博碩士論文 110326023 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:138 、訪客IP:3.129.71.37
姓名 彭翊茹(Yi-Ju Peng)  查詢紙本館藏   畢業系所 環境工程研究所
論文名稱 應用高溫淨化技術提昇廢水污泥與沼渣共氣化產能效率及 重金屬去除之評估研究
(Enhancement of energy conversion efficiency and heavy metals removal in co-gasification of wastewater sludge and anaerobic digestate using hot gas cleaning system)
相關論文
★ 大學生對綠建材認知與態度之研究★ 塑膠廢棄物催化裂解產能效率與裂解油物種特性變化之評估研究
★ 應用高壓蒸氣技術製備抗菌輕質材料及其 特性評估研究★ 加速碳酸鹽反應對都市垃圾焚化灰渣捕捉二氧化碳之可行性評估研究
★ 應用無機聚合物技術探討都市垃圾焚化飛灰 無害化之可行性研究★ 動畫與教學介入對桃園市某國小六年級學童環境行動影響之研究
★ 下水污泥與工業區廢水污泥共同蒸氣氣化產能效率與重金屬分佈特性之研究★ 應用自製催化劑評估廢車破碎殘餘物氣化產能效率及污染物排放特性
★ 應用熱裂解技術評估廢車破碎殘餘物轉換能源效率及重金屬排放特性★ 應用揮發性有機物自動採樣技術評估工業區異味污染物來源及指紋之可行性研究
★ 評估傳統濕式洗滌塔對印刷電路板防焊製程之揮發性有機氣體去除效率之研究★ 污水處理廠逸散微粒之物理、化學及生物特性分析
★ 應用熱氣清淨系統提升稻稈氣化過程合成氣品質及污染物去除之可行性研究★ 台北都會區PM1.0微粒物理特徵描述與含碳氣膠來源分析
★ 以無人飛行載具(UAV)平台探討空氣污染物之垂直分佈特徵及搭載之氣膠儀器性能評估★ 淨水污泥與漿紙污泥煅燒灰共同製備輕質化 材料之抗菌特性評估研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本研究利用實驗室規模流體化床氣化爐,探討廢水污泥(Wastewater Sludge, WS)及沼渣(Anaerobic Digestate, AD)共同氣化產能,以及應用高溫淨化系統(Hot gas cleaning system)評估提高產氣品質及去除重金屬之可行性。試驗條件主要包括氣化溫度700、800及900℃、當量比(Equivalence Ratio, ER)為0.3,摻混比例分別為WS:AD = 3:1、1:1及1:3。至於高溫淨化系統則分別填充沸石、煅燒白雲石及活性碳三種吸附劑。
研究結果顯示,廢水污泥氣化反應產氫組成比例,由氣化溫度700℃之1.40 vol.%增加至900℃之5.21 vol.%,其冷燃氣效率由8.96%增加至18.71%,平均產氣熱值則由1.79 MJ/Nm3增加至3.69 MJ/Nm3。而沼渣氣化試驗之產氣中氫氣組成比例,亦由700℃之3.07 vol.%增加至900℃之6.57 vol.%,合成氣之冷燃氣效率則由9.55%增加至16.27%,平均產氣熱值亦由2.04 MJ/Nm3增加至3.43 MJ/Nm3。依據上述研究結果可知,增加氣化溫度有助於促進水氣(Water-gas)、Boudouard反應及焦油裂解等吸熱反應,產生較多可燃氣體,進而提升產氣熱值。
廢水污泥及沼渣共同氣化反應試驗,結果顯示,在氣化溫度900℃條件下,合成氣之氫氣組成比例介於4.99~5.80 vol.%,其中以WS:AD = 1:3條件下,氫氣組成比例最高,就合成氣之平均產氣熱值而言,主要介於3.56~3.65 MJ/Nm3;而冷燃氣效率則介於16.96~17.46%之間。若考量共同氣化反應之平均產氣熱值而言,以摻混比例1:1之條件,有較佳之產氣熱值。
應用高溫淨化系統之氣化試驗結果顯示,合成氣之組成比例均有增加之趨勢,其中以沼渣氣化結果而言,合成氣之氫氣組成比例介於7.79~9.52 vol.%之間,較未使用高溫淨化系統之試驗結果為高。至於平均產氣熱值介於3.96~4.16 MJ/Nm3之間,亦是有增加之現象。根據氣化產物之重金屬分析可知,應用高溫淨化系統之試驗可去除部分氣相產物中之重金屬,其中銅(Cu)之去除率介於10.83~28.31%,鉻(Cr)之去除率介於19.77~40.10%,鋅(Zn)之去除率介於18.76~28.84%,鎵(Ga)之去除率介於54.80~70.85%,銦(In)之去除率介於30.76~49.57%。整體而言,廢水污泥及沼渣具有共同氣化產能應用之潛力,同時應用高溫淨化系統,可有效提升產氣品質及去除重金屬,本研究初步獲得之成果,可供後續工程應用之參考依據。
摘要(英) This study investigates the co-gasification of wastewater sludge (WS) and anaerobic digestate (AD) using a laboratory-scale fluidized bed gasifier, focusing on enhancing gas production quality and assessing the feasibility of heavy metal removal via a hot gas cleaning system. The experiments were conducted at gasification temperatures of 700, 800 and 900℃, an equivalence ratio (ER) of 0.3, and blending ratios of WS to AD at 3:1, 1:1 and 1:3. The hot gas cleaning system was equipped with three adsorbents: zeolite, calcined dolomite and activated carbon.
