參考文獻 |
行政院環境保護署空氣污染排放清冊[TEDS 11.0版] (2021)
曾志富、郭麗雯、朱志忠、謝智林 (2019)。火力電廠SCR脫硝觸媒性能檢測與品質管理,台電工程月刊,頁91-109。
Batakliev, T., Georgiev, V., Anachkov, M., Rakovsky, S., & Zaikov, G. E. (2014). Ozone decomposition. Interdisciplinary Toxicology, 7(2), 47.
Beer, J., Bowman, C., Chen, S., Corley, T., & De Soete, G. (1990). Pulverized-coal combustion: Pollutant Formation and Control, 1970-1980. Final Report.
Boningari, T., Ettireddy, P. R., Somogyvari, A., Liu, Y., Vorontsov, A., McDonald, C. A., & Smirniotis, P. G. (2015). Influence of elevated surface texture hydrated titania on Ce-doped Mn/TiO2 catalysts for the low-temperature SCR of NOx under oxygen-rich conditions. Journal of Catalysis, 325, 145-155.
Boningari, T., & Smirniotis, P. G. (2016). Impact of nitrogen oxides on the environment and human health: Mn-based materials for the NOx abatement. Current Opinion in Chemical Engineering, 13, 133-141.
Bowman, C. T. (1992). Control of combustion-generated nitrogen oxide emissions: technology driven by regulation. Symposium (International) on Combustion,
Chen, L., Li, J., & Ge, M. (2010). DRIFT study on cerium− tungsten/titiania catalyst for selective catalytic reduction of NOx with NH3. Environmental Science & Technology, 44(24), 9590-9596.
Cooper, C. D., & Alley, F. C. (2010). Air Pollution Control: A Design Approach. Waveland Press.
Damma, D., Ettireddy, P. R., Reddy, B. M., & Smirniotis, P. G. (2019). A review of low temperature NH3-SCR for removal of NOx. Catalysts, 9(4), 349.
Ding, J., Zhong, Q., & Zhang, S. (2015). A new insight into catalytic ozonation with nanosized Ce–Ti oxides for NOx removal: Confirmation of Ce–O–Ti for active sites. Industrial & Engineering Chemistry Research, 54(7), 2012-2022.
Dora, J. (2009). Parametric studies of the effectiveness of oxidation of NO by ozone. Chemical and Process Engineering, 30(4), 621-634.
Du, H., Han, Z., Wang, Q., Gao, Y., Gao, C., Dong, J., & Pan, X. (2020). Effects of ferric and manganese precursors on catalytic activity of Fe-Mn/TiO2 catalysts for selective reduction of NO with ammonia at low temperature. Environmental Science and Pollution Research, 27(32), 40870-40881.
Einaga, H., Teraoka, Y., & Ogata, A. (2013). Catalytic oxidation of benzene by ozone over manganese oxides supported on USY zeolite. Journal of Catalysis, 305, 227-237.
Erme, K., & Jõgi, I. (2019). Metal oxides as catalysts and adsorbents in ozone oxidation of NOx. Environmental Science & Technology, 53(9), 5266-5271.
Erme, K., Raud, J. r., & Jõgi, I. (2018). Adsorption of nitrogen oxides on TiO2 surface as a function of NO2 and N2O5 fraction in the gas phase. Langmuir, 34(22), 6338-6345.
Forzatti, P. (2001). Present status and perspectives in de-NOx SCR catalysis. Applied Catalysis A: General, 222(1-2), 221-236.
Garin, F. (2001). Mechanism of NOx decomposition. Applied Catalysis A: General, 222(1-2), 183-219.
Hong, Z., Wang, Z., & Li, X. (2017). Catalytic oxidation of nitric oxide (NO) over different catalysts: an overview. Catalysis Science & Technology, 7(16), 3440-3452.
Hu, H., Cai, S., Li, H., Huang, L., Shi, L., & Zhang, D. (2015). Mechanistic aspects of deNOx processing over TiO2 supported Co–Mn oxide catalysts: structure–activity relationships and in situ DRIFTs analysis. ACS Catalysis, 5(10), 6069-6077.
Jõgi, I., Erme, K., Raud, J., & Laan, M. (2016). Oxidation of NO by ozone in the presence of TiO2 catalyst. Fuel, 173, 45-51.
Jõgi, I., Erme, K., Levoll, E., Raud, J., & Stamate, E. (2018). Plasma and catalyst for the oxidation of NOx. Plasma Sources Science and Technology, 27(3), 035001.
