參考文獻 |
Abedini, R., Mosayebi, A., Mokhtari, M. (2018). Improved CO2 separation of azide cross-linked PMP mixed matrix membrane embedded by nano-CuBTC metal organic framework. Process Safety and Environmental Protection, 114, 229-239.
Afzali, A., Maghsoodlou, S., Noroozi, B. (2015). Nanoporous Polymer/Carbon Nanotube Membrane Filtration: The “How-To” Guide to Computational Methods. In.
Alqaheem, Y., Alomair, A., Vinoba, M., Pérez, A. (2017). Polymeric Gas-Separation Membranes for Petroleum Refining. International Journal of Polymer Science, 2017(1), 4250927.
Arabi Shamsabadi, A., Riazi, H., Soroush, M. (2018). Chapter 4 - Mixed Matrix Membranes for CO2 Separations: Membrane Preparation, Properties, and Separation Performance Evaluation. In A. Basile E. P. Favvas (Eds.), Current Trends and Future Developments on (Bio-) Membranes (pp. 103-153). Elsevier.
Askadskii, A., Popova, M., Matseevich, T., Kurskaya, E. (2013). The Influence of the Degree of Crystallinity on the Glass Transition Temperature of Polymers. Advanced Materials Research, 864-867, 751-754.
Bai, H., Ho, W. S. W. (2011). Carbon Dioxide-Selective Membranes for High-Pressure Synthesis Gas Purification. Industrial & Engineering Chemistry Research, 50(21), 12152-12161.
Baker, R. W. (2004). Membrane Technology and Applications. New York: McGraw-Hill.
Barooah, M., Mandal, B. (2018). Enhanced CO2 separation performance by PVA/PEG/silica mixed matrix membrane. Journal of Applied Polymer Science, 135(28).
Barooah, M., Mandal, B. (2019). Synthesis, characterization and CO2 separation performance of novel PVA/PG/ZIF-8 mixed matrix membrane. Journal of Membrane Science, 572, 198-209.
Basile, A., Iulianelli, A., Gallucci, F., Morrone, P. (2010). Chapter 7 - Advanced membrane separation processes and technology for carbon dioxide (CO2) capture in power plants. In M. M. Maroto-Valer (Eds.), Developments and Innovation in Carbon Dioxide (CO2) Capture and Storage Technology (Vol. 1, pp. 203-242). Woodhead Publishing.
Bastani, D., Esmaeili, N., Asadollahi, M. (2013). Polymeric mixed matrix membranes containing zeolites as a filler for gas separation applications: A review. Journal of Industrial and Engineering Chemistry, 19(2), 375-393.
Bernardo, P., Drioli, E., Golemme, G. (2009). Membrane Gas Separation: A Review/State of the Art. Industrial & Engineering Chemistry Research, 48(10), 4638-4663.
Cai, Y., Wang, Z., Yi, C. H., Bai, Y. H., Wang, J. X., Wang, S. C. (2008). Gas transport property of polyallylamine-poly(vinyl alcohol)/polysulfone composite membranes. Journal of Membrane Science, 310(1-2), 184-196.
Car, A., Stropnik, C., Peinemann, K. V. (2006). Hybrid membrane materials with different metal-organic frameworks (MOFs) for gas separation. Desalination, 200(1-3), 424-426.
Car, A., Stropnik, C., Yave, W., Peinemann, K. V. (2008). Pebax®/polyethylene glycol blend thin film composite membranes for CO2 separation: Performance with mixed gases. Separation and Purification Technology, 62(1), 110-117.
Catalano, J., Myezwa, T., De Angelis, M. G., Baschetti, M. G., Sarti, G. C. (2012). The effect of relative humidity on the gas permeability and swelling in PFSI membranes. International Journal of Hydrogen Energy, 37(7), 6308-6316.
Chen, W. B., Zhang, Z. G., Hou, L., Yang, C. C., Shen, H. C., Yang, K., Wang, Z. (2020). Metal-organic framework MOF-801/PIM-1 mixed-matrix membranes for enhanced CO2/N2 separation performance. Separation and Purification Technology, 250.
