.G., Pepe, O.,
Mori, M., 2021. Biodegradable mulching vs traditional polyethylene film for sustainable solarization: Chemical properties and microbial community response to soil management. Applied Soil Ecology 163.
Emergen Research: Agricultural Films Market By Type (High-density Polyethylene,
Linear Low-density Polyethylene, Ethylene-vinyl Acetate, Low-density Polyethylene, Reclaim), By Application (Geomembrane film, Silage film, Mulch film, Greenhouse covering), Forecasts to 2027. Website: https://www.emergenresea
rch.com/industry-report/agricultural-films-market
Emergen Research: Greenhouse Film Market By Resin Type (Linear Low-density
Polyethylene (LLDPE), Low-density Polyethylene (LDPE), Ethylene-vinyl Acetate (EVA)), By Thickness (80 to 150 Microns, 150 to 200 Microns, More than 200 Microns), and By Region, Forecast to 2027.Website: https://www.emergenresearch
.com/industry-report/greenhouse-film-market
Fortune Business Insight: Agricultural Films Market Size, Share & COVID-19 Impact
Analysis, By Material (LDPE, LLDPE, HDPE, EVA/EBA, Reclaims, and Others), By Application (Greenhouse, Mulching, and Silage), and Regional Forecast, 2022-2029. Website: https://www.fortunebusinessinsights.com/agricultural-films-market
-102701
Fortune Business Insight: The global agricultural films market is expected to grow
from USD 10.25 billion in 2021 to USD 15.37 billion in 2028 at a CAGR of 5.0% in the 2021-2028 period. Website: https://www.fortunebusinessinsights.com/agric
ultural-films-market-102701
Garba, M.U., Inalegwu, A., Musa, U., Aboje, A.A., Kovo, A.S., Adeniyi, D.O., 2017.
Thermogravimetric characteristic and kinetic of catalytic co-pyrolysis of biomass with low- and high-density polyethylenes. Biomass Conversion and Biorefinery 8, 143-150.
Grand View Research: Agricultural Films And Bonding Market Size, Share & Trends
Analysis Report By Product (Films, Twine, Netting), By Raw Material, By Application, By Region, And Segment Forecasts, 2016 – 2024. Website: https://www.grandviewresearch.com/industry-analysis/agricultural-films-bonding-market
Grand View Research: Agricultural Films Market Size, Share & Trends Analysis Report
By Raw Material (LDPE, LLDPE, Reclaims), By Application (Green House, Mulching, Silage), By Region, And Segment Forecasts, 2016 – 2024. Website: https://www.grandviewresearch.com/industry-analysis/agricultural-films-market
Grand View Research: Biodegradable Mulch Film Market Size, Share & Trend Analysis
Report By Crop (Grains & Oilseeds, Flowers & Plants), By Raw Material (TPS, PLA, PHA, AAC), By Region (APAC, North America), And Segment Forecasts, 2022 – 2030. Website: https://www.grandviewresearch.com/industry-analysis/
/biodegradable-mulch-films-market
Grand View Research: Geomembrane Market Size, Share & Trends Analysis Report
By Raw Material (HDPE, LDPE, EPDM, PVC), By Technology (Extrusion, Calendering), By Application, By Region, And Segment Forecasts, 2022 – 2030.
Website: https://www.grandviewresearch.com/industry-analysis/geomembrane-market
Gunasee, S.D., Danon, B., Görgens, J.F., Mohee, R., 2017. Co-pyrolysis of LDPE and
cellulose: Synergies during devolatilization and condensation. Journal of Analytical and Applied Pyrolysis 126, 307-314.
Hassan, H., Hameed, B.H., Lim, J.K., 2020. Co-pyrolysis of sugarcane bagasse and
waste high-density polyethylene: Synergistic effect and product distributions. Energy 191.
Huang, X., Cao, J.-P., Zhao, X.-Y., Wang, J.-X., Fan, X., Zhao, Y.-P., Wei, X.-Y., 2016.
