參考文獻 |
司友斌, 王慎强, & 陈怀满. (2017). 农田氮, 磷的流失与水体富营养化. 土壤, 32(4),
188-193.
歐陽嶠暉. (2016). 下水道學 (2nd ed.).
Ali, M. E. A., Zaghlool, E., Khalil, M., & Kotp, Y. H. (2022). Surface and internal
modification of composite ion exchange membranes for removal of molybdate,
phosphate, and nitrate from polluted groundwater. Arabian Journal of Chemistry,
15(4), 103747.
Alidoust, D., Kawahigashi, M., Yoshizawa, S., Sumida, H., & Watanabe, M. (2014).
Mechanism of cadmium biosorption from aqueous solutions using calcined oyster
shells. Environmental Management, 150.
Araújo, C. S. T., Almeida, I. L. S., Rezende, H. C., Marcionilio, S. M. L. O., Léon, J. J.
L., & de Matos, T. N. (2018). Elucidation of mechanism involved in adsorption
of Pb(II) onto lobeira fruit (Solanum lycocarpum) using Langmuir, Freundlich
and Temkin isotherms. Microchemical Journal, 137, 348-354.
Ben Yahia, M., Ben Torkia, Y., Knani, S., Hachicha, M. A., Khalfaoui, M., & Ben Lamine,
A. (2013). Models for Type VI Adsorption Isotherms from a Statistical
Mechanical Formulation. Asorption Science And Technology, 31(4), 341-357.
Bowden, L. I., Jarvis, A. P., Younger, P. L., & Johnson, K. L. (2009). Phosphorus
Removal from Waste Waters Using Basic Oxygen Steel Slag. Environmental
Science & Technology, 43(7), 2476-2481.
Chen, W.-T., Lin, C.-W., Shih, P.-K., & Chang, W.-L. (2012). Adsorption of phosphate
into waste oyster shell: thermodynamic parameters and reaction kinetics.
Desalination and Water Treatment, 47(1-3), 86-95.
Cheraghi, M., Lorestani, B., Merrikhpour, H., & Rouniasi, N. (2013). Heavy metal risk
assessment for potatoes grown in overused phosphate-fertilized soils.
Environmental Monitoring And Assesment, 185(2), 1825-1831.
Childers, D. L., Corman, J., Edwards, M., & Elser, J. J. (2011). Sustainability Challenges
of Phosphorus and Food: Solutions from Closing the Human Phosphorus Cycle.
BioScience, 61(2), 117-124.
Cichy, B., Kużdżał, E., & Krztoń, H. (2019). Phosphorus recovery from acidic
wastewater by hydroxyapatite precipitation. Environmental Management, 232,
421-427.
Cordell, D., Rosemarin, A., Schröder, J. J., & Smit, A. L. (2011). Towards global
phosphorus security: A systems framework for phosphorus recovery and reuse
options. Chemosphere, 84(6), 747-758.
Dai, L., Wu, B., Tan, F., He, M., Wang, W., Qin, H., Tang, X., Zhu, Q., Pan, K., & Hu,93
Q. (2014). Engineered hydrochar composites for phosphorus removal/recovery:
Lanthanum doped hydrochar prepared by hydrothermal carbonization of
lanthanum pretreated rice straw. Bioresource Technology, 161, 327-332.
Davies, A. W. (1980). Scientific investigations into the eutrophication of the Norfolk
Broads. In: Freshwater Biological Association.
De-Bashan, L. E., & Bashan, Y. (2004). Recent advances in removing phosphorus from
wastewater and its future use as fertilizer (1997–2003). Journal of Water Research,
38(19), 4222-4246.
Elzinga, E. J., & Sparks, D. L. (2007). Phosphate adsorption onto hematite: An in situ
ATR-FTIR investigation of the effects of pH and loading level on the mode of
phosphate surface complexation. Colloid And Interface Science, 308(1), 53-70.
Everett, D. (1972). IUPAC manual of symbols and terminology. appendix 2, Part 1,
Colloid and Surface Chemistry, 578-621.