Chen, Y. X., Ho, W. S. W. (2016). High-molecular-weight polyvinylamine/piperazine glycinate membranes for CO2 capture from flue gas. Journal of Membrane Science, 514, 376-384.
Cheng, X., Cai, W. B., Chen, X. H., Shi, Z., Li, J. D. (2019). Preparation of graphene oxide/poly(vinyl alcohol) composite membrane and pervaporation performance for ethanol dehydration. RSC Advances, 9(27), 15457-15465.
Cheng, Y. D., Wang, Z. H., Zhao, D. (2018). Mixed Matrix Membranes for Natural Gas Upgrading: Current Status and Opportunities. Industrial & Engineering Chemistry Research, 57(12), 4139-4169.
Comesaña-Gándara, B., Chen, J., Bezzu, C. G., Carta, M., Rose, I., Ferrari, M. C., Esposito, E., Fuoco, A., Jansen, J. C., McKeown, N. B. (2019). Redefining the Robeson upper bounds for CO2/CH4 and CO2/N2 separations using a series of ultrapermeable benzotriptycene-based polymers of intrinsic microporosity. Energy & Environmental Science, 12(9), 2733-2740.
Dai, Z. D., Bai, L., Hval, K. N., Zhang, X. P., Zhang, S. J., Deng, L. Y. (2016). Pebax®/TSIL blend thin film composite membranes for CO2 separation. Science China-Chemistry, 59(5), 538-546.
Dai, Z. D., Deng, J., Ansaloni, L., Janakiram, S., Deng, L. Y. (2019). Thin-film-composite hollow fiber membranes containing amino acid salts as mobile carriers for CO2 separation. Journal of Membrane Science, 578, 61-68.
Das, M., Perry, J. D., Koros, W. J. (2010). Gas-Transport-Property Performance of Hybrid Carbon Molecular Sieve-Polymer Materials. Industrial & Engineering Chemistry Research, 49(19), 9310-9321.
Dehghani, M., Asghari, M., Mohammadi, A. H., Mokhtari, M. (2017). Molecular simulation and Monte Carlo study of structural-transport-properties of PEBA-MFI zeolite mixed matrix membranes for CO2, CH4 and N2 separation. Computers & Chemical Engineering, 103, 12-22.
Deng, L. Y., Hägg, M. B. (2014). Carbon nanotube reinforced PVAm/PVA blend FSC nanocomposite membrane for CO2/CH4 separation. International Journal of Greenhouse Gas Control, 26, 127-134.
Dilshad, M. R., Islam, A., Sabir, A., Shafiq, M., Butt, M. T. Z., Ijaz, A., Jamil, T. (2017). Fabrication and performance characterization of novel zinc oxide filled cross-linked PVA/PEG 600 blended membranes for CO2/N2 separation. Journal of Industrial and Engineering Chemistry, 55, 65-73.
Dong, G. X., Li, H. Y., Chen, V. K. (2013). Challenges and opportunities for mixed-matrix membranes for gas separation. Journal of Materials Chemistry A, 1(15), 4610-4630.
Ebrahimi, S., Mollaiy-Berneti, S., Asadi, H., Peydayesh, M., Akhlaghian, F., Mohammadi, T. (2016). PVA/PES-amine-functional graphene oxide mixed matrix membranes for CO2/CH4 separation: Experimental and modeling. Chemical Engineering Research & Design, 109, 647-656.
El-Azzami, L. A., Grulke, E. A. (2009). Carbon dioxide separation from hydrogen and nitrogen Facilitated transport in arginine salt-chitosan membranes. Journal of Membrane Science, 328(1-2), 15-22.
Embaye, A. S., Martínez-Izquierdo, L., Malankowska, M., Téllez, C., Coronas, J. (2021). Poly(ether-block-amide) Copolymer Membranes in CO2 Separation Applications. Energy & Fuels, 35(21), 17085-17102.
Farashi, Z., Azizi, N., Homayoon, R. (2019). Applying Pebax-1657/ZnO mixed matrix membranes for CO2/CH4 separation. Petroleum Science and Technology, 37(24), 2412-2419.
Farnam, M., bin Mukhtar, H., bin Mohd Shariff, A. (2021). A Review on Glassy and Rubbery Polymeric Membranes for Natural Gas Purification. ChemBioEng Reviews, 8(2), 90-109.
