博碩士論文 110326027 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:40 、訪客IP:3.21.159.11
姓名 王奕鈞(Yi-Jyun Wang)  查詢紙本館藏   畢業系所 環境工程研究所
論文名稱
(Feasibility Study of Lanthanum-Modified Calcined Oyster Shells for Phosphorus Removal from Aquatic Environments)
相關論文
★ Advanced Wastewater Analysis: AI-Integrated Flow Injection Analysis (FIA) System for COD Online Monitoring★ 電混凝法應用於金屬表面處理廢水對於處理效率的影響
★ 聚乳酸塑膠在環境水體中的老化及重金屬吸附之探討★ 化學回收廢棄聚乳酸(PLA) 及製備聚氨酯材料
★ 錳改質牡蠣殼固定土壤中鎘和銅之研究★ 職業噪音暴露對人體健康影響研究-以玻璃纖維工廠為例
★ 反向電透析(RED)產電效能評估 -以濃度、流速、膜對數及流道厚度為操作參數★ 以反向電透析(RED)系統產電並去除氨氮
★ 比較電動堆高機語音式、間歇式、寬頻式警報裝置對作業場所工作者之安全效用探討,以C 造紙廠為例★ 煅燒條件對牡蠣殼抗菌能力之影響及抗菌物種- 單線態氧的檢測
★ 臺灣石門水庫及入庫河川表層水中微型塑膠時空分佈、組成與相關性調查★ 氮改質煅燒牡蠣殼提升水中亞甲基藍染料 吸附和光催化降解之研究
★ 桃園市三合一生質能中心提升一般廢棄物清除處理效能之研究★ 耐熱型聚乳酸與非耐熱型聚乳酸塑膠回收再利用過程之特性研究
★ 台灣石門水庫之表層、中層水與下游飲用水廠中微型塑膠之時空分佈、組成與相關性★ 桌上型能量分散式X射線螢光光譜儀(ED XRF)分析製程廢液之銅、鎳濃度方法開發
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2027-1-1以後開放)
摘要(中) 近年來隨著科技的進步人們開始追求更便利的生活,同時也嚴重污染了環境,極端氣候的影響造成農作物收成不易,農民為了得到更好的豐收,過量的施加肥料造成肥料的浪費,其中磷是肥料中非常重要的元素之一,提供了植物生長的必需元素,同時磷元素也是容易造成水體優養化的關鍵之一,過量施肥會使磷大量流逝到大海,造成陸地上可使用的磷礦越來越少,因此開發磷回收的技術更是破在眉睫。同時,台灣四面環海養殖漁業發達,牡蠣養殖為台灣西部沿海一代的重要產業,大量的廢棄牡蠣殼時常被任意棄置在岸邊,經過風吹日曬雨淋容易孳生病媒蚊或產生惡臭對人體造成極大的危害,綜合上述兩點,本研究使用煅燒廢棄牡蠣殼參雜對磷有良好親和力的鑭元素,希望能回收水體中的磷降低磷資源的浪費。
本研究製備了多種吸附材料,主要以煅燒至900°C的煅燒牡蠣殼(POS900)及對燒過的牡蠣殼參雜鑭元素(POS900-La)兩種吸附材料進行探討,透過材料表面特性分析(SEM, BET, FTIR, XRD, XPS, pHzpc)初步了解本研究製備之材料對於磷元素的吸附可行性,再將本研究製備之吸附材料投入於吸附實驗當中,為了更全面的了解材料的吸附能力,本研究設計了不同初始濃度、不同初始pH及水體溶液中同時存在其他陰離子之吸附實驗。
實驗結果主要可分為POS900和POS900-La兩部分,兩種吸附劑的結果均表明,900°C的煅燒溫度提供了最佳的磷去除效率。在初始磷濃度為500 mg/L的情況下,POS900和POS900-La的最大磷吸附容量分別為257.09和178.07 mg/g。POS900-La在300 mg/L的磷中表現出良好的50%的磷去除效率。同時,POS900-La可以限制pH值的增加,在材料達到平衡時將pH值控制在弱鹼性範圍內,這顯示POS900-La對於後端的應用具有一定的潛力,而本研究製備之吸附材料對於水中磷的去除機制包含表面沉澱、靜電吸引力及配位基的置換。
摘要(英) In recent years, with the advancement of technology, people have begun to pursue a more convenient life, while also severely polluting the environment. The impact of extreme weather conditions has made it difficult to harvest crops, and farmers apply excessive amounts of fertilizer to obtain better yields. Phosphorus is one of the most important elements in fertilizer, providing essential elements for plant growth, but it is also one of the key factors that can cause eutrophication of water bodies. Excessive fertilization can cause a large amount of phosphorus to flow into the sea, causing a decrease in the amount of phosphorus ore available