Pyrolysis kinetics of soybean straw using thermogravimetric analysis. Fuel 169, 93-98.
Inayat, A., Inayat, A., Schwieger, W., Sokolova, B., Lestinsky, P., 2022. Enhancing
aromatics and olefins yields in thermo-catalytic pyrolysis of LDPE over zeolites: Role of staged catalysis and acid site density of HZSM-5. Fuel 314.
Jaafar, Y., Abdelouahed, L., Hage, R.E., Samrani, A.E., Taouk, B., 2022. Pyrolysis of
common plastics and their mixtures to produce valuable petroleum-like products. Polymer Degradation and Stability 195.
Jahirul, M.I., Rasul, M.G., Schaller, D., Khan, M.M.K., Hasan, M.M., Hazrat, M.A.,
2022. Transport fuel from waste plastics pyrolysis – A review on technologies, challenges and opportunities. Energy Conversion and Management 258.
Jiang, C., Wang, Y., Luong, T., Robinson, B., Liu, W., Hu, J., 2022. Low temperature
upcycling of polyethylene to gasoline range chemicals: Hydrogen transfer and heat compensation to endothermic pyrolysis reaction over zeolites. Journal of Environmental Chemical Engineering 10.
Jung, J.M., Cho, S.H., Jung, S., Lin, K.A., Chen, W.H., Tsang, Y.F., Kwon, E.E., 2022.
Disposal of plastic mulching film through CO2-assisted catalytic pyrolysis as a strategic means for microplastic mitigation. J Hazard Mater 430, 128454.
Jung, S.-H., Cho, M.-H., Kang, B.-S., Kim, J.-S., 2010. Pyrolysis of a fraction of waste
polypropylene and polyethylene for the recovery of BTX aromatics using a fluidized bed reactor. Fuel Processing Technology 91, 277-284.
Kaminsky, W., 2021. Chemical recycling of plastics by fluidized bed pyrolysis. Fuel
Communications 8.
Kassargy, C., Awad, S., Burnens, G., Kahine, K., Tazerout, M., 2018. Gasoline and
diesel-like fuel production by continuous catalytic pyrolysis of waste polyethylene and polypropylene mixtures over USY zeolite. Fuel 224, 764-773.
Li, J., Yao, X., Chen, S., Xu, K., Fan, B., Yang, D., Geng, L., Qiao, H., 2022.
Investigation on the co-pyrolysis of agricultural waste and high-density polyethylene using TG-FTIR and artificial neural network modelling. Process Safety and Environmental Protection 160, 341-353.
Maniscalco, M., La Paglia, F., Iannotta, P., Caputo, G., Scargiali, F., Grisafi, F., Brucato,
A., 2021. Slow pyrolysis of an LDPE/PP mixture: Kinetics and process performance. Journal of the Energy Institute 96, 234-241.
Maqsood, T., Dai, J., Zhang, Y., Guang, M., Li, B., 2021. Pyrolysis of plastic species: A
review of resources and products. Journal of Analytical and Applied Pyrolysis 159.
Markets and Markets, Greenhouse Film Market by Resin Type (LDPE, LLDPE, EVA),
Thickness(80 to 150 Microns, 150 to 200 Microns, More than 200 Microns), Width(4.5M, 5.5 M, 7M, 9M) and Region (APAC, Eruope, North America, South America, MEA) – Global Forecast to 2026. Website: https://www.marketsandmarkets.com/Market-Reports/greenhouse-film-market-179191625.html
Miandad, R., Barakat, M.A., Aburiazaiza, A.S., Rehan, M., Ismail, I.M.I., Nizami, A.S.,
2017. Effect of plastic waste types on pyrolysis liquid oil. International Biodeterioration & Biodegradation 119, 239-252.
Miandad, R., Barakat, M.A., Aburiazaiza, A.S., Rehan, M., Nizami, A.S., 2016a.