Favvas, E. P., Figoli, A., Castro-Muñoz, R., Fíla, V., He, X. (2018). Chapter 1 - Polymeric Membrane Materials for CO2 Separations. In A. Basile E. P. Favvas (Eds.), Current Trends and Future Developments on (Bio-) Membranes (pp. 3-50). Elsevier.
Feng, Y., Shamsaei, E., Davies, C. H. J., Wang, H. T. (2015). Inorganic particle enhanced polymer hollow fiber membranes with high mechanical properties. Materials Chemistry and Physics, 167, 209-218.
Fortunato, E., Barquinha, P., Martins, R. (2012). Oxide Semiconductor Thin-Film Transistors: A Review of Recent Advances. Advanced Materials, 24(22), 2945-2986.
Gautam, L., Warkar, S. G., Ahmad, S. I., Kant, R., Jain, M. (2022). A review on carboxylic acid cross-linked polyvinyl alcohol: Properties and applications. Polymer Engineering and Science, 62(2), 225-246.
Ge, L., Zhou, W., Rudolph, V., Zhu, Z. H. (2013). Mixed matrix membranes incorporated with size-reduced Cu-BTC for improved gas separation. Journal of Materials Chemistry A, 1(21), 6350-6358.
Goh, P. S., Ismail, A. F., Sanip, S. M., Ng, B. C., Aziz, M. (2011). Recent advances of inorganic fillers in mixed matrix membrane for gas separation. Separation and Purification Technology, 81(3), 243-264.
Gur, T. M. (1994). Permselectivity of Zeolite Filled Polysulfone Gas Separation Membranes. Journal of Membrane Science, 93(3), 283-289.
Haider, B., Dilshad, M. R., Rehman, M. A. U., Schmitz, J. V., Kaspereit, M. (2020). Highly permeable novel PDMS coated asymmetric polyethersulfone membranes loaded with SAPO-34 zeoilte for carbon dioxide separation. Separation and Purification Technology, 248.
Haider, J., Saeed, S., Qyyum, M. A., Kazmi, B., Ahmad, R., Muhammad, A., Lee, M. (2020). Simultaneous capture of acid gases from natural gas adopting ionic liquids: Challenges, recent developments, and prospects. Renewable and Sustainable Energy Reviews, 123, 109771.
Han, G. L., Chen, Z., Cai, L. F., Zhang, Y. H., Tian, J. F., Ma, H. H., Fang, S. M. (2020). Poly(vinyl alcohol)/carboxyl graphene mixed matrix membranes: High-power ultrasonic treatment for enhanced pervaporation performance. Journal of Applied Polymer Science, 137(14).
Hao, L., Liao, K. S., Chung, T. S. (2015). Photo-oxidative PIM-1 based mixed matrix membranes with superior gas separation performance. Journal of Materials Chemistry A, 3(33), 17273-17281.
Hill, R. J. (2006). Reverse-selective diffusion in nanocomposite membranes. Physical Review Letters, 96(21).
Hosseini, S. S., Li, Y., Chung, T. S., Liu, Y. (2007). Enhanced gas separation performance of nanocomposite membranes using MgO nanoparticles. Journal of Membrane Science, 302(1-2), 207-217.
Huang, Z. D., Bensch, W., Kienle, L., Fuentes, S., Alonso, G., Ornelas, C. (2008). Preparation and characterization of SBA-15 supported cobalt-molybdenum sulfide catalysts for HDS reaction: An all sulfide route to hydrodesulfurization catalysts. Catalysis Letters, 124(1-2), 24-33.
IEA. (2023). CO2 Emissions in 2022. https://www.iea.org/reports/co2-emissions-in-2022, accessed December 2023.
Irvin, C. W., Satam, C. C., Carson Meredith, J., Shofner, M. L. (2019). Mechanical reinforcement and thermal properties of PVA tricomponent nanocomposites with chitin nanofibers and cellulose nanocrystals. Composites Part A: Applied Science and Manufacturing, 116, 147-157.
Ismail, A. F., Lorna, W. (2002). Penetrant-induced plasticization phenomenon in glassy polymers for gas separation membrane. Separation and Purification Technology, 27(3), 173-194.
