博碩士論文 110327012 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:117 、訪客IP:13.59.70.123
姓名 蔡承劭(Cheng-Shao Tsai)  查詢紙本館藏   畢業系所 光機電工程研究所
論文名稱 總體相位經驗模態分解
(Ensemble Phase Empirical Mode Decomposition)
相關論文
★ 二十一點遊戲之正確期望值模型:以遞迴之方式實行隨機訊號處理★ 擾動輔助經驗模態分解之邊界效應的理論與數值分析
★ 基於加速度計的高精度步數演算法★ 基於加速度計低功耗精確量測步數演算法在穿戴式裝置的實現
★ 經驗模態分解局部性之近場性質的一些證明★ 擾動輔助EMD演算法在穿戴式嵌入式裝置中MCU的即時運算
★ 利用多孔介質提升甲烷熱裂解產氫之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2025-7-31以後開放)
摘要(中) 經驗模態分解(Empirical Mode Decomposition, EMD)是一種用於對非穩態(non-stationary)訊號進行時頻分析的非線性(Nonlinear)、自適性(Adaptive)方法。在許多應用上已證明它比傳統傅立葉轉換優越。EMD透過篩選運算子(Sifting)將訊號拆解成多組不同頻帶的本質模態函數(Intrinsic Mode Functions, IMFs)。然而EMD 的一個主要缺點是模態混合效應(Mode Mixing)。擾動輔助經驗模態分解(Disturbance-Assisted EMD, D-A EMD)被提出用來解決這個問題。例如使用白噪音的總體經驗模態分解(Ensemble EMD, EEMD)、CEEMD,但也產生了殘餘噪音(Residue Noise)和模態分裂(Mode Splitting)的問題,D-A EMD中使用正/餘弦波的均勻相位經驗模態分解(Uniform Phase EMD, UPEMD)最小化了模態混合效應,同時避免了EEMD所產生的兩個副作用。這些擾動輔助方法使 EMD 在分析真實世界數據時具有更好的性能。
EMD在分解時,表現出太多的模態,有些IMF難以解釋其現象,缺乏嚴謹的數學及物理意義,且當訊號的頻帶太過於接近時,EMD容易將其視為單一波型的調幅訊號,例如: Beat effect,此時需要更多的篩選才有可能分解出有意義的IMF,Wang在2014年已經證明篩選的次數與計算時間成正比,不論是否發生模態混合效應多次篩選的計算時間依舊太長,故本篇論文提出一種以三次樣條小波(Cubic Spline Wavelet)基於EMD的非自適性算法,將EMD的篩選過程以頻域的內積方法所取代,使計算時間快,不受多次篩選疊代的影響,並在處理頻率相近的數據時能更容易拆解,且由於演算法為線性在數學上可分析。
我們透過實驗比較新方法在生醫、地球科學、類聲音訊號、物理等領域與其他不同基於EMD算法(如:EMD、UPEMD、EEMD)的差別,利用人造合成訊號與真實世界例子驗證新方法之性能。
摘要(英) Empirical Mode Decomposition (EMD) is a nonlinear and adaptive method used for time-frequency analysis of non-stationary signals. It has been proven superior to traditional Fourier transforms in many applications. EMD decomposes the signal into a set of intrinsic mode functions (IMFs) with different frequency bands through the sifting operation. However, a major drawback of EMD is the mode mixing effect. Disturbance-Assisted EMD (D-A EMD) has been proposed to address this issue. For example, Ensemble EMD (EEMD) and CEEMD utilize white noise, but they introduce residual noise and mode splitting problems. D-A EMD with Uniform Phase EMD (UPEMD) using sinusoids minimizes the mode mixing effect and avoids the two side effects caused by EEMD. These disturbance-assisted methods improve the performance of EMD in analyzing real-world data.
During the decomposition, EMD often generates numerous modes, some of which are difficult to interpret and lack rigorous mathematical and physical meanings. When the frequency bands of the signal are too close, EMD tends to treat them as amplitude-modulated signals of a single waveform, such as the beat effect. In such cases, more sifting is required to obtain meaningful IMFs. Wang demonstrated in 2014 that the number of siftings is proportional to the computation time. Regardless of whether mode mixing occurs or not, the computation time for multiple siftings remains too long. Therefore, this paper proposes a non-adaptive algorithm based on EMD using cubic spline wavelets, replacing the sifting process of EMD with a frequency-domain inner product method. This approach speeds up the computation time and is not affected by multiple iterations of siftings. It also facilitates the decomposition of data with close frequencies. Additionally, the algorithm is linear and can be mathematically analyzed.