on land. Therefore, the development of phosphorus recovery technology is urgent. At the same time, Taiwan has developed a thriving aquaculture industry surrounded by the sea, and oyster farming is an important industry along the west coast of Taiwan. Large amounts of wasted oyster shells are often randomly discarded on the shore, and after being exposed to wind, sun, and rain, they can easily breed disease-carrying mosquitoes or produce odors that pose a great threat to human health. Combining the above two points, this study used calcined waste oyster shells mixed with lanthanum elements that have good affinity for phosphorus, hoping to recover phosphorus from water bodies and reduce the waste of phosphorus resources.
This study prepared multiple adsorbent materials, mainly investigating two adsorbent materials: oyster shells calcined at 900°C (POS900) and calcined oyster shells modified with lanthanum (POS900-La). Through the analysis of material surface characteristics (SEM, BET, FTIR, XRD, XPS, pHzpc), the feasibility of the prepared materials for the adsorption of phosphorus elements was preliminarily understood. Then, the prepared adsorbent materials were put into the adsorption experiment. In order to have a more comprehensive understanding of the adsorption capacity of the materials, this study designed adsorption experiments with different initial concentrations, different initial pH, and the simultaneous presence of other anions in the water solution.
The experimental results can be mainly divided into two parts: POS900 and POS900-La. The results of both adsorbents indicate that the calcination temperature of 900°C provides the best phosphorus removal efficiency. When the initial phosphorus concentration is 500 mg/L, the maximum phosphorus adsorption capacity of POS900 and POS900-La are 257.09 and 178.07 mg/g, respectively. POS900-La shows good 50% phosphorus removal efficiency in 300 mg/L phosphorus. At the same time, POS900-La can limit the increase of pH value and control the pH value within the weak alkaline range when the material reaches equilibrium. This shows that POS900-La has certain potential for backend applications. The adsorption mechanism of the adsorbent materials prepared in this study for the removal of phosphorus in water includes surface precipitation, electrostatic attraction, and substitution of coordination bases.