Jahan, Z., Niazi, M. B. K., Gregersen, O. W. (2018). Mechanical, thermal and swelling properties of cellulose nanocrystals/PVA nanocomposites membranes. Journal of Industrial and Engineering Chemistry, 57, 113-124.
Janakiram, S., Espejo, J. L. M., Hoisæter, K. K., Lindbråthen, A., Ansaloni, L., Deng, L. Y. (2020). Three-phase hybrid facilitated transport hollow fiber membranes for enhanced CO2 separation. Applied Materials Today, 21.
Janakiram, S., Yu, X. Y., Ansaloni, L., Dai, Z. D., Deng, L. Y. (2019). Manipulation of Fibril Surfaces in Nanocellulose-Based Facilitated Transport Membranes for Enhanced CO2 Capture. ACS Applied Materials & Interfaces, 11(36), 33302-33313.
Jawad, Z. A. (2019). Membrane Technology for CO2 Sequestration (1st ed.). CRC Press.
Jeazet, H. B. T., Staudt, C., Janiak, C. (2012). Metal-organic frameworks in mixed-matrix membranes for gas separation. Dalton Transactions, 41(46), 14003-14027.
Kalantari, S., Omidkhah, M., Amooghin, A. E., Matsuura, T. (2020). Superior interfacial design in ternary mixed matrix membranes to enhance the CO2 separation performance. Applied Materials Today, 18.
Kankate, L., Aguf, A., Grossmann, H., Schnietz, M., Tampé, R., Turchanin, A., Gölzhäuser, A. (2017). Vapor Phase Exchange of Self-Assembled Monolayers for Engineering of Biofunctional Surfaces. Langmuir, 33(15), 3847-3854.
Kara, G. K., Esmaeili, E., Kehtari, M., Ghafourian, R., Tadjarodi, A. (2022). A comparative investigation of the synergistic correlation (mechanical-hydrophobicity/hydrophilicity structural behaviors) of a series of surface-metalized polyacrylonitrile fibers by silver nanoparticles (AgPAN): An in-situ surface metallization protocol. Journal of Industrial Textiles, 52.
Karimi, S., Firouzfar, E., Khoshchehreh, M. R. (2019). Assessment of gas separation properties and CO2 plasticization of polysulfone/polyethylene glycol membranes. Journal of Petroleum Science and Engineering, 173, 13-19.
Karunakaran, M., Shevate, R., Kumar, M., Peinemann, K. V. (2015). CO2-selective PEO-PBT (PolyActive™)/graphene oxide composite membranes. Chemical Communications, 51(75), 14187-14190.
Kim, S., Pechar, T. W., Marand, E. (2006). Poly(imide siloxane) and carbon nanotube mixed matrix membranes for gas separation. Desalination, 192(1-3), 330-339.
Kong, C. L., Shintani, T., Tsuru, T. (2010). "Pre-seeding"-assisted synthesis of a high performance polyamide-zeolite nanocomposite membrane for water purification. New Journal of Chemistry, 34(10), 2101-2104.
Kudo, Y., Mikami, H., Tanaka, M., Isaji, T., Odaka, K., Yamato, M., Kawakami, H. (2020). Mixed matrix membranes comprising a polymer of intrinsic microporosity loaded with surface-modified non-porous pearl-necklace nanoparticles. Journal of Membrane Science, 597.
Kursun, F., Isiklan, N. (2016). Development of thermo-responsive poly(vinyl alcohol)-g-poly(N-isopropylacrylamide) copolymeric membranes for separation of isopropyl alcohol/water mixtures via pervaporation. Journal of Industrial and Engineering Chemistry, 41, 91-104.
Kusworo, T. D., Ismail, A. F., Mustafa, A., Matsuura, T. (2008). Dependence of membrane morphology and performance on preparation conditions: The shear rate effect in membrane casting. Separation and Purification Technology, 61(3), 249-257.
Li, Y., Chung, T. S., Cao, C., Kulprathipanja, S. (2005). The effects of polymer chain rigidification, zeolite pore size and pore blockage on polyethersulfone (PES)-zeolite A mixed matrix membranes. Journal of Membrane Science, 260(1-2), 45-55.