Javed, M. T., Irfan, N., & Gibbs, B. (2007). Control of combustion-generated nitrogen oxides by selective non-catalytic reduction. Journal of Environmental Management, 83(3), 251-289.
Ji, R., Wang, J., Xu, W., Liu, X., Zhu, T., Yan, C., & Song, J. (2018). Study on the key factors of NO oxidation using O3: the oxidation product composition and oxidation selectivity. Industrial & Engineering Chemistry Research, 57(43), 14440-14447.
Kang, M. S., Shin, J., Yu, T. U., & Hwang, J. (2020). Simultaneous removal of gaseous NOx and SO2 by gas-phase oxidation with ozone and wet scrubbing with sodium hydroxide. Chemical Engineering Journal, 381, 122601. https://doi.org/https://doi.org/10.1016/j.cej.2019.122601
Karagulian, F., & Rossi, M. J. (2005). The heterogeneous chemical kinetics of NO3 on atmospheric mineral dust surrogates. Physical Chemistry Chemical Physics, 7(17), 3150-3162.
Li, Y., Che, D., Zhao, H., Yang, C., Zhao, T., Cheng, G., & Yao, M. (2020). Tributyl phosphate additive enhancing catalytic absorption of NO2 for simultaneous removal of SO2/NOx in wet desulfurization system. Journal of the Energy Institute, 93(2), 474-481. https://doi.org/https://doi.org/10.1016/j.joei.2019.07.004
Lietti, L., Ramis, G., Berti, F., Toledo, G., Robba, D., Busca, G., & Forzatti, P. (1998). Chemical, structural and mechanistic aspects on NOx SCR over commercial and model oxide catalysts. Catalysis Today, 42(1-2), 101-116.
Lin, F., Wang, Z., Ma, Q., He, Y., Whiddon, R., Zhu, Y., & Liu, J. (2016). N2O5 formation mechanism during the ozone-based low-temperature oxidation deNOx process. Energy & Fuels, 30(6), 5101-5107.
Lin, F., Wang, Z., Shao, J., Yuan, D., He, Y., Zhu, Y., & Cen, K. (2017a). Catalyst tolerance to SO2 and water vapor of Mn based bimetallic oxides for NO deep oxidation by ozone. RSC advances, 7(40), 25132-25143.
Lin, F., Wang, Z., Shao, J., Yuan, D., He, Y., Zhu, Y., & Cen, K. (2017b). Promotional effect of spherical alumina loading with manganese-based bimetallic oxides on nitric-oxide deep oxidation by ozone. Chinese Journal of Catalysis, 38(7), 1270-1280.
Lin, F., Wang, Z., Zhang, Z., He, Y., Zhu, Y., Shao, J., Yuan, D., Chen, G., & Cen, K. (2020). Flue gas treatment with ozone oxidation: An overview on NOx, organic pollutants, and mercury. Chemical Engineering Journal, 382, 123030.
Liu, L., Shen, B., Si, M., & Lu, F. (2021). Performance and mechanism of MnOx/γ-Al2O3 for low-temperature NO catalytic oxidation with O3/NO ratio of 0.5. Fuel Processing Technology, 222, 106979.
Mahmoudi, S., Baeyens, J., & Seville, J. P. (2010). NOx formation and selective non-catalytic reduction (SNCR) in a fluidized bed combustor of biomass. Biomass and Bioenergy, 34(9), 1393-1409.
Meng, L., Wang, J., Sun, Z., Zhu, J., Li, H., Wang, J., & Shen, M. (2018). Active manganese oxide on MnOx–CeO2 catalysts for low-temperature NO oxidation: characterization and kinetics study. Journal of Rare Earths, 36(2), 142-147.
Mentel, T. F., Bleilebens, D., & Wahner, A. (1996). A study of nighttime nitrogen oxide oxidation in a large reaction chamber—The fate of NO2, N2O5, HNO3, and O3 at different humidities. Atmospheric Environment, 30(23), 4007-4020.
Mok, Y. S. (2004). Oxidation of NO to NO2 using the ozonization method for the improvement of selective catalytic reduction. Journal of Chemical Engineering of Japan, 37(11), 1337-1344.
Olsson, L., Sjövall, H., & Blint, R. J. (2009). Detailed kinetic modeling of NOx adsorption and NO oxidation over Cu-ZSM-5. Applied Catalysis B: Environmental, 87(3-4), 200-210.