Ezzati, R. (2020). Derivation of Pseudo-First-Order, Pseudo-Second-Order and Modified
Pseudo-First-Order rate equations from Langmuir and Freundlich isotherms for
adsorption. Chemical Engineering, 392, Article 123705.
Feng, Y., Luo, Y., He, Q., Zhao, D., Zhang, K., Shen, S., & Wang, F. (2021). Performance
and mechanism of a biochar-based Ca-La composite for the adsorption of
phosphate from water. Environmental Chemical Engineering, 9(3), 105267.
He, Y., Lin, H., Dong, Y., & Wang, L. (2017). Preferable adsorption of phosphate using
lanthanum-incorporated porous zeolite: Characteristics and mechanism. Applied
Surface Science, 426, 995-1004.
Helfferich, F. G. (1995). Ion Exchange. Dover.
Huang, W., Zhu, Y., Tang, J., Yu, X., Wang, X., Li, D., & Zhang, Y. (2014). Lanthanumdoped ordered mesoporous hollow silica spheres as novel adsorbents for efficient
phosphate removal. Materials Chemistry A, 2(23), 8839-8848.
Huh, J.-H., Choi, Y.-H., Chilakala, R., Cheong, S.-H., & Ahn, J.-W. (2016). Use of
Calcined Oyster Shell Powders as CO2 Adsorbents in Algae-Containing Water.
Korean Ceramic Society, 53, 429-434.
Hussain, S., Aziz, H. A., Isa, M. H., Ahmad, A., Van Leeuwen, J., Zou, L., Beecham, S.,
& Umar, M. (2011). Orthophosphate removal from domestic wastewater using
limestone and granular activated carbon. Desalination, 271(1), 265-272.
Hwidi, R., Tengku Izhar, T. N., Mohd Saad, F., Dahham, O., Zulkepli, N. N., & Abd.
Rahim, S. Z. (2018). Characterization of quicklime as raw material to hydrated
lime: Effect of temperature on its characteristics (Vol. 2030).
Koilraj, P., & Kannan, S. (2010). Phosphate uptake behavior of ZnAlZr ternary layered
double hydroxides through surface precipitation. Colloid And Interface Science,
341(2), 289-297.
Kong, L., Tian, Y., Li, N., Liu, Y., Zhang, J., Zhang, J., & Zuo, W. (2018). Highly94
effective phosphate removal from aqueous solutions by calcined nano-porous
palygorskite matrix with embedded lanthanum hydroxide. Applied Clay Science,
162, 507-517.
Krishnamoorthy, N., Dey, B., Unpaprom, Y., Ramaraj, R., Maniam, G. P., Govindan, N.,
Jayaraman, S., Arunachalam, T., & Paramasivan, B. (2021). Engineering
principles and process designs for phosphorus recovery as struvite: A
comprehensive review. Environmental Chemical Engineering, 9(5), 105579.
Kuzawa, K., Jung, Y.-J., Kiso, Y., Yamada, T., Nagai, M., & Lee, T.-G. (2006).
Phosphate removal and recovery with a synthetic hydrotalcite as an adsorbent.
Chemosphere, 62(1), 45-52.
Kwon, H.-B., Lee, C.-W., Jun, B.-S., Yun, J.-d., Weon, S.-Y., & Koopman, B. (2004).
Recycling waste oyster shells for eutrophication control. Resources, Conservation
and Recycling, 41(1), 75-82.
Le Corre, K. S., Valsami-Jones, E., Hobbs, P., & Parsons, S. A. (2009). Phosphorus
Recovery from Wastewater by Struvite Crystallization: A Review. Environmental
Science and Technology, 39(6), 433-477.
Lee, J. I., Kang, J. K., Oh, J. S., Yoo, S. C., Lee, C. G., Jho, E. H., & Park, S. J. (2021).
New insight to the use of oyster shell for removing phosphorus from aqueous
solutions and fertilizing rice growth. Cleaner Production, 328, Article 129536.