We conducted experiments to compare the new method with other EMD-based algorithms (such as EMD, UPEMD, and EEMD) in various fields, including biomedical, Earth sciences, audio signals, and physics. Synthetic and real-world examples were used to validate the performance of the new method.
關鍵字(中) ★ 經驗模態分解
★ 總體相位經驗模態分解
★ 總體相位
★ 三次樣條小波
★ 卷積
關鍵字(英) ★ EMD
★ EPEMD
★ Ensemble Phase
★ Cubic Spline Wavelet
★ convolution
論文目次 摘要 i
ABSTRACT iii
誌謝 v
目錄 vii
圖目錄 ix
表目錄 xi
符號說明 xii
一、 緒論 1
1-1 研究動機與目的 1
1-2 文獻探討 2
二、 經驗模態分解的基礎: 7
2-1 三次樣條曲線內插(Cubic spline Interpolation) 7
2-2 經驗模態分解(Empirical Mode Decomposition, EMD) 8
2-3 均勻相位經驗模態分解(Uniform Phase EMD, UPEMD) 9
2-4 總體經驗模態分解(Ensemble EMD, EEMD) 11
三、 總體相位經驗模態分解 13
3-1 總體相位經驗模態分解(Ensemble Phase Empirical Mode Decomposition, EPEMD) 13
3-2 快速EPEMD(Fast EPEMD, FEPEMD) 18
3-3 與文獻方法EMD、UPEMD、EWT、IF之異同 20
3-3-1 經驗小波轉換(Empirical Wavelet Transform, EWT) 20
3-3-2 疊代濾波分解(Iterative Filtering, IF) 22
四、 數值實驗討論 24
4-1 雙音訊號(Two-tone) 24
4-1-1 以EMD、UPEMD、EPEMD分解頻率相近的訊號 24
4-1-2 EPEMD篩選次數對邊界影響 27
4-2 腦血流訊號(Blood Flow Velocity, BFV) 28
4-3 Duffing equation 31
4-4 一天的長度(Length of a day, LOD)變化 33
4-4-1 概述 33
4-4-2 以UPEMD、EPEMD分析一天長度變化訊號 34
4-5 結果與討論 37
五、 總結與結論 38
5-1 總結 38
5-2 結論 38
參考文獻 41
附 錄 一 45
參考文獻 [1] Huang, Norden E., et al. "The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis." Proceedings of the Royal Society of London. Series A: mathematical, physical and engineering sciences 454.1971 (1998): 903-995.
[2] Wu, Zhaohua, and Norden E. Huang. "Ensemble empirical mode decomposition: a noise-assisted data analysis method." Advances in adaptive data analysis 1.01 (2009): 1-41.
[3] Hu, Xiyuan, Silong Peng, and Wen-Liang Hwang. "EMD revisited: A new understanding of the envelope and resolving the mode-mixing problem in AM-FM signals." IEEE Transactions on Signal Processing 60.3 (2011): 1075-1086.
[4] Motin, Mohammod Abdul, Chandan Kumar Karmakar, and Marimuthu Palaniswami. "Selection of empirical mode decomposition techniques for extracting breathing rate from PPG." IEEE Signal Processing Letters 26.4 (2019): 592-596.
[5] Huang, Norden E., Zheng Shen, and Steven R. Long. "A new view of nonlinear water waves: the Hilbert spectrum." Annual review of fluid mechanics 31.1 (1999): 417-457.
[6] Yeh, Jia-Rong, Jiann-Shing Shieh, and Norden E. Huang. "Complementary ensemble empirical mode decomposition: A novel noise enhanced data analysis method." Advances in adaptive data analysis 2.02 (2010): 135-156
[7] Wang, Yung-Hung, Kun Hu, and Men-Tzung Lo. "Uniform phase empirical mode decomposition: An optimal hybridization of masking signal and ensemble approaches." IEEE Access 6 (2018): 34819-34833.
[8] G. Rilling and P. Flandrin, ``One or two frequencies? The empirical mode decomposition answers,‘’ IEEE Trans. Signal Process., vol. 56, no. 1, pp. 8595, Jan. 2008.
[9] M. E. Torres, M. A. Colominas, G. Schlotthauer, and P. Flandrin, "A complete ensemble empirical mode decomposition with adaptive noise," in 2011 IEEE international conference on acoustics, speech and signal processing (ICASSP), 2011: IEEE, pp. 4144-4147.
[10] Wang, Yung-Hung, Hsu-Wen Vincent Young, and Men-Tzung Lo. "The inner structure of empirical mode decomposition." Physica A: Statistical Mechanics and its Applications 462 (2016): 1003-1017.