Liu, Y., Wei, H., Wang, Z., Li, Q., Tian, N. (2018). Simultaneous Enhancement of Strength and Toughness of PLA Induced by Miscibility Variation with PVA. Polymers, 10(10), 1178.
Lou, Y., Toquer, G., Dourdain, S., Rey, C., Grygiel, C., Simeone, D., Deschanels, X. (2015). Structure evolution of mesoporous silica SBA-15 and MCM-41 under swift heavy ion irradiation. Nuclear Instruments & Methods in Physics Research Section B-Beam Interactions with Materials and Atoms, 365, 336-341.
Low, Z. X., Budd, P. M., McKeown, N. B., Patterson, D. A. (2018). Gas Permeation Properties, Physical Aging, and Its Mitigation in High Free Volume Glassy Polymers. Chemical Reviews, 118(12), 5871-5911.
Mahajan, R., Burns, R., Schaeffer, M., Koros, W. J. (2002). Challenges in forming successful mixed matrix membranes with rigid polymeric materials. Journal of Applied Polymer Science, 86(4), 881-890.
Mahajan, R., Koros, W. J. (2000). Factors controlling successful formation of mixed-matrix gas separation materials. Industrial & Engineering Chemistry Research, 39(8), 2692-2696.
Makaruk, L., Polańska, H., Mizerski, T. (1979). The effect of chemical structure of derivatives of 1,1-bis(4-hydroxyphenyl)-2,2-propane on the antiplasticization of polycarbonate. Journal of Applied Polymer Science, 23(7), 1935-1942.
McKeen, L. W. (2008). The effect of temperature and other factors on plastics and elastomers, 2d ed. In (Vol. 32). Portland: Ringgold, Inc.
Meshkat, S., Kaliaguine, S., Rodrigue, D. (2020). Comparison between ZIF-67 and ZIF-8 in Pebax® MH-1657 mixed matrix membranes for CO2 separation. Separation and Purification Technology, 235.
Moghadam, F., Omidkhah, M. R., Vasheghani-Farahani, E., Pedram, M. Z., Dorosti, F. (2011). The effect of TiO2 nanoparticles on gas transport properties of Matrimid5218-based mixed matrix membranes. Separation and Purification Technology, 77(1), 128-136.
Mondal, A., Mandal, B. (2013). Synthesis and characterization of crosslinked poly(vinyl alcohol)/poly(allylamine)/2-amino-2-hydroxymethyl-1,3-propanediol/polysulfone composite membrane for CO2/N2 separation. Journal of Membrane Science, 446, 383-394.
Mondal, A., Mandal, B. (2014). CO2 separation using thermally stable crosslinked poly(vinyl alcohol) membrane blended with polyvinylpyrrolidone/polyethyleneimine/tetraethylenepentamine. Journal of Membrane Science, 460, 126-138.
Moore, T. T., Koros, W. J. (2005). Non-ideal effects in organic-inorganic materials for gas separation membranes. Journal of Molecular Structure, 739(1-3), 87-98.
Mushtaq, A., Mukhtar, H., Shariff, A. M. (2019). Performance of Enhanced Polymeric Blend Membranes for the separation of CO2/CH4 mixtures. Afinidad, 76(585), 70-75.
Nakao, S.-i., Yogo, K., Goto, K., Kai, T., Yamada, H. (2019). Advanced CO2 Capture Technologies: Absorption, Adsorption, and Membrane Separation Methods.
Nasir, R., Mukhtar, H., Man, Z., Mohshim, D. F. (2013). Material Advancements in Fabrication of Mixed-Matrix Membranes. Chemical Engineering & Technology, 36(5), 717-727.
Nematollahi, M. H., Babaei, S., Abedini, R. (2019). CO2 separation over light gases for nano-composite membrane comprising modified polyurethane with SiO2 nanoparticles. Korean Journal of Chemical Engineering, 36(5), 763-779.
Nigiz, F. U. (2020). Synthesis and characterization of graphene nanoplate-incorporated PVA mixed matrix membrane for improved separation of CO2. Polymer Bulletin, 77(5), 2405-2422.