For WS gasification, the study revealed a significant enhancement in hydrogen production, from 1.40 vol.% at 700℃ to 5.21 vol.% at 900℃, with a corresponding rise in cold gas efficiency (CGE) from 8.96% to 18.71%. The heating value of the product gas also saw a substantial improvement, from 1.79 MJ/Nm3 to 3.69 MJ/Nm3. In the case of AD gasification, a similar trend was observed, with hydrogen production increased from 3.07 vol.% at 700℃ to 6.57 vol.% at 900℃, and CGE rising from 9.55% to 16.27%. The heating value of the product gas also saw a significant increase, from 2.04 MJ/Nm3 to 3.43 MJ/Nm3. These results, underscore the efficiency of the gasification process, with higher gasification temperatures favoring endothermic reactions and leading to more combustible gas production and a higher heating value of the produced gas. During the co-gasification of WS and AD at 900℃, hydrogen production ranged from 4.99 to 5.80 vol.%, with the highest yield observed at a WS:AD = 1:3. The heating value of the product gas varied between 3.56 and 3.65 MJ/Nm3; while CGE ranged from 16.96 to 17.46%. A blending ratio of 1:1 was found to optimize the heating value of the product gas.
The gasification tests incorporating the hot gas cleaning system revealed a notable increase in the syngas composition ratio. For AD gasification, the syngas′ hydrogen content surged to 7.79 and 9.52 vol.%, surpassing the results obtained without the hot gas cleaning system. The heating value of the product gas also saw a significant increase, ranging from 3.96 to 4.16 MJ/Nm³. Most importantly, the hot gas cleaning system played a pivotal role in effectively removing heavy metals from the gas phase products, with impressive removal rates of 10.83% to 28.31% for copper (Cu), 19.77% to 40.10% for chromium (Cr), 18.76% to 28.84% for zinc (Zn), 54.80% to 70.85% for gallium (Ga), and 30.76% to 49.57% for indium (In).
Overall, the study underscores the promising potential of WS and AD for co-gasification. The hot gas cleaning system emerges as a significant player, enhancing gas production quality and enabling the removal of heavy metals. These preliminary findings provide a beacon of hope for future engineering applications in the field of waste management and environmental engineering.
