參考文獻 |
[1] 林銘偉,矽晶・電子:科技創新—矽光子積體電路,國家實驗研究院國家晶片系統設計中心,2018。檢自:
https://scitechvista.nat.gov.tw/Article/c000003/detail?ID=3ab13c01-79a2-46d3-a636-dbac52b4f940.
[2] CWDM和DWDM淺析。檢自:https://www.jfopt.cn/datacenter/P14.html.
[3] X. Wang, W. Shi, R. Vafaei, N. A. F. Jaeger, and L. Chrostowski. Uniform and sampled Bragg gratings in SOI strip waveguides with sidewall corrugations. IEEE Photon. Technol. Lett., vol. 23, pp. 290-292, 2011.
[4] S. Khan and S. Fathpour. Complementary apodized grating waveguides for tunable optical delay lines. Opt. Express, vol. 20, pp. 19859-19867, 2012.
[5] 許晉瑋,應用於三維感測的垂直共振腔面射型雷射陣列,科儀新知,第219期,15~24頁,2019。
[6] D. Wiesmann, C. David, R. Germann, D. Erni, and G. L. Bona. Apodized surface-corrugated gratings with varying duty cycles. IEEE Photon. Technol. Lett., vol. 12, pp. 639–641, 2000.
[7] I. Giuntoni, D. Stolarek, A. Gajda, G. Winzer, J. Bruns, B. Tillack, K. Petermann, and L. Zimmermann. Integrated drop-filter for dispersion compensation based on SOI rib waveguides. Optical Fiber Communication Conference, Optica Publishing Group, IEEE, paper OThJ5, pp. 1-3, 2010.
[8] J. T. Hastings, Michael H. Lim, J. G. Goodberlet, and Henry I. Smith. Optical waveguides with apodized sidewall gratings via spatial-phase-locked electron-beam lithography. J. Vac. Sci. Technol. B 20, pp. 2753–2757, 2002.
[9] K. Ennser, N. Zervas, and R. L. Laming. Optimization of apodized linearly chirped fiber gratings for optical communications. IEEE Journal of Quantum Electronics, vol. 34, pp. 770-778, 1998.
[10] 施秉豪,次波長光柵元件在矽光子的應用,國立中山大學光電工程學系碩士論文,2016。
[11] 張國鎮,光纖光柵感測器之類神經網路結構控制結構(II),國家地震工程研究中心技術報告,2003。
[12] G. Jiang, R. Chen, Q. Zhou, J. Yang, M. Wang, and X. Jiang. Slab-modulated sidewall Bragg gratings in silicon-on-insulator ridge waveguides. IEEE Photon. Technol. Lett., vol. 23, pp. 6–9, 2011.
[13] T. Erdogan. Fiber grating spectra. Journal of Lightwave Technology, vol. 15, pp. 1277-1294, 1997.
[14] X. Wang, W. Shi, H. Yun, S. Grist, N. A. F. Jaeger, and L. Chrostowski. Narrow-band waveguide Bragg gratings on SOI wafers with CMOS-compatible fabrication process. Opt. Express, vol. 20, pp. 15547–15558, 2012.
[15] X. Wang, W. Shi, R. Vafaei, N. A. F. Jaeger, and L. Chrostowski. Silicon-on-insulator Bragg gratings fabricated by deep UV lithography. 2010 Asia Communications and Photonics Conference and Exhibition, IEEE, pp. 501-502, 2010.
[16] T. E. Murphy, J. T. Hastings, and H. I. Smith. Fabrication and characterization of narrow-band Bragg-reflection filters in silicon-on-insulator ridge waveguides. Journal of Lightwave Technology, vol. 19, pp. 1938-1942, 2001.
[17] W. Shi, H. Yun, C. Lin, J. Flueckiger, N. A. F. Jaeger, and L. Chrostowski. Coupler-apodized Bragg-grating add–drop filter. Opt. Lett., vol. 38, pp. 3068-3070, 2013.
[18] P. Correc. Coupling coefficients for trapezoidal gratings. IEEE Journal of Quantum Electronics, vol. 24, pp. 8-10, 1988.
[19] 古昀生,寬頻光方向耦合器使用數值權重函數之結構最佳化設計,國立中央大學機械工程研究所博士論文,2009。
[20] C.F. Chen. New Weighting Function Designed for Low crosstalk, Small length mismatched optical coupler. Jpn. J. Appl. Phys., vol. 49, 032501, 2010.
[21] C.F. Chen. Low-crosstalk, short-length mismatched optical coupler designed by new weighting function. Asia Communications and Photonics conference and Exhibition (ACP), IEEE, pp. 1-8, 2009.
[22] X. Wang. Silicon photonic waveguide Bragg gratings. University of British Columbia, 2013.
[23] A. D. Simard and S. LaRochelle. Complex apodized Bragg grating filters without circulators in silicon-on-insulator. Opt. Express, vol. 23, pp. 16662-16675, 2015.
[24] P. M. Waugh. First order Bragg grating filters in silicon on insulator waveguides. Photonic Fiber and Crystal Devices: Advances in Materials and Innovations in Device Applications II, SPIE, vol. 7056, pp. 418-429, 2008.