關鍵字(中) ★ 磷回收
★ 鑭改質
★ 牡蠣殼
★ 優養化
★ 水污染
關鍵字(英) ★ Phosphorus recovery
★ Lanthanum
★ Oyster shells
★ Eutrophication
★ Water pollution
論文目次 摘要 ............................................................................................................................ II
Abstract .................................................................................................................... III
Table of contents.........................................................................................................V
List of Figures........................................................................................................ VIII
List of Tables ..............................................................................................................X
Chapter 1 Introduction..........................................................................................1
1.1 Research Background ............................................................................................1
1.2 Research Motivation and Novelty..........................................................................2
Chapter 2. Literature Review ..................................................................................3
2.1 Oyster .....................................................................................................................3
2.1.1 Oyster Shell .................................................................................................................... 4
2.1.2 Application of Oyster Shell.............................................................................................. 7
2.2 Lanthanum.............................................................................................................7
2.2.1 Lanthanum as the modifying agent .................................................................................. 8
2.3 Phosphorus System ....................................................................................................8
2.3.1 Phosphorus in Agricultural Industry................................................................................... 9
2.3.2 Phosphorus Cycle.............................................................................................................. 9
2.3.3 Recent Treatment Method for Phosphorus........................................................................ 11
2.3 Adsorption............................................................................................................13
2.4.1 Adsorption Mechanisms................................................................................................ 14
2.4.2 Phosphorus Adsorption Mechanism............................................................................... 16
2.4.3 Adsorption Isotherm...................................................................................................... 20
2.4.4 Hysteresis Loops........................................................................................................... 23
2.4.5 Isotherm Adsorption Equation....................................................................................... 25
2.4.6 Adsorption Kinetics ...................................................................................................... 27
Chapter 3. Materials and Method..........................................................................30
3.1 Experimental Structure .......................................................................................30
3.2 Experimental Materials and Equipment.............................................................32
3.2.1 Oyster Shell Source....................................................................................................... 32
3.2.2 Experimental chemicals................................................................................................. 32
3.2.3 Experiment Equipment.................................................................................................. 33VI
3.3 Oyster Shell Preparation and Lanthanum Modification Method.......................34
3.3.1 Oyster Shell Preparation................................................................................................ 34
3.3.2 Lanthanum Modification............................................................................................... 34
3.4 Analysis of Material Characteristics....................................................................35
3.4.1 Scanning Electron Microscopy (SEM)........................................................................... 35
3.4.2 Surface Area and Porosimetry Analyzer (BET) and BJH method.................................... 36
3.4.3 Fourier Transform Infrared Spectroscopy (FTIR)........................................................... 37
3.4.4 X-ray Diffractometer (XRD) ......................................................................................... 38
3.4.5 X-ray Photoelectron Spectroscopy (XPS)....................................................................... 38
3.4.6 Zeta-potential & Particle Size Analyzer (ELSZ)............................................................. 38
3.4.7 Inductively Coupled Plasma Atomic Emission Spectrometer (ICP-OES) ........................ 39
3.5 Adsorption Experiments ......................................................................................39
3.6 Influence of Different pH Values on Adsorption Behavior.................................41
3.7 Zero Point of Charge............................................................................................42
3.8 Isothermal Adsorption Experiments ...................................................................42
3.9 Kinetic Adsorption Experiments .........................................................................43
3.10 Effects of Co-existing Ions on Adsorption Capacity Experiments......................44
Chapter 4. Result and Discussion...........................................................................45
4.1 Physical Characteristics of Oyster Shell Materials .............................................45
4.1.1 Scanning electron microscopy (SEM) Analysis.............................................................. 45
4.1.2 BET Analysis................................................................................................................ 50
4.1.3 FTIR Analysis............................................................................................................... 53
4.1.4 XRD Analysis............................................................................................................... 53
4.1.5 XPS Analysis .................................................................................................................. 55
4.1.6 Zeta-potential & Particle Size Analysis............................................................................ 59
4.2 Adsorption Kinetics and Adsorption Isotherm ...................................................62
4.2.1 Adsorption Kinetics ...................................................................................................... 62
4.2.2 Adsorption Isotherm...................................................................................................... 67
4.3 Phosphorus Adsorption Experiments and Factors Effect Adsorption Capacity68
4.3.1 Effect of Calcined Temperatures on Phosphorus Adsorption............................................. 68
4.3.2 Effect of Lanthanum on Phosphorus Adsorption .............................................................. 71
4.3.3 Effect of Initial Concentration on Phosphorus Adsorption ................................................ 82
4.3.4 Effect of Initial pH on Phosphorus Adsorption................................................................. 83
4.3.5 Effect of Co-anion Exist on Phosphorus Adsorption......................................................... 86
4.4 Possible Adsorption Mechanism..........................................................................88VII
Chapter 5. Conclusions and Suggestions ...............................................................89
5.1 Conclusions...........................................................................................................89
5.2 Suggestions ...........................................................................................................91
References..................................................................................................................92
參考文獻 司友斌, 王慎强, & 陈怀满. (2017). 农田氮, 磷的流失与水体富营养化. 土壤, 32(4),
188-193.