關鍵字(中) ★ 廢水污泥
★ 沼渣
★ 氣化
★ 高溫淨化系統
★ 重金屬
關鍵字(英) ★ Wastewater sludge
★ Anaerobic digestate
★ Gasfication
★ Hot gas cleaning system
★ Heavy metals
論文目次 摘要 i
Abstract iii
誌謝 v
目錄 vii
圖目錄 xi
表目錄 xv
第一章 前言 1
第二章 文獻回顧 5
2-1廢水污泥現況分析 5
2-1-1污泥再利用現況 5
2-2沼渣現況分析 8
2-3氣化技術原理及應用探討 10
2-3-1氣化的反應機制 10
2-3-2氣化操作條件對產氣效率的影響 12
2-4氣體淨化技術 21
2-4-1催化劑轉化 22
2-4-2高溫淨化處理技術 23
第三章 研究材料及方法 27
3-1實驗材料 27
3-1-1科學園區廢水污泥 27
3-1-2沼渣 28
3-1-3吸附劑 28
3-2實驗設備 29
3-2-1氣化設備 29
3-2-2高溫淨化吸附系統 30
3-3實驗條件 33
3-4反應動力學 36
3-5分析項目與方法 38
3-5-1原料基本特性分析 38
3-5-2氣化產物分析 43
第四章 結果與討論 47
4-1原料之基本特性分析 47
4-2廢水污泥及沼渣之熱動力分析 50
4-2-1熱重損失之分析結果 50
4-3溫度對廢水污泥與沼渣之氣化產能效率之影響 66
4-3-1廢水污泥與沼渣氣化之氣相產物特性分析 66
4-3-2廢水污泥與沼渣氣化之液相產物特性分析 76
4-3-3廢水污泥與沼渣氣化之固相產物特性分析 81
4-3-4質量平衡 87
4-4摻混比對廢水污泥與沼渣共同氣化產能效率之評估 100
4-4-1廢水污泥與沼渣共同氣化之氣相產物特性分析 100
4-4-2廢水污泥與沼渣共同氣化之液相產物特性分析 106
4-4-3廢水污泥與沼渣共同氣化之固相產物特性分析 111
4-5爐外連接高溫淨化系統對氣化產能效率之評估 125
4-5-1爐外連接高溫淨化系統氣化之氣相產物特性分析 125
4-5-2爐外連接高溫淨化系統氣化之液相產物特性分析 131
4-5-3爐外連接高溫淨化系統氣化之固相產物特性分析 136
4-6廢水污泥及沼渣共同氣化之產能效率評估 151
4-6-1共同氣化之合成性特性分析 151
4-6-2能量分布特性 157
4-7氣化產物之重金屬分布特性 160
第五章 結論與建議 185
5-1結論 185
5-2建議 187
參考文獻 189
附 錄 199
參考文獻 Abdoulmoumine, N., Adhikari, S., Kulkarni, A., Chattanathan, S., 2015. A review on biomass gasification syngas cleanup. Applied Energy 155, 294-307.
Abu El-Rub, Z., Bramer, E.A., Brem, G., 2004. Review of Catalysts for Tar Elimination in Biomass Gasification Processes. Industrial & Engineering Chemistry Research 43, 6911-6919.
Aydin, E.S., Yucel, O., Sadikoglu, H., 2019. Experimental study on hydrogen-rich syngas production via gasification of pine cone particles and wood pellets in a fixed bed downdraft gasifier. International Journal of Hydrogen Energy 44, 17389-17396.
Ayol, A., Tezer, O., Gurgen, A., 2018. Gasification of yeast industry treatment plant sludge using downdraft Gasifier. Water Sci Technol 77, 364-374.
Ayol, A., Tezer Yurdakos, O., Gurgen, A., 2019. Investigation of municipal sludge gasification potential: Gasification characteristics of dried sludge in a pilot-scale downdraft fixed bed gasifier. International Journal of Hydrogen Energy 44, 17397-17410.
Bandara, J.C., Jaiswal, R., Nielsen, H.K., Moldestad, B.M.E., Eikeland, M.S., 2021. Air gasification of wood chips, wood pellets and grass pellets in a bubbling fluidized bed reactor. Energy 233.
Basha, M.H., Sulaiman, S.A., Uemura, Y., 2020. Co-gasification of palm kernel shell and polystyrene plastic: Effect of different operating conditions. Journal of the Energy Institute 93, 1045-1052.
Boiger, G., Buff, V., Sharman, D., Boldrini, M., Lienhard, V., Drew, D., 2020. Simulation-based investigation of tar formation in after-treatment systems for biomass gasification. Biomass Conversion and Biorefinery 11, 39-56.