Palash, S., Kalam, M., Masjuki, H., Masum, B., Fattah, I. R., & Mofijur, M. (2013). Impacts of biodiesel combustion on NOx emissions and their reduction approaches. Renewable and Sustainable Energy Reviews, 23, 473-490.
Pan, S., Luo, H., Li, L., Wei, Z., & Huang, B. (2013). H2O and SO2 deactivation mechanism of MnOx/MWCNTs for low-temperature SCR of NOx with NH3. Journal of Molecular Catalysis A: Chemical, 377, 154-161.
Putluru, S. S. R., Schill, L., Jensen, A. D., Siret, B., Tabaries, F., & Fehrmann, R. (2015). Mn/TiO2 and Mn–Fe/TiO2 catalysts synthesized by deposition precipitation—promising for selective catalytic reduction of NO with NH3 at low temperatures. Applied Catalysis B: Environmental, 165, 628-635.
Qin, J., Long, Y., Wu, W., Zhang, W., Gao, Z., & Ma, J. (2019). Amorphous Fe2O3 improved [O] transfer cycle of Ce4+/Ce3+ in CeO2 for atom economy synthesis of imines at low temperature. Journal of Catalysis, 371, 161-174.
Qiu, L., Wang, Y., Pang, D., Ouyang, F., Zhang, C., & Cao, G. (2016). Characterization and catalytic activity of Mn-Co/TiO2 catalysts for NO oxidation to NO2 at low temperature. Catalysts, 6(1), 9.
Rodriguez, J. A., Jirsak, T., Liu, G., Hrbek, J., Dvorak, J., & Maiti, A. (2001). Chemistry of NO2 on oxide surfaces: formation of NO3 on TiO2 (110) and NO2↔ O vacancy interactions. Journal of the American Chemical Society, 123(39), 9597-9605.
Roy, S., Hegde, M., & Madras, G. (2009). Catalysis for NOx abatement. Applied Energy, 86(11), 2283-2297.
Shao, J., Yang, Y., Whiddon, R., Wang, Z., Lin, F., He, Y., Kumar, S., & Cen, K. (2019). Investigation of NO removal with ozone deep oxidation in Na2CO3 solution. Energy & Fuels, 33(5), 4454-4461. https://doi.org/10.1021/acs.energyfuels.9b00519
Sharif, H. M. A., Mahmood, N., Wang, S., Hussain, I., Hou, Y.-N., Yang, L.-H., Zhao, X., & Yang, B. (2021). Recent advances in hybrid wet scrubbing techniques for NOx and SO2 removal: State of the art and future research. Chemosphere, 273, 129695.
Si, M., Shen, B., Zhang, H., Liu, L., Zhou, W., Liu, Z., Pan, Y., & Zhang, X. (2019). Comparative study of NO oxidation under a low O3/NO molar ratio using 15% Mn/TiO2, 15% Co/TiO2, and 15% Mn–Co (2: 1)/TiO2 catalysts. Industrial & Engineering Chemistry Research, 59(4), 1467-1476.
Siegel, R., Ramasamy, S., Hahn, H., Zongquan, L., Ting, L., & Gronsky, R. (1988). Synthesis, characterization, and properties of nanophase TiO2. Journal of Materials Research, 3(6), 1367-1372.
Sivachandiran, L., Thévenet, F., Gravejat, P., & Rousseau, A. (2013). Investigation of NO and NO2 adsorption mechanisms on TiO2 at room temperature. Applied Catalysis B: Environmental, 142, 196-204.
Skalska, K., Miller, J. S., & Ledakowicz, S. (2011). Kinetic model of NOx ozonation and its experimental verification. Chemical Engineering Science, 66(14), 3386-3391.
Song, Z., Wang, B., Yang, W., Chen, T., Ma, C., & Sun, L. (2020). Simultaneous removal of NO and SO2 through heterogeneous catalytic oxidation-absorption process using magnetic Fe2. 5M0. 5O4 (M= Fe, Mn, Ti and Cu) catalysts with vaporized H2O2. Chemical Engineering Journal, 386, 123883.
Sun, B., Dong, K., Zhao, W., Wang, J., Chu, G., Zhang, L., Zou, H., & Chen, J.-F. (2019). Simultaneous absorption of NOx and SO2 into Na2SO3 solution in a rotating packed bed with preoxidation by ozone. Industrial & Engineering Chemistry Research, 58(19), 8332-8341.