Liu, J., Zhou, Q., Chen, J., Zhang, L., & Chang, N. (2013). Phosphate adsorption on
hydroxyl–iron–lanthanum doped activated carbon fiber. Chemical Engineering,
215-216, 859-867.
Liu, Y. X., Yang, T. O., Yuan, D. X., & Wu, X. Y. (2010). Study of municipal wastewater
treatment with oyster shell as biological aerated filter medium. Desalination,
254(1-3), 149-153.
Loganathan, P., Vigneswaran, S., Kandasamy, J., & Bolan, N. S. (2014). Removal and
Recovery of Phosphate From Water Using Sorption. Environmental Science and
Technology, 44(8), 847-907.
Majd, M. M., Kordzadeh-Kermani, V., Ghalandari, V., Askari, A., & Sillanpaa, M.
(2022). Adsorption isotherm models: A comprehensive and systematic review
(2010-2020). Science of the Total Environment, 812, Article 151334.
Marani, D., Di Pinto, A. C., Ramadori, R., & Tomei, M. C. (1997). Phosphate Removal
from Municipal Wastewater with Low Lime Dosage. Environmental Technology,
18(2), 225-230.
Mastalerz, M., Wei, L., Drobniak, A., Schimmelmann, A., & Schieber, J. (2018).
Responses of specific surface area and micro- and mesopore characteristics of
shale and coal to heating at elevated hydrostatic and lithostatic pressures. Coal
Geology, 197, 20-30.
Moussout, H., Ahlafi, H., Aazza, M., & Maghat, H. (2018). Critical of linear and95
nonlinear equations of pseudo-first order and pseudo-second order kinetic models.
Karbala International Journal of Modern Science, 4(2), 244-254.
Park, J.-H., Wang, J. J., Xiao, R., Zhou, B., Delaune, R. D., & Seo, D.-C. (2018). Effect
of pyrolysis temperature on phosphate adsorption characteristics and mechanisms
of crawfish char. Colloid And Interface Science, 525, 143-151.
Paulmanickam, K., & Sasaki, K. (2017). Selective removal of phosphate using La-porous
carbon composites from aqueous solutions: Batch and column studies. Chemical
Engineering, 317, 1059-1068.
Peleka, E. N., & Deliyanni, E. A. (2009). Adsorptive removal of phosphates from aqueous
solutions. Desalination, 245(1), 357-371.
Rashid, M., Price, N. T., Gracia Pinilla, M. Á., & O′Shea, K. E. (2017). Effective removal
of phosphate from aqueous solution using humic acid coated magnetite
nanoparticles. Journal of Water Research, 123, 353-360.
Revellame, E. D., Fortela, D. L., Sharp, W., Hernandez, R., & Zappi, M. E. (2020).
Adsorption kinetic modeling using pseudo-first order and pseudo-second order
rate laws: A review. Cleaner Engineering and Technology, 1, 100032.
Rouquerol, F., Rouquerol, J., & Sing, K. (1999). Adsorption by Powders & Porous Solids.
Saha, B., Chakraborty, S., & Das, G. (2009). A mechanistic insight into enhanced and
selective phosphate adsorption on a coated carboxylated surface. Colloid And
Interface Science, 331(1), 21-26.
Shin, E. W., Karthikeyan, K. G., & Tshabalala, M. A. (2005). Orthophosphate Sorption
onto Lanthanum-Treated Lignocellulosic Sorbents. Environmental Science &
Technology, 39(16), 6273-6279.
Simonin, J.-P. (2016). On the comparison of pseudo-first order and pseudo-second order
rate laws in the modeling of adsorption kinetics. Chemical Engineering, 300, 254-
263.
Sing, K. S. W., Rouquerol, F., & Rouquerol, J. (2014). 5 - Classical Interpretation of
Physisorption Isotherms at the Gas–Solid Interface. In F. Rouquerol, J. Rouquerol,
K. S. W. Sing, P. Llewellyn, & G. Maurin (Eds.), Adsorption by Powders and
Porous Solids (Second Edition) (pp. 159-189). Academic Press.