Catalytic pyrolysis of plastic waste: A review. Process Safety and Environmental Protection 102, 822-838.
Miandad, R., Nizami, A.S., Rehan, M., Barakat, M.A., Khan, M.I., Mustafa, A., Ismail,
I.M.I., Murphy, J.D., 2016b. Influence of temperature and reaction time on the conversion of polystyrene waste to pyrolysis liquid oil. Waste Manag 58, 250-259.
Miskolczi, N., Nagy, R., 2012. Hydrocarbons obtained by waste plastic pyrolysis:
Comparative analysis of decomposition described by different kinetic models. Fuel Processing Technology 104, 96-104.
Narancic, T., O′Connor, K.E., 2019. Plastic waste as a global challenge: are
biodegradable plastics the answer to the plastic waste problem? Microbiology (Reading) 165, 129-137.
Palmay-Paredes, P.G., Morocho-Delgado, S., Puente, C., Donoso, C., 2021. Thermic
pyrolysis of polypropylene waste as a source of fuel. Revista Mexicana de Ingeniería Química 20, 1019-1027.
Pamphile-Adrian, A.J., Passos, F.B., Florez-Rodriguez, P.P., 2022. Systematic study on
the properties of nickel aluminate (NiAl2O4) as a catalytic precursor for aqueous phase hydrogenolysis of glycerol. Catalysis Today 394-396, 499-509.
Park, K.-B., Jeong, Y.-S., Guzelciftci, B., Kim, J.-S., 2019. Characteristics of a new type
continuous two-stage pyrolysis of waste polyethylene. Energy 166, 343-351.
Parku, G.K., Collard, F.-X., Görgens, J.F., 2020. Pyrolysis of waste polypropylene
plastics for energy recovery: Influence of heating rate and vacuum conditions on composition of fuel product. Fuel Processing Technology 209.
Peng, Y., Wang, Y., Ke, L., Dai, L., Wu, Q., Cobb, K., Zeng, Y., Zou, R., Liu, Y., Ruan,
R., 2022. A review on catalytic pyrolysis of plastic wastes to high-value products. Energy Conversion and Management 254.
Rahman, M.H., Bhoi, P.R., 2021. An overview of non-biodegradable bioplastics. Journal
of Cleaner Production 294.
Rahman, M.H., Bhoi, P.R., Saha, A., Patil, V., Adhikari, S., 2021. Thermo-catalytic co-
pyrolysis of biomass and high-density polyethylene for improving the yield and quality of pyrolysis liquid. Energy 225.
Ratnasari, D.K., Nahil, M.A., Williams, P.T., 2017. Catalytic pyrolysis of waste plastics
using staged catalysis for production of gasoline range hydrocarbon oils. Journal of Analytical and Applied Pyrolysis 124, 631-637.
Research Nester, Silage Film Market Size & Share, by Type (LLDPE, LDPE, HDPE,
EVA/EBA); Film Type (Monolayer, Multilayer); Application (Corn, Grasses, Vegetables) – Global Supply & Demand Analysis, Growth, Forecasts, Statistics Report 2023-2033. Website: https://www.researchnester.com/reports/silage-film-market/4395
Saeaung, K., Phusunti, N., Phetwarotai, W., Assabumrungrat, S., Cheirsilp, B., 2021.
Catalytic pyrolysis of petroleum-based and biodegradable plastic waste to obtain high-value chemicals. Waste Manag 127, 101-111.
Serrano, D., Aguado, J., Escola, J., 2012. Developing advanced catalysts for the
conversion of polyolefinic waste plastics into fuels and chemicals. ACS Catalysis 2, 1924-1941.
Shen, M., Song, B., Zeng, G., Zhang, Y., Huang, W., Wen, X., Tang, W., 2020. Are
biodegradable plastics a promising solution to solve the global plastic pollution? Environ Pollut 263, 114469.
Singh, R.K., Ruj, B., 2016. Time and temperature depended fuel gas generation from
pyrolysis of real world municipal plastic waste. Fuel 174, 164-171.