Nik, O. G., Chen, X. Y., Kaliaguine, S. (2012). Functionalized metal organic framework-polyimide mixed matrix membranes for CO2/CH4 separation. Journal of Membrane Science, 413, 48-61.
Nordin, N. A. H. M., Ismail, A. F., Mustafa, A., Murali, R. S., Matsuura, T. (2014). The impact of ZIF-8 particle size and heat treatment on CO2/CH4 separation using asymmetric mixed matrix membrane. RSC Advances, 4(94), 52530-52541.
Nordin, N. A. H. M., Ismail, A. F., Mustafa, A., Murali, R. S., Matsuura, T. (2015). Utilizing low ZIF-8 loading for an asymmetric PSf/ZIF-8 mixed matrix membrane for CO2/CH4 separation. RSC Advances, 5(38), 30206-30215.
Mauna Loa Observatory. (2023). Trends in Atmospheric Carbon Dioxide. https://gml.noaa.gov/ccgg/trends/, accessed August 2023.
Pachauri, R. K., Allen, M. R., Barros, V. R., Broome, J., Cramer, W., Christ, R., Church, J. A., Clarke, L., Dahe, Q., Dasgupta, P. (2014). Climate change 2014: synthesis report. Contribution of Working Groups I, II and III to the fifth assessment report of the Intergovernmental Panel on Climate Change. IPCC.
Pascui, O. F., Lohwasser, R., Sommer, M., Thelakkat, M., Thurn-Albrecht, T., Saalwächter, K. (2010). High Crystallinity and Nature of Crystal−Crystal Phase Transformations in Regioregular Poly(3-hexylthiophene). Macromolecules, 43(22), 9401-9410.
Pedram, M. Z., Omidkhah, M., Amooghin, A. E. (2014). Synthesis and characterization of diethanolamine-impregnated cross-linked polyvinylalcohol/glutaraldehyde membranes for CO2/CH4 separation. Journal of Industrial and Engineering Chemistry, 20(1), 74-82.
Pera-Titus, M. (2014). Porous Inorganic Membranes for CO2 Capture: Present and Prospects. Chemical Reviews, 114(2), 1413-1492.
Porter, M. C. (1989). Handbook of industrial membrane technology. Park Ridge, NJ (USA); Noyes Publications.
Qin, Y., Lv, J. F., Fu, X., Guo, R. L., Li, X. Q., Zhang, J. S., Wei, Z. (2016). High-performance SPEEK/amino acid salt membranes for CO2 separation. RSC Advances, 6(3), 2252-2258.
Rajati, H., Navarchian, A. H., Rodrigue, D., Tangestaninejad, S. (2020). Improved CO2 transport properties of Matrimid membranes by adding amine-functionalized PVDF and MIL-101(Cr). Separation and Purification Technology, 235, 116149.
Ramezani, R., Mazinani, S., Felice, R. D. (2022). State-of-the-art of CO2 capture with amino acid salt solutions. Reviews in Chemical Engineering, 38(3), 273-299.
Reid, B. D., Ruiz-Trevino, A., Musselman, I. H., Balkus, K. J., Ferraris, J. P. (2001). Gas permeability properties of polysulfone membranes containing the mesoporous molecular sieve MCM-41. Chemistry of Materials, 13(7), 2366-2373.
Rezakazemi, M., Amooghin, A. E., Montazer-Rahmati, M. M., Ismail, A. F., Matsuura, T. (2014). State-of-the-art membrane based CO2 separation using mixed matrix membranes (MMMs): An overview on current status and future directions. Progress in Polymer Science, 39(5), 817-861.
Robeson, L. M. (1991). Correlation of Separation Factor Versus Permeability for Polymeric Membranes. Journal of Membrane Science, 62(2), 165-185.
Robeson, L. M. (2008). The upper bound revisited. Journal of Membrane Science, 320(1-2), 390-400.
Rodenas, T., Luz, I., Prieto, G., Seoane, B., Miro, H., Corma, A., Kapteijn, F., Xamena, F. X. L. I., Gascon, J. (2015). Metal-organic framework nanosheets in polymer composite materials for gas separation. Nature Materials, 14(1), 48-55.