Talebizadeh, P., Babaie, M., Brown, R., Rahimzadeh, H., Ristovski, Z., & Arai, M. (2014). The role of non-thermal plasma technique in NOx treatment: A review. Renewable and Sustainable Energy Reviews, 40, 886-901.
Thirupathi, B., & Smirniotis, P. G. (2011). Co-doping a metal (Cr, Fe, Co, Ni, Cu, Zn, Ce, and Zr) on Mn/TiO2 catalyst and its effect on the selective reduction of NO with NH3 at low-temperatures. Applied Catalysis B: Environmental, 110, 195-206.
Varatharajan, K., & Cheralathan, M. (2012). Influence of fuel properties and composition on NOx emissions from biodiesel powered diesel engines: A review. Renewable and Sustainable Energy Reviews, 16(6), 3702-3710.
Wang, B., Su, H., & Yao, S. (2020). Oxidation of NO with O3 under different conditions and the effects of SO2 and H2O vapor. Process Safety and Environmental Protection, 133, 216-223.
Wang, L., Meng, F., Li, K., & Lu, F. (2013). Characterization and optical properties of pole-like nano-CeO2 synthesized by a facile hydrothermal method. Applied Surface Science, 286, 269-274.
Wang, W., Guo, R., Pan, W., & Hu, G. (2018). Low temperature catalytic oxidation of NO over different-shaped CeO2. Journal of Rare Earths, 36(6), 588-593.
Wei, L., Zhou, J., Wang, Z., & Cen, K. (2007). Kinetic modeling of homogeneous low-temperature multi-pollutant oxidation by ozone. Ozone: Science and Engineering, 29(3), 207-214.
Weinmayr, G., Romeo, E., De Sario, M., Weiland, S. K., & Forastiere, F. (2010). Short-term effects of PM10 and NO2 on respiratory health among children with asthma or asthma-like symptoms: a systematic review and meta-analysis. Environmental Health Perspectives, 118(4), 449-457.
Wendt, J. O., Linak, W. P., Groff, P. W., & Srivastava, R. K. (2001). Hybrid SNCR‐SCR technologies for NOx control: Modeling and experiment. AIChE Journal, 47(11), 2603-2617.
Xie, S., Li, L., Jin, L., Wu, Y., Liu, H., Qin, Q., Wei, X., Liu, J., Dong, L., & Li, B. (2020). Low temperature high activity of M (M= Ce, Fe, Co, Ni) doped M-Mn/TiO2 catalysts for NH3-SCR and in situ DRIFTS for investigating the reaction mechanism. Applied Surface Science, 515, 146014.
Xie, X., Li, Y., Liu, Z., Haruta, M., & Shen, W. (2009). Low-temperature oxidation of CO catalysed by Co3O4 nanorods. Nature, 458(7239), 746-749. https://doi.org/10.1038/nature07877
Xu, J., Lu, G., Guo, Y., Guo, Y., & Gong, X. (2017). A highly effective catalyst of Co-CeO2 for the oxidation of diesel soot: The excellent NO oxidation activity and NOx storage capacity. Applied Catalysis A: General, 535, 1-8.
Yang, N., Guo, R., Pan, W., Chen, Q., Wang, Q., & Lu, C. (2016). The promotion effect of Sb on the Na resistance of Mn/TiO2 catalyst for selective catalytic reduction of NO with NH3. Fuel, 169, 87-92. https://doi.org/https://doi.org/10.1016/j.fuel.2015.12.009
Zhang, X., Zhao, H., Song, Z., Liu, W., Zhao, J., Zhao, M., & Xing, Y. (2019). Insight into the effect of oxygen species and Mn chemical valence over MnOx on the catalytic oxidation of toluene. Applied Surface Science, 493, 9-17.
Zhang, Z., Zhou, S., Xi, H. Y., & Shreka, M. (2020). A Prospective Method for Absorbing NO2 by the Addition of NaHSO3 to Na2SO3-Based Absorbents for Ship NOx Wet Absorption. Energy & Fuels, 34(2), 2055-2063. https://doi.org/10.1021/acs.energyfuels.9b03617
Zhou, Y., Ren, S., Wang, M., Yang, J., Chen, Z., & Chen, L. (2021). Mn and Fe oxides co-effect on nanopolyhedron CeO2 catalyst for NH3-SCR of NO. Journal of the Energy Institute, 99, 97-104. |