歐陽嶠暉. (2016). 下水道學 (2nd ed.).
Ali, M. E. A., Zaghlool, E., Khalil, M., & Kotp, Y. H. (2022). Surface and internal
modification of composite ion exchange membranes for removal of molybdate,
phosphate, and nitrate from polluted groundwater. Arabian Journal of Chemistry,
15(4), 103747.
Alidoust, D., Kawahigashi, M., Yoshizawa, S., Sumida, H., & Watanabe, M. (2014).
Mechanism of cadmium biosorption from aqueous solutions using calcined oyster
shells. Environmental Management, 150.
Araújo, C. S. T., Almeida, I. L. S., Rezende, H. C., Marcionilio, S. M. L. O., Léon, J. J.
L., & de Matos, T. N. (2018). Elucidation of mechanism involved in adsorption
of Pb(II) onto lobeira fruit (Solanum lycocarpum) using Langmuir, Freundlich
and Temkin isotherms. Microchemical Journal, 137, 348-354.
Ben Yahia, M., Ben Torkia, Y., Knani, S., Hachicha, M. A., Khalfaoui, M., & Ben Lamine,
A. (2013). Models for Type VI Adsorption Isotherms from a Statistical
Mechanical Formulation. Asorption Science And Technology, 31(4), 341-357.
Bowden, L. I., Jarvis, A. P., Younger, P. L., & Johnson, K. L. (2009). Phosphorus
Removal from Waste Waters Using Basic Oxygen Steel Slag. Environmental
Science & Technology, 43(7), 2476-2481.
Chen, W.-T., Lin, C.-W., Shih, P.-K., & Chang, W.-L. (2012). Adsorption of phosphate
into waste oyster shell: thermodynamic parameters and reaction kinetics.
Desalination and Water Treatment, 47(1-3), 86-95.
Cheraghi, M., Lorestani, B., Merrikhpour, H., & Rouniasi, N. (2013). Heavy metal risk
assessment for potatoes grown in overused phosphate-fertilized soils.
Environmental Monitoring And Assesment, 185(2), 1825-1831.
Childers, D. L., Corman, J., Edwards, M., & Elser, J. J. (2011). Sustainability Challenges
of Phosphorus and Food: Solutions from Closing the Human Phosphorus Cycle.
BioScience, 61(2), 117-124.
Cichy, B., Kużdżał, E., & Krztoń, H. (2019). Phosphorus recovery from acidic
wastewater by hydroxyapatite precipitation. Environmental Management, 232,
421-427.
Cordell, D., Rosemarin, A., Schröder, J. J., & Smit, A. L. (2011). Towards global
phosphorus security: A systems framework for phosphorus recovery and reuse
options. Chemosphere, 84(6), 747-758.
Dai, L., Wu, B., Tan, F., He, M., Wang, W., Qin, H., Tang, X., Zhu, Q., Pan, K., & Hu,93
Q. (2014). Engineered hydrochar composites for phosphorus removal/recovery:
Lanthanum doped hydrochar prepared by hydrothermal carbonization of
lanthanum pretreated rice straw. Bioresource Technology, 161, 327-332.
Davies, A. W. (1980). Scientific investigations into the eutrophication of the Norfolk
Broads. In: Freshwater Biological Association.
De-Bashan, L. E., & Bashan, Y. (2004). Recent advances in removing phosphorus from
wastewater and its future use as fertilizer (1997–2003). Journal of Water Research,
38(19), 4222-4246.
Elzinga, E. J., & Sparks, D. L. (2007). Phosphate adsorption onto hematite: An in situ
ATR-FTIR investigation of the effects of pH and loading level on the mode of
phosphate surface complexation. Colloid And Interface Science, 308(1), 53-70.
Everett, D. (1972). IUPAC manual of symbols and terminology. appendix 2, Part 1,
Colloid and Surface Chemistry, 578-621.
Ezzati, R. (2020). Derivation of Pseudo-First-Order, Pseudo-Second-Order and Modified
Pseudo-First-Order rate equations from Langmuir and Freundlich isotherms for
adsorption. Chemical Engineering, 392, Article 123705.