Saeed, M., Deng, L. Y. (2016). Carbon nanotube enhanced PVA-mimic enzyme membrane for post-combustion CO2 capture. International Journal of Greenhouse Gas Control, 53, 254-262.
Saeed, M., Rafiq, S., Bergersen, L. H., Deng, L. Y. (2017). Tailoring of water swollen PVA membrane for hosting carriers in CO2 facilitated transport membranes. Separation and Purification Technology, 179, 550-560.
Sanaeepur, H., Ahmadi, R., Amooghin, A. E., Ghanbari, D. (2019). A novel ternary mixed matrix membrane containing glycerol-modified poly (ether-amide) (Pebax 1657)/copper nanoparticles for CO2 separation. Journal of Membrane Science, 573, 234-246.
Sanz, R., Calleja, G., Arencibia, A., Sanz-Pérez, E. S. (2010). CO2 adsorption on branched polyethyleneimine-impregnated mesoporous silica SBA-15. Applied Surface Science, 256(17), 5323-5328.
Serbanescu, O. S., Voicu, S. I., Thakur, V. K. (2020). Polysulfone functionalized membranes: Properties and challenges. Materials Today Chemistry, 17.
Setiawan, W. K., Chiang, K.-Y. (2023). Amine-functionalized biogenic silica incorporation effect on poly (ether-block-amide) membrane CO2/N2 separation performance. Journal of Membrane Science, 680, 121732.
Shahid, S., Nijmeijer, K. (2014). High pressure gas separation performance of mixed-matrix polymer membranes containing mesoporous Fe(BTC). Journal of Membrane Science, 459, 33-44.
Shin, H., Chi, W. S., Bae, S., Kim, J. H., Kim, J. (2017). High-performance thin PVC-POEM/ZIF-8 mixed matrix membranes on alumina supports for CO2/CH4 separation. Journal of Industrial and Engineering Chemistry, 53, 127-133.
Sriupayo, J., Supaphol, P., Blackwell, J., Rujiravanit, R. (2005). Preparation and characterization of α-chitin whisker-reinforced chitosan nanocomposite films with or without heat treatment. Carbohydrate Polymers, 62(2), 130-136.
Suleman, M. S., Lau, K. K., Yeong, Y. F. (2016). Plasticization and Swelling in Polymeric Membranes in CO2 Removal from Natural Gas. Chemical Engineering & Technology, 39(9), 1604-1616.
Thommes, M., Kaneko, K., Neimark, A. V., Olivier, J. P., Rodriguez-Reinoso, F., Rouquerol, J., Sing, K. S. W. (2015). Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure and Applied Chemistry, 87(9-10), 1051-1069.
Tong, Z., Ho, W. S. W. (2017). Facilitated transport membranes for CO2 separation and capture. Separation Science and Technology, 52(2), 156-167.
Torstensen, J. O., Heiberg, R. M. L., Deng, L. Y., Gregersen, O. W., Syverud, K. (2019). PVA/nanocellulose nanocomposite membranes for CO2 separation from flue gas. International Journal of Greenhouse Gas Control, 81, 93-102.
Tseng, H. H., Chuang, H. W., Zhuang, G. L., Lai, W. H., Wey, M. Y. (2017). Structure-controlled mesoporous SBA-15-derived mixed matrix membranes for H2 purification and CO2 capture. International Journal of Hydrogen Energy, 42(16), 11379-11391.
Vankelecom, I. F. J., Merckx, E., Luts, M., Uytterhoeven, J. B. (1995). Incorporation of Zeolites in Polyimide Membranes. Journal of Physical Chemistry, 99(35), 13187-13192.
Vankelecom, I. F. J., Scheppers, E., Heus, R., Uytterhoeven, J. B. (1994). Parameters Influencing Zeolite Incorporation in Pdms Membranes. Journal of Physical Chemistry, 98(47), 12390-12396.
Vu, D. Q., Koros, W. J., Miller, S. J. (2003). Mixed matrix membranes using carbon molecular sieves - I. Preparation and experimental results. Journal of Membrane Science, 211(2), 311-334.