Singh, R.K., Ruj, B., Sadhukhan, A.K., Gupta, P., 2019. Impact of fast and slow
pyrolysis on the degradation of mixed plastic waste: Product yield analysis and their characterization. Journal of the Energy Institute 92, 1647-1657.
Song, J., Sun, K., Huang, Q., 2021. The effect of thermal aging on the composition of
pyrolysis oil fuel derived from typical waste plastics. Fuel Processing Technology 218.
Straka, P., Bičáková, O., Šupová, M., 2022. Slow pyrolysis of waste polyethylene
terephthalate yielding paraldehyde, ethylene glycol, benzoic acid and clean fuel. Polymer Degradation and Stability 198.
Subhashini, Mondal, T., 2023. Experimental investigation on slow thermal pyrolysis of
real-world plastic wastes in a fixed bed reactor to obtain aromatic rich fuel grade liquid oil. J Environ Manage 344, 118680.
Supriyanto, Ylitervo, P., Richards, T., 2021. Gaseous products from primary reactions
of fast plastic pyrolysis. Journal of Analytical and Applied Pyrolysis 158.
Tan, Q., Yang, L., Wei, F., Chen, Y., Li, J., 2023. Comparative life cycle assessment of
polyethylene agricultural mulching film and alternative options including different end-of-life routes. Renewable and Sustainable Energy Reviews 178.
The Insight Partners: Biodegradable Mulch Film Market Forecast to 2028 - Covid-19
Impact and Global Analysis - by Biodegradable Plastics (Thermoplastic Starch (TPS), Aliphatic-Aromatic Copolyesters (AAC), Controlled Degradation Masterbatches); Composition (Starch, Starch Blended With Polylactic Acid (PLA), Starch Blended With Polyhydroxyalkanoate (PHA), Others); Type of Crop (Onion, Strawberry Crops, Flowers and Plants, Tomato, Others). Website: https://www.theinsightpartners.com/reports/biodegradable-mulch-film-market
Tian, X., Zeng, Z., Liu, Z., Dai, L., Xu, J., Yang, X., Yue, L., Liu, Y., Ruan, R., Wang,
Y., 2022. Conversion of low-density polyethylene into monocyclic aromatic hydrocarbons by catalytic pyrolysis: Comparison of HZSM-5, Hβ, HY and MCM-41. Journal of Cleaner Production 358.
Transparency Market Research: Geomembranes Market to Grow at a CAGR of 7.7%
during the Forecast Period 2021-2031: TMR Study. Website: https://www.globene
wswire.com/en/news-release/2023/02/08/2603972/0/en/ Geomembranes-Market-to-Grow-at-a-CAGR-of-7-7-during-the-Forecast-Period-2021-2031-TMR-Study.
html
Transparency Market Research: Need For Advanced And Sustainable Production
Approaches To Drive Global Mulch Films Market. Website: https://www.transpa
rencymarketresearch.com/pressrelease/mulch-films-market.htm
Transparency Market Research: Silage Film Market – Global Industry Analysis, size,
share, Growth, Trend and forecast 2017 – 2025.Website:https://www.transparency
marketresearch.com/silage-film-market.html
Tuly, S.S., Joarder, M.M.S., Haque, M.E., 2019. Liquid fuel production by pyrolysis of
polythene and PET plastic, 8th Bsme International Conference on Thermal Engineering.
Undri, A., Rosi, L., Frediani, M., Frediani, P., 2014. Conversion of poly(lactic acid) to
lactide via microwave assisted pyrolysis. Journal of Analytical and Applied Pyrolysis 110, 55-65.
Vo, T.A., Tran, Q.K., Ly, H.V., Kwon, B., Hwang, H.T., Kim, J., Kim, S.-S., 2022. Co-
pyrolysis of lignocellulosic biomass and plastics: A comprehensive study on pyrolysis kinetics and characteristics. Journal of Analytical and Applied Pyrolysis 163.