Feng, Y., Luo, Y., He, Q., Zhao, D., Zhang, K., Shen, S., & Wang, F. (2021). Performance
and mechanism of a biochar-based Ca-La composite for the adsorption of
phosphate from water. Environmental Chemical Engineering, 9(3), 105267.
He, Y., Lin, H., Dong, Y., & Wang, L. (2017). Preferable adsorption of phosphate using
lanthanum-incorporated porous zeolite: Characteristics and mechanism. Applied
Surface Science, 426, 995-1004.
Helfferich, F. G. (1995). Ion Exchange. Dover.
Huang, W., Zhu, Y., Tang, J., Yu, X., Wang, X., Li, D., & Zhang, Y. (2014). Lanthanumdoped ordered mesoporous hollow silica spheres as novel adsorbents for efficient
phosphate removal. Materials Chemistry A, 2(23), 8839-8848.
Huh, J.-H., Choi, Y.-H., Chilakala, R., Cheong, S.-H., & Ahn, J.-W. (2016). Use of
Calcined Oyster Shell Powders as CO2 Adsorbents in Algae-Containing Water.
Korean Ceramic Society, 53, 429-434.
Hussain, S., Aziz, H. A., Isa, M. H., Ahmad, A., Van Leeuwen, J., Zou, L., Beecham, S.,
& Umar, M. (2011). Orthophosphate removal from domestic wastewater using
limestone and granular activated carbon. Desalination, 271(1), 265-272.
Hwidi, R., Tengku Izhar, T. N., Mohd Saad, F., Dahham, O., Zulkepli, N. N., & Abd.
Rahim, S. Z. (2018). Characterization of quicklime as raw material to hydrated
lime: Effect of temperature on its characteristics (Vol. 2030).
Koilraj, P., & Kannan, S. (2010). Phosphate uptake behavior of ZnAlZr ternary layered
double hydroxides through surface precipitation. Colloid And Interface Science,
341(2), 289-297.
Kong, L., Tian, Y., Li, N., Liu, Y., Zhang, J., Zhang, J., & Zuo, W. (2018). Highly94
effective phosphate removal from aqueous solutions by calcined nano-porous
palygorskite matrix with embedded lanthanum hydroxide. Applied Clay Science,
162, 507-517.
Krishnamoorthy, N., Dey, B., Unpaprom, Y., Ramaraj, R., Maniam, G. P., Govindan, N.,
Jayaraman, S., Arunachalam, T., & Paramasivan, B. (2021). Engineering
principles and process designs for phosphorus recovery as struvite: A
comprehensive review. Environmental Chemical Engineering, 9(5), 105579.
Kuzawa, K., Jung, Y.-J., Kiso, Y., Yamada, T., Nagai, M., & Lee, T.-G. (2006).
Phosphate removal and recovery with a synthetic hydrotalcite as an adsorbent.
Chemosphere, 62(1), 45-52.
Kwon, H.-B., Lee, C.-W., Jun, B.-S., Yun, J.-d., Weon, S.-Y., & Koopman, B. (2004).
Recycling waste oyster shells for eutrophication control. Resources, Conservation
and Recycling, 41(1), 75-82.
Le Corre, K. S., Valsami-Jones, E., Hobbs, P., & Parsons, S. A. (2009). Phosphorus
Recovery from Wastewater by Struvite Crystallization: A Review. Environmental
Science and Technology, 39(6), 433-477.
Lee, J. I., Kang, J. K., Oh, J. S., Yoo, S. C., Lee, C. G., Jho, E. H., & Park, S. J. (2021).
New insight to the use of oyster shell for removing phosphorus from aqueous
solutions and fertilizing rice growth. Cleaner Production, 328, Article 129536.
Liu, J., Zhou, Q., Chen, J., Zhang, L., & Chang, N. (2013). Phosphate adsorption on
hydroxyl–iron–lanthanum doped activated carbon fiber. Chemical Engineering,
215-216, 859-867.