Chang, S., Zhang, Z., Cao, L., Ma, L., You, S., Li, W., 2020a. Co-gasification of digestate and lignite in a downdraft fixed bed gasifier: Effect of temperature. Energy Conversion and Management 213.
Chang, Z., Long, G., Zhou, J.L., Ma, C., 2020b. Valorization of sewage sludge in the fabrication of construction and building materials: A review. Resources, Conservation and Recycling 154.
Chen, G., Guo, X., Cheng, Z., Yan, B., Dan, Z., Ma, W., 2017. Air gasification of biogas-derived digestate in a downdraft fixed bed gasifier. Waste Manag 69, 162-169.
Chen, G.-B., Wu, F.-H., Fang, T.-L., Lin, H.-T., Chao, Y.-C., 2021a. A study of Co-gasification of sewage sludge and palm kernel shells. Energy 218.
Chen, Y.-H., Lan Thao Ngo, T.N., Chiang, K.-Y., 2021b. Enhanced hydrogen production in co-gasification of sewage sludge and industrial wastewater sludge by a pilot-scale fluidized bed gasifier. International Journal of Hydrogen Energy 46, 14083-14095.
Chen, Y.-S., Lin, J.-Y., Chyou, Y.-P., 2021c. Performance of hot-gas cleanup technology for clean coal processing. Fuel 294.
Chiang, K.-Y., Lin, Y.-X., Lu, C.-H., Chien, K.-L., Lin, M.-H., Wu, C.-C., Ton, S.-S., Chen, J.-L., 2013. Gasification of rice straw in an updraft gasifier using water purification sludge containing Fe/Mn as a catalyst. International Journal of Hydrogen Energy 38, 12318-12324.
Coats, A.W., Redfern, J.P., 1964. Kinetic Parameters from Thermogravimetric Data. Nature 201, 68-69.
Cui, S., Yu, C., Tan, X., Huang, H., Yao, X., Qiu, J., 2020. Achieving Multiple and Tunable Ratios of Syngas to Meet Various Downstream Industrial Processes. ACS Sustainable Chemistry & Engineering 8, 3328-3335.
D′Orazio, A., Rapagnà, S., Foscolo, P.U., Gallucci, K., Nacken, M., Heidenreich, S., Di Carlo, A., Dell′Era, A., 2015. Gas conditioning in H2 rich syngas production by biomass steam gasification: Experimental comparison between three innovative ceramic filter candles. International Journal of Hydrogen Energy 40, 7282-7290.
de Andrés, J.M., Narros, A., Rodríguez, M.E., 2011. Air-steam gasification of sewage sludge in a bubbling bed reactor: Effect of alumina as a primary catalyst. Fuel Processing Technology 92, 433-440.
Dong, L., Asadullah, M., Zhang, S., Wang, X.-S., Wu, H., Li, C.-Z., 2013. An advanced biomass gasification technology with integrated catalytic hot gas cleaning. Fuel 108, 409-416.
Elbl, P., Baláš, M., Lisý, M., Lisá, H., 2023. Sewage sludge and digestate gasification in an atmospheric fluidized bed gasifier. Biomass Conversion and Biorefinery.
Ferreira-Pinto, L., Silva Parizi, M.P., Carvalho de Araújo, P.C., Zanette, A.F., Cardozo-Filho, L., 2019. Experimental basic factors in the production of H2 via supercritical water gasification. International Journal of Hydrogen Energy 44, 25365-25383.
Freda, C., Cornacchia, G., Romanelli, A., Valerio, V., Grieco, M., 2018. Sewage sludge gasification in a bench scale rotary kiln. Fuel 212, 88-94.
Gao, J., Zhao, Y., Sun, S., Che, H., Zhao, G., Wu, J., 2012. Experiments and numerical simulation of sawdust gasification in an air cyclone gasifier. Chemical Engineering Journal 213, 97-103.
Gao, N., Kamran, K., Quan, C., Williams, P.T., 2020. Thermochemical conversion of sewage sludge: A critical review. Progress in Energy and Combustion Science 79.
Gerasimov, G., Khaskhachikh, V., Potapov, O., Dvoskin, G., Kornileva, V., Dudkina, L., 2019. Pyrolysis of sewage sludge by solid heat carrier. Waste Manag 87, 218-227.