Smolders, G. J. F., van der Meij, J., van Loosdrecht, M. C. M., & Heijnen, J. J. (1994).
Stoichiometric model of the aerobic metabolism of the biological phosphorus
removal process. Biotechnology and Bioengineering, 44(7), 837-848.
Sparks, D. L. (2001). Elucidating the fundamental chemistry of soils: past and recent
achievements and future frontiers. Journal of Geoderma, 100(3-4), 303-319.
Su, Y.-Y., Huang, H.-H., Yu, T.-H., Tseng, C.-C., Tsai, H.-J., & Hsu, W.-K. (2020).
Optical property of nature source: UV–visible emissions from calcined oyster
shells. Optical Materials, 101, 109736.
Suresh Kumar, P., Prot, T., Korving, L., Keesman, K. J., Dugulan, I., van Loosdrecht, M.96
C. M., & Witkamp, G.-J. (2017). Effect of pore size distribution on iron oxide
coated granular activated carbons for phosphate adsorption – Importance of
mesopores. Chemical Engineering, 326, 231-239.
Tanpure, S., Ghanwat, D. V., Shinde, B., Tanpure, K., & Lawande, S. (2020). The
Eggshell Waste Transformed Green and Efficient Synthesis of K-Ca(OH) 2
Catalyst for Room Temperature Synthesis of Chalcones. Polycyclic Aromatic
Compounds, 42, 1-19.
Thommes, M. (2010). Physical Adsorption Characterization of Nanoporous Materials.
Chemie Ingenieur Technik, 82(7), 1059-1073.
Tian, S., Jiang, P., Ning, P., & Su, Y. (2009). Enhanced adsorption removal of phosphate
from water by mixed lanthanum/aluminum pillared montmorillonite. Chemical
Engineering, 151(1), 141-148.
Tran, T.-T., Tran, N.-N. T., Sugiyama, S., & Liu, J.-C. (2021). Enhanced phosphate
removal by thermally pretreated waste oyster shells. Material Cycles and Waste
Management, 23(1), 177-185.
Wang, L., Shi, C., Wang, L., Pan, L., Zhang, X., & Zou, J.-J. (2020). Rational design,
synthesis, adsorption principles and applications of metal oxide adsorbents: a
review. Nanoscale, 12(8), 4790-4815.
Weiner, E. (2013). Applications of Environmental Aquatic Chemistry: A Practical Guide.
Wu, F.-C., Tseng, R.-L., Huang, S.-C., & Juang, R.-S. (2009). Characteristics of pseudosecond-order kinetic model for liquid-phase adsorption: A mini-review. Chemical
Engineering, 151(1), 1-9.
Wu, Y., Li, X., Yang, Q., Wang, D., Xu, Q., Yao, F., Chen, F., Tao, Z., & Huang, X.
(2019). Hydrated lanthanum oxide-modified diatomite as highly efficient
adsorbent for low-concentration phosphate removal from secondary effluents.
Environmental Management, 231, 370-379.
Xie, J., Wang, Z., Lu, S., Wu, D., Zhang, Z., & Kong, H. (2014). Removal and recovery
of phosphate from water by lanthanum hydroxide materials. Chemical
Engineering, 254, 163-170.
Xu, H., Li, Y., Zhou, F., Su, H., Yao, E., Hu, J., & Chen, Z. (2023). Adsorption
characteristics, isotherm, kinetics, and diffusion of nanoemulsion in tight
sandstone reservoir. Chemical Engineering, 144070.
Yang, B., Han, F., Bai, Y., Xie, Z., Shi, T., Wang, J., & Li, Y. (2023). Phosphate removal
performance and mechanism of magnesium–lanthanum-modified coal
gasification coarse slag. Materials Today Sustainability, 22, 100357.
Yang, B., & Jang, J. G. (2020). Environmentally benign production of one-part alkaliactivated slag with calcined oyster shell as an activator. Construction And Bulding
Materials, 257, Article 119552.