Liu, Y. X., Yang, T. O., Yuan, D. X., & Wu, X. Y. (2010). Study of municipal wastewater
treatment with oyster shell as biological aerated filter medium. Desalination,
254(1-3), 149-153.
Loganathan, P., Vigneswaran, S., Kandasamy, J., & Bolan, N. S. (2014). Removal and
Recovery of Phosphate From Water Using Sorption. Environmental Science and
Technology, 44(8), 847-907.
Majd, M. M., Kordzadeh-Kermani, V., Ghalandari, V., Askari, A., & Sillanpaa, M.
(2022). Adsorption isotherm models: A comprehensive and systematic review
(2010-2020). Science of the Total Environment, 812, Article 151334.
Marani, D., Di Pinto, A. C., Ramadori, R., & Tomei, M. C. (1997). Phosphate Removal
from Municipal Wastewater with Low Lime Dosage. Environmental Technology,
18(2), 225-230.
Mastalerz, M., Wei, L., Drobniak, A., Schimmelmann, A., & Schieber, J. (2018).
Responses of specific surface area and micro- and mesopore characteristics of
shale and coal to heating at elevated hydrostatic and lithostatic pressures. Coal
Geology, 197, 20-30.
Moussout, H., Ahlafi, H., Aazza, M., & Maghat, H. (2018). Critical of linear and95
nonlinear equations of pseudo-first order and pseudo-second order kinetic models.
Karbala International Journal of Modern Science, 4(2), 244-254.
Park, J.-H., Wang, J. J., Xiao, R., Zhou, B., Delaune, R. D., & Seo, D.-C. (2018). Effect
of pyrolysis temperature on phosphate adsorption characteristics and mechanisms
of crawfish char. Colloid And Interface Science, 525, 143-151.
Paulmanickam, K., & Sasaki, K. (2017). Selective removal of phosphate using La-porous
carbon composites from aqueous solutions: Batch and column studies. Chemical
Engineering, 317, 1059-1068.
Peleka, E. N., & Deliyanni, E. A. (2009). Adsorptive removal of phosphates from aqueous
solutions. Desalination, 245(1), 357-371.
Rashid, M., Price, N. T., Gracia Pinilla, M. Á., & O′Shea, K. E. (2017). Effective removal
of phosphate from aqueous solution using humic acid coated magnetite
nanoparticles. Journal of Water Research, 123, 353-360.
Revellame, E. D., Fortela, D. L., Sharp, W., Hernandez, R., & Zappi, M. E. (2020).
Adsorption kinetic modeling using pseudo-first order and pseudo-second order
rate laws: A review. Cleaner Engineering and Technology, 1, 100032.
Rouquerol, F., Rouquerol, J., & Sing, K. (1999). Adsorption by Powders & Porous Solids.
Saha, B., Chakraborty, S., & Das, G. (2009). A mechanistic insight into enhanced and
selective phosphate adsorption on a coated carboxylated surface. Colloid And
Interface Science, 331(1), 21-26.
Shin, E. W., Karthikeyan, K. G., & Tshabalala, M. A. (2005). Orthophosphate Sorption
onto Lanthanum-Treated Lignocellulosic Sorbents. Environmental Science &
Technology, 39(16), 6273-6279.
Simonin, J.-P. (2016). On the comparison of pseudo-first order and pseudo-second order
rate laws in the modeling of adsorption kinetics. Chemical Engineering, 300, 254-
263.
Sing, K. S. W., Rouquerol, F., & Rouquerol, J. (2014). 5 - Classical Interpretation of
Physisorption Isotherms at the Gas–Solid Interface. In F. Rouquerol, J. Rouquerol,
K. S. W. Sing, P. Llewellyn, & G. Maurin (Eds.), Adsorption by Powders and
Porous Solids (Second Edition) (pp. 159-189). Academic Press.
Smolders, G. J. F., van der Meij, J., van Loosdrecht, M. C. M., & Heijnen, J. J. (1994).