Waheed, N., Mushtaq, A., Tabassum, S., Gilani, M. A., Ilyas, A., Ashraf, F., Jamal, Y., Bilad, M. R., Khan, A. U., Khan, A. L. (2016). Mixed matrix membranes based on polysulfone and rice husk extracted silica for CO2 separation. Separation and Purification Technology, 170, 122-129.
Weng, T. H., Tseng, H. H., Wey, M. Y. (2010). Fabrication and characterization of poly(phenylene oxide)/SBA-15/carbon molecule sieve multilayer mixed matrix membrane for gas separation. International Journal of Hydrogen Energy, 35(13), 6971-6983.
Weng, T. H., Tseng, H. H., Wey, M. Y. (2011). Effect of SBA-15 texture on the gas separation characteristics of SBA-15/polymer multilayer mixed matrix membrane. Journal of Membrane Science, 369(1-2), 550-559.
Wu, Y. Z., Guo, Z. Y., Wu, H., Zhu, K. Y., Yang, L. X., Ren, Y. X., Liu, Y. T., Wu, X. Y., Zhao, R., Khan, N. A., Ahmad, N. M., Younas, M., Jiang, Z. Y. (2020). Plasticization- and aging -resistant membranes with venation -like architecture for efficient carbon capture. Journal of Membrane Science, 609.
Xin, Q. P., Ouyang, J. Y., Liu, T. Y., Li, Z., Li, Z., Liu, Y. C., Wang, S. F., Wu, H., Jiang, Z. Y., Gao, X. Z. (2015). Enhanced Interfacial Interaction and CO2 Separation Performance of Mixed Matrix Membrane by Incorporating PolyethylenimineDecorated Metal-Organic Frameworks. ACS Applied Materials & Interfaces, 7(2), 1065-1077.
Xing, R., Ho, W. S. W. (2011). Crosslinked polyvinylalcohol-polysiloxane/fumed silica mixed matrix membranes containing amines for CO2/H2 separation. Journal of Membrane Science, 367(1-2), 91-102.
Yampolskii, Y., Pinnau, I., Freeman, B. (2006). Materials science of membranes for gas and vapor separation. In (Vol. 30). Portland: Ringgold, Inc.
Yave, W., Car, A., Peinemann, K. V. (2010). Nanostructured membrane material designed for carbon dioxide separation. Journal of Membrane Science, 350(1-2), 124-129.
Zhang, M. L., Deng, L. M., Xiang, D. X., Cao, B., Hosseini, S. S., Li, P. (2019). Approaches to Suppress CO2-Induced Plasticization of Polyimide Membranes in Gas Separation Applications. Processes, 7(1).
Zhang, Q., Zhou, M., Liu, X. F., Zhang, B. Q. (2021). Pebax/two-dimensional MFI nanosheets mixed-matrix membranes for enhanced CO2 separation. Journal of Membrane Science, 636.
Zhang, R., Xu, X. Y., Cao, B., Li, P. (2018). Fabrication of high-performance PVA/PAN composite pervaporation membranes crosslinked by PMDA for wastewater desalination. Petroleum Science, 15(1), 146-156.
Zhang, Y., Sunarso, J., Liu, S. M., Wang, R. (2013). Current status and development of membranes for CO2/CH4 separation: A review. International Journal of Greenhouse Gas Control, 12, 84-107.
Zhao, Y. N., Ho, W. S. W. (2012). Steric hindrance effect on amine demonstrated in solid polymer membranes for CO2 transport. Journal of Membrane Science, 415, 132-138.
Zheng, Y. F., Huang, H., Wang, Y., Zhu, J., Yu, J. R., Hu, Z. M. (2021). Poly (vinyl alcohol) based gradient cross-linked and reprogrammable humidity-responsive actuators. Sensors and Actuators B-Chemical, 349.
Zhuang, G. L., Tseng, H. H., Wey, M. Y. (2014). Preparation of PPO-silica mixed matrix membranes by in-situ sol-gel method for H2/CO2 separation. International Journal of Hydrogen Energy, 39(30), 17178-17190.
Zou, J., Ho, W. S. W. (2006). CO2-selective polymeric membranes containing amines in crosslinked poly(vinyl alcohol). Journal of Membrane Science, 286(1-2), 310-321. |