Ghodke, P.K., Sharma, A.K., Pandey, J.K., Chen, W.H., Patel, A., Ashokkumar, V., 2021. Pyrolysis of sewage sludge for sustainable biofuels and value-added biochar production. J Environ Manage 298, 113450.
Giuffrida, A., Romano, M.C., Lozza, G., 2013. Efficiency enhancement in IGCC power plants with air-blown gasification and hot gas clean-up. Energy 53, 221-229.
Guan, G., Kaewpanha, M., Hao, X., Abudula, A., 2016. Catalytic steam reforming of biomass tar: Prospects and challenges. Renewable and Sustainable Energy Reviews 58, 450-461.
Habibi, R., Kopyscinski, J., Masnadi, M.S., Lam, J., Grace, J.R., Mims, C.A., Hill, J.M., 2012. Co-gasification of Biomass and Non-biomass Feedstocks: Synergistic and Inhibition Effects of Switchgrass Mixed with Sub-bituminous Coal and Fluid Coke During CO2 Gasification. Energy & Fuels 27, 494-500.
Harouna, I.G., Berger, B., Hervé, J., Sanogo, O., Daho, T., Ouiminga, S.K., Koulidiati, J., 2020. Experimental study of the co‐gasification of wood and polyethylene in a two‐stage gasifier. Energy Science & Engineering 8, 2322-2334.
Hervy, M., Remy, D., Dufour, A., Mauviel, G., 2019. Air-blown gasification of Solid Recovered Fuels (SRFs) in lab-scale bubbling fluidized-bed: Influence of the operating conditions and of the SRF composition. Energy Conversion and Management 181, 584-592.
Hossain, A.K., Serrano, C., Brammer, J.B., Omran, A., Ahmed, F., Smith, D.I., Davies, P.A., 2016. Combustion of fuel blends containing digestate pyrolysis oil in a multi-cylinder compression ignition engine. Fuel 171, 18-28.
Hu, Q., Dai, Y., Wang, C.H., 2020. Steam co-gasification of horticultural waste and sewage sludge: Product distribution, synergistic analysis and optimization. Bioresour Technol 301, 122780.
Jin, K., Ji, D., Xie, Q., Nie, Y., Yu, F., Ji, J., 2019. Hydrogen production from steam gasification of tableted biomass in molten eutectic carbonates. International Journal of Hydrogen Energy 44, 22919-22925.
Kauppi, E.I., Rönkkönen, E.H., Lahtinen, J., Krause, A.O., 2018. Promoting effect of H2S on the performance of ZrO2 and La2O3-ZrO2 catalysts in biomass gasification gas clean-up. Applied Catalysis A: General 556, 172-179.
Kchaou, R., Baccar, R., Bouzid, J., Rejeb, S., 2018. The impact of sewage sludge and compost on winter triticale. Environ Sci Pollut Res Int 25, 18314-18319.
Kougias, P.G., Angelidaki, I., 2018. Biogas and its opportunities—A review. Frontiers of Environmental Science & Engineering 12.
Kurkela, E., Kurkela, M., Hiltunen, I., 2016. Steam–oxygen gasification of forest residues and bark followed by hot gas filtration and catalytic reforming of tars: Results of an extended time test. Fuel Processing Technology 141, 148-158.
Liakakou, E.T., Vreugdenhil, B.J., Cerone, N., Zimbardi, F., Pinto, F., André, R., Marques, P., Mata, R., Girio, F., 2019. Gasification of lignin-rich residues for the production of biofuels via syngas fermentation: Comparison of gasification technologies. Fuel 251, 580-592.
Masmoudi, M.A., Halouani, K., Sahraoui, M., 2017. Comprehensive experimental investigation and numerical modeling of the combined partial oxidation-gasification zone in a pilot downdraft air-blown gasifier. Energy Conversion and Management 144, 34-52.
Meng, F., Ma, Q., Wang, H., Liu, Y., Wang, D., 2019. Effect of gasifying agents on sawdust gasification in a novel pilot scale bubbling fluidized bed system. Fuel 249, 112-118.