[25] V. Chandra and R. Ranjan. Analysis of propagation loss in silicon-on-insulator based photonic rib waveguide with small cross section. URSI Asia-Pacific Radio Science Conference (AP-RASC), IEEE, pp. 1-3, 2019.
[26] R. Cheng and L. Chrostowski. Spectral design of silicon integrated Bragg gratings: a tutorial. Journal of Lightwave Technology, vol. 39, pp. 712-729, 2021.
[27] Z. Zou, L. Zhou, M. Wang, K. Wu, and J. Chen. Tunable spiral Bragg gratings in 60-nm-thick silicon-on-insulator strip waveguides. Opt. Express, vol. 24, pp. 12831-12839, 2016.
[28] Z. Chen, J. Flueckiger, X. Wang, H. Yun, Y. Wang, Z. Lu, F. Zhang, N. A. F. Jaeger, and L. Chrostowski. Bragg grating spiral strip waveguide filters for TM modes. Conference on Lasers and Electro-Optics (CLEO), IEEE, pp. 1-2, 2015.
[29] D. T. H. Tan, K. Ikeda, and Y. Fainman. Cladding-modulated Bragg gratings in silicon waveguides. Opt. Lett., vol. 34, pp. 1357-1359, 2009.
[30] P. Dong, W. Qian, S. Liao, H. Liang, C. C. Kung, N. N. Feng, R. Shafiiha, J. Fong, D. Feng, A. V. Krishnamoorthy, and M. Asghari. Low loss shallow-ridge silicon waveguides. Opt. Express, vol. 18, pp.14474-14479, 2010.
[31] H. Huang, K. Liu, B. Qi, and V. J. Sorger. Re-analysis of single-mode conditions for silicon rib waveguides at 1550 nm wavelength. Journal of Lightwave Technology, vol. 34, pp. 3811-3817, 2016.
[32] S. P. Chan, V. M. N. Passaro, S. T. Lim, C. E. Png, W. Headley, G. Masanovic, G. T. Reed, R. M. H. Atta, G. Ensell, and A. G. R. Evans. Characterization of integrated Bragg gratings on silicon-on-insulator rib waveguides. Semiconductor Optoelectronic Devices for Lightwave Communication, SPIE, vol. 5248, pp. 273-283, 2003.
[33] V. Muniswamy, P. K. Pattnaik, and N. Krishnaswamy. Modeling and analysis of SOI gratings-based opto-fluidic biosensor for lab-on-a-chip applications. Photonics, MDPI, vol. 6, pp. 71, 2019.
[34] N. L. Kazanskiy, S. N. Khonina, and M. A. Butt. A review of photonic sensors based on ring resonator structures: three widely used platforms and implications of sensing applications. Micromachines, MDPI, vol. 14, pp. 1080, 2023.
[35] S. Schoenhardt, A. Boes, T. G. Nguyen, and A. Mitchell. Ridge waveguide couplers with leaky mode resonator-like wavelength responses. Opt. Express, vol. 31, pp. 626-634, 2023.
[36] S. L. Tsao, J. H. Tien, and C. W. Tsai. Simulations on an SOI grating-based optical add/drop multiplexer. IEEE Journal of Selected Topics in Quantum Electronics, vol. 8, pp. 1277-1284, 2002.
[37] A. J. Shaikh, A. G. Abro, M. M. A. Baig, M. M. A. Siddiqui, and S. M. Abbas. Confinement specific design of SOI rib waveguides with submicron dimensions and single-mode operation. Eng. Proc., vol.20, pp. 19, 2022.
[38] Y. E. Marin, A. Bera, M. Cherchi, and T. Aalto. Ultra-high-Q racetrack on thick SOI platform through hydrogen annealing. European Conference on Optical Communication (ECOC), IEEE, pp. 1-4, 2022.
[39] Y. E. Marin, A. Bera, M. Cherchi and T. Aalto. Ultra-high-Q racetrack resonators on thick SOI platform through hydrogen annealing smoothing. Journal of Lightwave Technology, vol. 41, pp. 3642-3648, 2023.
[40] Y. Wang, S. Bhat, N. Tessema, R. Kraemer, A. Napoli, G. Delrosso, and N. Calabretta. Ultrawide-band low polarization sensitivity 3-µm SOI arrayed waveguide gratings. Journal of Lightwave Technology, vol. 40, pp. 3432-3441, 2022.
[41] R. Huang, Y. Zhao, X. She, H. Liao, J. Zhu, Z. Zhu, X. Liu, H. Liu, Z. Sheng, and F. Gan. High resolution, high channel count silicon arrayed waveguide grating router on-chip. Opt. Express, vol. 31, pp. 14308-14316, 2023.
[42] A. D. Simard, G. Beaudin, V. Aimez, Y. Painchaud, and S. LaRochelle. Characterization and reduction of spectral distortions in silicon-on-Insulator integrated Bragg gratings. Opt. Express, vol. 21, pp. 23145-23159, 2013.
[43] J. Brouckaert, W. Bogaerts, S. Selvaraja, P. Dumon, R. Baets, and D. Van Thourhout. Planar concave grating demultiplexer with high reflective Bragg reflector facets. IEEE Photon. Technol. Lett., vol. 20, pp. 309-311, 2008. |