[11] L. Lin, Y. Wang, H. Zhou, Iterative filtering as an alternative algorithm for empirical mode decomposition, Adv. Adapt. Data Anal. 2 (2010) 543–563.
[12] Wang, Yung-Hung, et al. "On the computational complexity of the empirical mode decomposition algorithm." Physica A: Statistical Mechanics and its Applications 400 (2014): 159-167.
[13] T. Oberlin, S. Meignen, and V. Perrier, "An alternative formulation for the empirical mode decomposition," IEEE Transactions on Signal Processing, vol. 60, no. 5, pp. 2236-2246, 2012.
[14] R. Deering and J. F. Kaiser, "The use of a masking signal to improve empirical mode decomposition," in Proceedings.(ICASSP′05). IEEE International Conference on Acoustics, Speech, and Signal Processing, 2005., 2005, vol. 4: IEEE, pp. iv/485-iv/488 Vol. 4.
[15] N. Rehman and D. P. Mandic, "Multivariate empirical mode decomposition," Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol. 466, no. 2117, pp. 1291-1302, 2010.
[16] Y.-H. Wang and S.-H. Cheng, "Boundary Effects for EMD-Based Algorithms," IEEE Signal Processing Letters, vol. 29, pp. 1032-1036, 2022.
[17] G. Rilling, P. Flandrin, and P. Goncalves, "On empirical mode decomposition and its algorithms," in IEEE-EURASIP workshop on nonlinear signal and image processing, 2003, vol. 3, no. 3: IEEER Grado, pp. 8-11.
[18] G. Wang, X.-Y. Chen, F.-L. Qiao, Z. Wu, and N. E. Huang, "On intrinsic mode function," Advances in Adaptive Data Analysis, vol. 2, no. 03, pp. 277-293, 2010.
[19] Gilles, Jerome. "Empirical wavelet transform." IEEE transactions on signal processing 61.16 (2013): 3999-4010.
[20] Kedadouche, M., M. Thomas, and A. J. M. S. Tahan. "A comparative study between Empirical Wavelet Transforms and Empirical Mode Decomposition Methods: Application to bearing defect diagnosis." Mechanical Systems and Signal Processing 81 (2016): 88-107.
[21] Flandrin, Patrick, Paulo Gonçalves, and Gabriel Rilling. "EMD equivalent filter banks, from interpretation to applications." Hilbert-Huang transform and its applications. 2005. 57-74.
[22] Wang, Yung-Hung, et al. "A low-cost implementation of sample entropy in wearable embedded systems: An example of online analysis for sleep EEG." IEEE Transactions on Instrumentation and Measurement 70 (2021): 1-12.
[23] Cicone, Antonio, and Enza Pellegrino. "Multivariate fast iterative filtering for the decomposition of nonstationary signals." IEEE Transactions on Signal Processing 70 (2022): 1521-1531.
[24] Cicone, Antonio, Jingfang Liu, and Haomin Zhou. "Adaptive local iterative filtering for signal decomposition and instantaneous frequency analysis." Applied and Computational Harmonic Analysis 41.2 (2016): 384-411.
[25] Zhang, Yi, Yong Lv, and Mao Ge. "Time–frequency analysis via complementary ensemble adaptive local iterative filtering and enhanced maximum correlation kurtosis deconvolution for wind turbine fault diagnosis." Energy Reports 7 (2021): 2418-2435.
[26] Cicone, Antonio, and Haomin Zhou. "Numerical analysis for iterative filtering with new efficient implementations based on FFT." Numerische Mathematik 147 (2021): 1-28.
[27] Ayinala, Manohar, Michael Brown, and Keshab K. Parhi. "Pipelined parallel FFT architectures via folding transformation." IEEE Transactions on Very Large Scale Integration (VLSI) Systems 20.6 (2011): 1068-1081.
[28] Yilmaz, Ali E., Jian-Ming Jin, and Eric Michielssen. "A parallel FFT accelerated transient field-circuit simulator." IEEE transactions on microwave theory and techniques 53.9 (2005): 2851-2865.
[29] Averbuch, Amir, et al. "A parallel FFT on an MIMD machine." Parallel Computing 15.1-3 (1990): 61-74.
[30] Dmitruk, P., et al. "Scalable parallel FFT for spectral simulations on a Beowulf cluster." Parallel Computing 27.14 (2001): 1921-1936.
指導教授 王淵弘(Yung-Hung Wang) 審核日期 2023-8-1
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明