Yang, F., Zhang, S., Sun, Y., Tsang, D. C. W., Cheng, K., & Ok, Y. S. (2019). Assembling97
biochar with various layered double hydroxides for enhancement of phosphorus
recovery. Hazardous Materials, 365, 665-673.
Yang, J., Zhou, L., Zhao, L., Zhang, H., Yin, J., Wei, G., Qian, K., Wang, Y., & Yu, C.
(2011). A designed nanoporous material for phosphate removal with high
efficiency. Materials Chemistry, 21(8), 2489-2494.
Yang, Y., Yuen Koh, K., Li, R., Zhang, H., Yan, Y., & Chen, J. P. (2020). An innovative
lanthanum carbonate grafted microfibrous composite for phosphate adsorption in
wastewater. Hazardous Materials, 392, 121952.
Yang, Y., Zhang, H., & Yan, Y. (2018). Synthesis of carbon nanotube on stainless steel
microfibrous composite—Comparison of direct and indirect growth and its
application in fixed bed m-cresol adsorption. Chemical Engineering Research and
Design, 139, 162-173.
Ye, Z., Shen, Y., Ye, X., Zhang, Z., Chen, S., & Shi, J. (2014). Phosphorus recovery from
wastewater by struvite crystallization: Property of aggregates. Environmental
Sciences, 26(5), 991-1000.
Yen, T. F. (2007). Chemical Processes for Environmental Engineering. Imperial College
Press And Distribution By World Scienctfic Publishing Co.
Yeoman, S., Stephenson, T., Lester, J. N., & Perry, R. (1988). The removal of phosphorus
during wastewater treatment: A review. Environmental Pollution, 49(3), 183-233.
Yoon, G. L., Kim, B. T., Kim, B. O., & Han, S. H. (2003). Chemical-mechanical
characteristics of crushed oyster-shell. Journal of Waste Management, 23(9), 825-
834.
Yoshimura, M., Sujaridworakun, P., Koh, F., Fujiwara, T., Pongkao, D., & Ahniyaz, A.
(2004). Hydrothermal conversion of calcite crystals to hydroxyapatite. Materials
Science and Engineering: C, 24(4), 521-525.
You, K., Yang, W., Song, P., Fan, L., Xu, S., Li, B., & Feng, L. (2022). Lanthanummodified magnetic oyster shell and its use for enhancing phosphate removal from
water. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 633,
127897.
Zeng, L., Li, X., & Liu, J. (2004). Adsorptive removal of phosphate from aqueous
solutions using iron oxide tailings. Journal of Water Research, 38(5), 1318-1326.
Zhang, J., Shen, Z., Shan, W., Chen, Z., Mei, Z., Lei, Y., & Wang, W. (2010). Adsorption
behavior of phosphate on Lanthanum(III) doped mesoporous silicates material.
Environmental Sciences, 22(4), 507-511.
Zhang, L., Wan, L., Chang, N., Liu, J., Duan, C., Zhou, Q., Li, X., & Wang, X. (2011).
Removal of phosphate from water by activated carbon fiber loaded with
lanthanum oxide. Hazardous Materials, 190(1), 848-855.
Zhang, Y., Pan, B., Shan, C., & Gao, X. (2016). Enhanced Phosphate Removal by
Nanosized Hydrated La(III) Oxide Confined in Cross-linked Polystyrene98
Networks. Environmental Science & Technology, 50(3), 1447-1454.
Zhao, J., Liao, C., Chen, X., & Song, W. (2018). Hierarchically ordered macro–
mesoporous anatase TiO 2 prepared by pearl oyster shell and triblock copolymer
dual templates for high photocatalytic activity. RSC Advances, 8, 38461-38469.
Zhou, Z., Xu, Q., Wu, Z., Fang, X., Zhong, Q., Yang, J., Yan, J., & Li, Q. (2023).
Preparation and characterization of clay-oyster shell composite adsorption
material and its application in phosphorus removal from wastewater. Sustainable
Chemistry and Pharmacy, 32, 101023. |