Wang, Y., Dai, L., Fan, L., Cao, L., Zhou, Y., Zhao, Y., Liu, Y., Ruan, R., 2017. Catalytic
co-pyrolysis of waste vegetable oil and high density polyethylene for hydrocarbon fuel production. Waste Manag 61, 276-282.
Wong, S.L., Ngadi, N., Abdullah, T.A.T., Inuwa, I.M., 2017. Conversion of low density
polyethylene (LDPE) over ZSM-5 zeolite to liquid fuel. Fuel 192, 71-82.
Xiao, H., Harding, J., Lei, S., Chen, W., Xia, S., Cai, N., Chen, X., Hu, J., Chen, Y.,
Wang, X., Tu, X., Yang, H., Chen, H., 2022. Hydrogen and aromatics recovery through plasma-catalytic pyrolysis of waste polypropylene. Journal of Cleaner Production 350.
Xie, T., Yao, Z., Huo, L., Jia, J., Zhang, P., Tian, L., Zhao, L., 2023. Characteristics of
biochar derived from the co-pyrolysis of corn stalk and mulch film waste. Energy 262.
Xue, Y., Johnston, P., Bai, X., 2017. Effect of catalyst contact mode and gas atmosphere
during catalytic pyrolysis of waste plastics. Energy Conversion and Management 142, 441-451.
Yao, D., Li, H., Dai, Y., Wang, C.-H., 2021. Impact of temperature on the activity of Fe-
Ni catalysts for pyrolysis and decomposition processing of plastic waste. Chemical Engineering Journal 408.
Yao, D., Wang, C.-H., 2020. Pyrolysis and in-line catalytic decomposition of
polypropylene to carbon nanomaterials and hydrogen over Fe- and Ni-based catalysts. Applied Energy 265.
Yao, D., Zhang, Y., Williams, P.T., Yang, H., Chen, H., 2018. Co-production of hydrogen
and carbon nanotubes from real-world waste plastics: Influence of catalyst composition and operational parameters. Applied Catalysis B: Environmental 221, 584-597.
Yue, L., Li, G., He, G., Guo, Y., Xu, L., Fang, W., 2016. Impacts of hydrogen to carbon
ratio (H/C) on fundamental properties and supercritical cracking performance of hydrocarbon fuels. Chemical Engineering Journal 283, 1216-1223.
Zhang, Y., Ji, G., Chen, C., Wang, Y., Wang, W., Li, A., 2020. Liquid oils produced from
pyrolysis of plastic wastes with heat carrier in rotary kiln. Fuel Processing Technology 206.
Zhou, L., Wang, Y., Huang, Q., Cai, J., 2006. Thermogravimetric characteristics and
kinetic of plastic and biomass blends co-pyrolysis. Fuel Processing Technology 87, 963-969.
農業部統計資料,網址: https://agrstat.moa.gov.tw/sdweb/public/common/Download.
aspx
農糧署全球資訊網,網址: https://www.afa.gov.tw/cht/index.php?act=article&code
=print&ID=&ids=307&date_start=
塑膠歐盟,網址:https://plasticseurope.org/knowledge-hub/plastics-the-facts-2022/
姚彥丞,「塑膠廢棄物催化裂解產能效率與裂解油物種特性變化之評估研究」,中華民國工程學會2017廢棄物處理技術研討會,臺北市,2017
張佳琪,「生質塑膠熱裂解產能效率之評估研究」,中華民國工程學會2021廢棄物處理技術研討會,臺中市,2021
楊鎧丞,「應用共裂解技術轉換工程塑膠回收能源之可行性研究」,中華民國工程學會2022廢棄物處理技術研討會,高雄市,2022
蔡明志,「應用催化裂解技術評估熱塑型塑膠轉換能源之可行性研究」,中華民國工程學會2022廢棄物處理技術研討會,高雄市,2022
指導教授 江康鈺(Kung-Yuh Chiang) 審核日期 2024-1-9
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明