Molino, A., Chianese, S., Musmarra, D., 2016. Biomass gasification technology: The state of the art overview. Journal of Energy Chemistry 25, 10-25.
Ngoc Lan Thao, N.T., Chiang, K.-Y., Wan, H.-P., Hung, W.-C., Liu, C.-F., 2019. Enhanced trace pollutants removal efficiency and hydrogen production in rice straw gasification using hot gas cleaning system. International Journal of Hydrogen Energy 44, 3363-3372.
Niu, M., Jin, B., Huang, Y., Wang, H., Dong, Q., Gu, H., Yang, J., 2018. Co-gasification of High-ash Sewage Sludge and Straw in a Bubbling Fluidized Bed with Oxygen-enriched Air. International Journal of Chemical Reactor Engineering 16.
Parihar, A.K.S., Hammer, T., Sridhar, G., 2015. Development and testing of tube type wet ESP for the removal of particulate matter and tar from producer gas. Renewable Energy 74, 875-883.
Ramos, A., Monteiro, E., Silva, V., Rouboa, A., 2018. Co-gasification and recent developments on waste-to-energy conversion: A review. Renewable and Sustainable Energy Reviews 81, 380-398.
Rapagna, S., Gallucci, K., Di Marcello, M., Matt, M., Nacken, M., Heidenreich, S., Foscolo, P.U., 2010. Gas cleaning, gas conditioning and tar abatement by means of a catalytic filter candle in a biomass fluidized-bed gasifier. Bioresour Technol 101, 7134-7141.
Ren, J., Cao, J.-P., Zhao, X.-Y., Yang, F.-L., Wei, X.-Y., 2019. Recent advances in syngas production from biomass catalytic gasification: A critical review on reactors, catalysts, catalytic mechanisms and mathematical models. Renewable and Sustainable Energy Reviews 116.
Rodrigues, S., Almeida, A., Ribeiro, A., Neto, P., Ramalho, E., Pilão, R., 2018. Gasification of Cork Wastes in a Fluidized Bed Reactor. Waste and Biomass Valorization 11, 1159-1167.
Safarian, S., Unnþórsson, R., Richter, C., 2019. A review of biomass gasification modelling. Renewable and Sustainable Energy Reviews 110, 378-391.
Shathika Sulthana Begum, B., Gandhimathi, R., Ramesh, S.T., Nidheesh, P.V., 2013. Utilization of textile effluent wastewater treatment plant sludge as brick material. Journal of Material Cycles and Waste Management 15, 564-570.
Shen, Y., Wang, J., Ge, X., Chen, M., 2016. By-products recycling for syngas cleanup in biomass pyrolysis – An overview. Renewable and Sustainable Energy Reviews 59, 1246-1268.
Sikarwar, V.S., Zhao, M., Fennell, P.S., Shah, N., Anthony, E.J., 2017. Progress in biofuel production from gasification. Progress in Energy and Combustion Science 61, 189-248.
Singh, D., Yadav, S., Bharadwaj, N., Verma, R., 2020. Low temperature steam gasification to produce hydrogen rich gas from kitchen food waste: Influence of steam flow rate and temperature. International Journal of Hydrogen Energy 45, 20843-20850.
Śpiewak, K., Czerski, G., Bijak, K., 2021. The Effect of Temperature-Pressure Conditions on the RDF Gasification in the Atmosphere of Steam and Carbon Dioxide. Energies 14.
Susastriawan, A.A.P., Saptoadi, H., Purnomo, 2017. Small-scale downdraft gasifiers for biomass gasification: A review. Renewable and Sustainable Energy Reviews 76, 989-1003.
Uludag-Demirer, S., Demirer, G.N., 2021. Post-anaerobic treatability and residual biogas potential of digestate. Biomass Conversion and Biorefinery 12, 1695-1702.
Veksha, A., Giannis, A., Oh, W.-D., Chang, V.W.C., Lisak, G., Lim, T.-T., 2018. Catalytic activities and resistance to HCl poisoning of Ni-based catalysts during steam reforming of naphthalene. Applied Catalysis A: General 557, 25-38.