Stoichiometric model of the aerobic metabolism of the biological phosphorus
removal process. Biotechnology and Bioengineering, 44(7), 837-848.
Sparks, D. L. (2001). Elucidating the fundamental chemistry of soils: past and recent
achievements and future frontiers. Journal of Geoderma, 100(3-4), 303-319.
Su, Y.-Y., Huang, H.-H., Yu, T.-H., Tseng, C.-C., Tsai, H.-J., & Hsu, W.-K. (2020).
Optical property of nature source: UV–visible emissions from calcined oyster
shells. Optical Materials, 101, 109736.
Suresh Kumar, P., Prot, T., Korving, L., Keesman, K. J., Dugulan, I., van Loosdrecht, M.96
C. M., & Witkamp, G.-J. (2017). Effect of pore size distribution on iron oxide
coated granular activated carbons for phosphate adsorption – Importance of
mesopores. Chemical Engineering, 326, 231-239.
Tanpure, S., Ghanwat, D. V., Shinde, B., Tanpure, K., & Lawande, S. (2020). The
Eggshell Waste Transformed Green and Efficient Synthesis of K-Ca(OH) 2
Catalyst for Room Temperature Synthesis of Chalcones. Polycyclic Aromatic
Compounds, 42, 1-19.
Thommes, M. (2010). Physical Adsorption Characterization of Nanoporous Materials.
Chemie Ingenieur Technik, 82(7), 1059-1073.
Tian, S., Jiang, P., Ning, P., & Su, Y. (2009). Enhanced adsorption removal of phosphate
from water by mixed lanthanum/aluminum pillared montmorillonite. Chemical
Engineering, 151(1), 141-148.
Tran, T.-T., Tran, N.-N. T., Sugiyama, S., & Liu, J.-C. (2021). Enhanced phosphate
removal by thermally pretreated waste oyster shells. Material Cycles and Waste
Management, 23(1), 177-185.
Wang, L., Shi, C., Wang, L., Pan, L., Zhang, X., & Zou, J.-J. (2020). Rational design,
synthesis, adsorption principles and applications of metal oxide adsorbents: a
review. Nanoscale, 12(8), 4790-4815.
Weiner, E. (2013). Applications of Environmental Aquatic Chemistry: A Practical Guide.
Wu, F.-C., Tseng, R.-L., Huang, S.-C., & Juang, R.-S. (2009). Characteristics of pseudosecond-order kinetic model for liquid-phase adsorption: A mini-review. Chemical
Engineering, 151(1), 1-9.
Wu, Y., Li, X., Yang, Q., Wang, D., Xu, Q., Yao, F., Chen, F., Tao, Z., & Huang, X.
(2019). Hydrated lanthanum oxide-modified diatomite as highly efficient
adsorbent for low-concentration phosphate removal from secondary effluents.
Environmental Management, 231, 370-379.
Xie, J., Wang, Z., Lu, S., Wu, D., Zhang, Z., & Kong, H. (2014). Removal and recovery
of phosphate from water by lanthanum hydroxide materials. Chemical
Engineering, 254, 163-170.
Xu, H., Li, Y., Zhou, F., Su, H., Yao, E., Hu, J., & Chen, Z. (2023). Adsorption
characteristics, isotherm, kinetics, and diffusion of nanoemulsion in tight
sandstone reservoir. Chemical Engineering, 144070.
Yang, B., Han, F., Bai, Y., Xie, Z., Shi, T., Wang, J., & Li, Y. (2023). Phosphate removal
performance and mechanism of magnesium–lanthanum-modified coal
gasification coarse slag. Materials Today Sustainability, 22, 100357.
Yang, B., & Jang, J. G. (2020). Environmentally benign production of one-part alkaliactivated slag with calcined oyster shell as an activator. Construction And Bulding
Materials, 257, Article 119552.