Watson, J., Zhang, Y., Si, B., Chen, W.-T., de Souza, R., 2018. Gasification of biowaste: A critical review and outlooks. Renewable and Sustainable Energy Reviews 83, 1-17.
Werle, S., Dudziak, M., 2019. Gasification of sewage sludge, Industrial and Municipal Sludge, pp. 575-593.
Wilk, V., Hofbauer, H., 2013. Influence of fuel particle size on gasification in a dual fluidized bed steam gasifier. Fuel Processing Technology 115, 139-151.
Wiśniewski, D., Gołaszewski, J., Białowiec, A., 2015. The pyrolysis and gasification of digestate from agricultural biogas plant / Piroliza i gazyfikacja pofermentu z biogazowni rolniczych. Archives of Environmental Protection 41, 70-75.
Woolcock, P.J., Brown, R.C., 2013. A review of cleaning technologies for biomass-derived syngas. Biomass and Bioenergy 52, 54-84.
Xiang, X., Gong, G., Wang, C., Cai, N., Zhou, X., Li, Y., 2021. Exergy analysis of updraft and downdraft fixed bed gasification of village-level solid waste. International Journal of Hydrogen Energy 46, 221-233.
Yahaya, A.Z., Somalu, M.R., Muchtar, A., Sulaiman, S.A., Wan Daud, W.R., 2019. Effect of particle size and temperature on gasification performance of coconut and palm kernel shells in downdraft fixed-bed reactor. Energy 175, 931-940.
Zheng, J.L., Zhu, M.Q., Wen, J.L., Sun, R.C., 2016. Gasification of bio-oil: Effects of equivalence ratio and gasifying agents on product distribution and gasification efficiency. Bioresour Technol 211, 164-172.
Zhou, L., Wang, Y., Huang, Q., Cai, J., 2006. Thermogravimetric characteristics and kinetic of plastic and biomass blends co-pyrolysis. Fuel Processing Technology 87, 963-969.
Zhu, H.L., Zhang, Y.S., Materazzi, M., Aranda, G., Brett, D.J.L., Shearing, P.R., Manos, G., 2019. Co-gasification of beech-wood and polyethylene in a fluidized-bed reactor. Fuel Processing Technology 190, 29-37.
台中市政府環境保護局,2019;禾山林綠能股份有限公司,外埔綠能生態園區簡報。
環境部,網頁資料,網址:https://enews.moenv.gov.tw/Page/894720A1EB490390/42505e75-3403-4c9d-84d9-bbfc9844cbe9 ,網頁擷取日期:2024年04月。
環境部,廢棄物及再生資源代碼表,網址:
https://waste.moenv.gov.tw/RWD/PDL/?page=D20_WasteCode
環境部,全國一般廢棄物產生量,網址:
https://data.moenv.gov.tw/dataset/detail/STAT_P_126
黃聖賢,2007,下水道污泥資源化再利用及處理處置技術探討,2007年台灣下水道工程實務研討會論文集,pp.47-57。
江康鈺,陳雅馨,葛家賢,呂承翰,2014,都市下水污泥轉換能源技術之回顧與評析,工業污染防治,Vol. 128,pp.31-64。
簡聖珉,2015,應用催化裂解技術轉換下水污泥為生質油之可行性研究,碩士論文,逢甲大學環境工程與科學學系。
行政院環境保護署,統計年報,網址:
https://waste.moenv.gov.tw/RWD/Statistics/?page=Year1
山林水環境工程股份有限公司,網頁資料,網址:https://www.mfw.com.tw/works.aspx?ID=30 ,網頁擷取與日期:2024年4月。
吳氏玉蘭草,2020,應用熱氣清淨系統提升稻稈氣化過程合成氣品質及污染物去除之可行性研究,博士論文,國立中央大學環境工程研究所。
薛凱澤,2022,下水污泥與沼渣共同氣化產能效率及其污染物排放特性之研究,碩士論文,國立中央大學環境工程研究所。
魏君穎,2019,含溴玻璃纖維裂解產能及污染物去除之可行性評估研究,碩士論文,國立中央大學環境工程研究所。
指導教授 江康鈺(Kung-Yuh Chiang) 審核日期 2024-8-19
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明