Yang, F., Zhang, S., Sun, Y., Tsang, D. C. W., Cheng, K., & Ok, Y. S. (2019). Assembling97
biochar with various layered double hydroxides for enhancement of phosphorus
recovery. Hazardous Materials, 365, 665-673.
Yang, J., Zhou, L., Zhao, L., Zhang, H., Yin, J., Wei, G., Qian, K., Wang, Y., & Yu, C.
(2011). A designed nanoporous material for phosphate removal with high
efficiency. Materials Chemistry, 21(8), 2489-2494.
Yang, Y., Yuen Koh, K., Li, R., Zhang, H., Yan, Y., & Chen, J. P. (2020). An innovative
lanthanum carbonate grafted microfibrous composite for phosphate adsorption in
wastewater. Hazardous Materials, 392, 121952.
Yang, Y., Zhang, H., & Yan, Y. (2018). Synthesis of carbon nanotube on stainless steel
microfibrous composite—Comparison of direct and indirect growth and its
application in fixed bed m-cresol adsorption. Chemical Engineering Research and
Design, 139, 162-173.
Ye, Z., Shen, Y., Ye, X., Zhang, Z., Chen, S., & Shi, J. (2014). Phosphorus recovery from
wastewater by struvite crystallization: Property of aggregates. Environmental
Sciences, 26(5), 991-1000.
Yen, T. F. (2007). Chemical Processes for Environmental Engineering. Imperial College
Press And Distribution By World Scienctfic Publishing Co.
Yeoman, S., Stephenson, T., Lester, J. N., & Perry, R. (1988). The removal of phosphorus
during wastewater treatment: A review. Environmental Pollution, 49(3), 183-233.
Yoon, G. L., Kim, B. T., Kim, B. O., & Han, S. H. (2003). Chemical-mechanical
characteristics of crushed oyster-shell. Journal of Waste Management, 23(9), 825-
834.
Yoshimura, M., Sujaridworakun, P., Koh, F., Fujiwara, T., Pongkao, D., & Ahniyaz, A.
(2004). Hydrothermal conversion of calcite crystals to hydroxyapatite. Materials
Science and Engineering: C, 24(4), 521-525.
You, K., Yang, W., Song, P., Fan, L., Xu, S., Li, B., & Feng, L. (2022). Lanthanummodified magnetic oyster shell and its use for enhancing phosphate removal from
water. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 633,
127897.
Zeng, L., Li, X., & Liu, J. (2004). Adsorptive removal of phosphate from aqueous
solutions using iron oxide tailings. Journal of Water Research, 38(5), 1318-1326.
Zhang, J., Shen, Z., Shan, W., Chen, Z., Mei, Z., Lei, Y., & Wang, W. (2010). Adsorption
behavior of phosphate on Lanthanum(III) doped mesoporous silicates material.
Environmental Sciences, 22(4), 507-511.
Zhang, L., Wan, L., Chang, N., Liu, J., Duan, C., Zhou, Q., Li, X., & Wang, X. (2011).
Removal of phosphate from water by activated carbon fiber loaded with
lanthanum oxide. Hazardous Materials, 190(1), 848-855.
Zhang, Y., Pan, B., Shan, C., & Gao, X. (2016). Enhanced Phosphate Removal by
Nanosized Hydrated La(III) Oxide Confined in Cross-linked Polystyrene98
Networks. Environmental Science & Technology, 50(3), 1447-1454.
Zhao, J., Liao, C., Chen, X., & Song, W. (2018). Hierarchically ordered macro–
mesoporous anatase TiO 2 prepared by pearl oyster shell and triblock copolymer
dual templates for high photocatalytic activity. RSC Advances, 8, 38461-38469.
Zhou, Z., Xu, Q., Wu, Z., Fang, X., Zhong, Q., Yang, J., Yan, J., & Li, Q. (2023).
Preparation and characterization of clay-oyster shell composite adsorption
material and its application in phosphorus removal from wastewater. Sustainable
Chemistry and Pharmacy, 32, 101023.
指導教授 林伯勳(Po-Hsun Lin) 審核日期 2023-8-17
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明