博碩士論文 110328008 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:37 、訪客IP:18.191.26.149
姓名 施呈恩(Cheng-En Shih)  查詢紙本館藏   畢業系所 能源工程研究所
論文名稱 不同密度侵入物於振動流體內運動現象之研究
相關論文
★ 二維儲槽濾材顆粒流場之研究★ 粗細顆粒混合之流動性質分析
★ MOCVD腔體熱流場與新式進氣檔板之設計模擬分析研究★ 稻殼於流體化床進行快速裂解產製生質燃油之研究
★ 利用CFD 模擬催化生質能在快速熱裂解中碳沉積對於催化劑去活化反應影響★ 反向氣流對微小粉末於儲槽排放行為影響之研究
★ 積層製造自動化粉末回收系統-系統設計及其混合器之優化★ 雙床氣化爐冷模型中CFB入口速度、BFB床高和顆粒尺寸對矽砂之壓力分佈和質量流率的影響
★ 以實驗方式探討崩塌流場對可侵蝕底床侵蝕與堆積現象之影響★ 移動式顆粒床過濾器應用於去除PM2.5之研究
★ 超臨界顆粒流場中雙圓柱阻礙物震波交互影響之研究★ 不同飽和態下兩相局部潰壩流場中流動行為之探討
★ 添加微量液體對振動床中顆粒體分離現象的影響★ 不同表面粗糙度的大顆粒在垂直式振動床中動態行為之研究
★ 二維剪力槽中顆粒體群聚現象之研究探討★ 直渠道顆粒流之顆粒密度分離效應
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2028-7-31以後開放)
摘要(中) 本研究透過實驗的方式來探討於相同無因次振動強度下,改變不同流體、振動頻率與水高對不同密度比的侵入物(Intruder)在類二維垂直振動床中的巴西豆現象,藉由高速攝影機拍攝照片並利用PTV(Particle Tracking Velocimetry)來分析顆粒的運動行為,並探討侵入物的上升時間與上升速度、顆粒床底部顆粒的水平速度以及侵入物於上升時所受阻力。
當流體為水時,水會影響顆粒的運動,對於尺寸較小的背景顆粒而言,水主導了侵入物與背景顆粒分離的過程,水會使侵入物的上升時間與密度比有依賴性,當密度比趨近背景顆粒的體積佔有率時,侵入物的上升時間最長。透過改變水高可發現,水高越低侵入物上升越慢,這是因為水表面距離顆粒床較近,抑制侵入物的向上運動,而水高較高侵入物上升越快。除了水表面干擾的減少外,增加水高會增加顆粒飛躍時床體的壓力差,進而增加水向下流動的速度,使水更快的側向拖曳背景顆粒填補侵入物底下的空隙,增強巴西豆現象。在水高較低時,頻率越小會使水表面波動施加在顆粒床的干擾更加劇烈,質量與慣性較低的侵入物容易受到影響,輸入的能量越強侵入物的上升時間反而越慢,而在水高較高時,水表面波動對顆粒床的影響減弱,輸入的能量越強可使侵入物的淨向上位移增加,進而增強水驅動的巴西豆現象,使侵入物的上升時間減少。
摘要(英) This study investigates the Brazil Nut Effect (BNE) in a quasi-two-dimensional vertical vibrated bed by changing different fluid, vibration frequency, and water height to different density ratios of intruders under the same dimensionless vibration intensity through experiments. Take pictures with a high-speed camera and use PTV (Particle Tracking Velocimetry) to analyze the movement of particles, the rise time and velocity of the intruder, the horizontal velocity of the granular bed, and the drag force on the intruder.
When the fluid is water, the water to the particles must be taken into account. For the smaller background particles, the water dominates the size separation process, and the water drag force will make the rise time of the intruder depend on the density ratio. When the density ratio approaches the packing fraction of the small particle, the intruder needs more time to rise. In the case of changing the water height, the lower the water height, the slower the intruder rises, because the water surface close to the granular bed, which affect the upward movement of the intruder. The higher the water height, the faster the intruder rises, increasing the water height will increase the pressure difference of the granular bed, thereby increasing the velocity of the water flowing downward, making the water drag the background particles laterally faster to fill the gap under the intruder, and eventually enhance the BNE. When the water height is low, the smaller the frequency, the more severe the disturbance imposed by the water surface fluctuation on the granular bed, and the intruder with lower mass is easily affected, the stronger the input energy, the slower the rise time of the intruder. When the water height is high, the stronger the input energy can increase the net upward displacement of the intruder, thereby enhancing the water-driven BNE and reducing the rise time of the intruder.
關鍵字(中) ★ 粒子流
★ 振動床
★ 侵入物
★ 巴西豆效應
★ 流體
關鍵字(英) ★ Granular flow
★ Vibrated bed
★ Intruder
★ Brazil nut Effect
★ Fluid
論文目次 中文摘要 i
Abstract ii
目錄 iii
附圖目錄 v
表格目錄 viii
符號說明 ix
第一章 簡介 1
1.1 研究背景 1
1.2 顆粒體的分離行為 1
1.3 顆粒體於振動床內的行為 3
1.3.1 流體對顆粒體的影響 6
1.4 研究動機 8
第二章 實驗方法 12
2.1 研究設備 12
2.2 研究方法 14
2.2.1 實驗參數 14
2.2.2 粒子追蹤測速法 15
2.2.3 顆粒的傳輸性質影像分析 15
2.3 無因次質量流率 16
2.4 從能量守恆公式來解釋侵入物的上升行為 17
2.5 實驗步驟 17
第三章 結果與討論 29
3.1 振動床內侵入物的上升行為 30
3.1.1 探討侵入物於空氣中的上升行為 30
3.1.2 探討不同水高下侵入物於水中的上升行為 30
3.1.3 探討不同頻率下侵入物於水中的上升行為 33
3.2 顆粒床底部顆粒的水平運動對侵入物上升行為之影響 34
3.2.1 不同水高對顆粒床底部顆粒的水平運動之影響 34
3.2.2 振動頻率對顆粒床底部顆粒的水平運動之影響 35
3.3 振動頻率、水高及侵入物密度比對侵入物所受阻力的影響 35
3.3.1 水高對侵入物所受阻力的影響 36
3.3.2 振動頻率對侵入物所受阻力的影響 36
3.4 水高對無因次質量流率的影響 36
第四章 結論 64
參考文獻 66
參考文獻 [1] J. J. McCarthy, "Turning the corner in segregation". Powder Technology, Vol. 192(2): pp. 137-142, 2009.
[2] M. Alonso, M. Satoh, and K. Miyanami, "OPTIMUM COMBINATION OF SIZE RATIO, DENSITY RATIO AND CONCENTRATION TO MINIMIZE FREE-SURFACE SEGREGATION". Powder Technology, Vol. 68(2): pp. 145-152, 1991.
[3] J. Gray, "Particle Segregation in Dense Granular Flows", in Annual Review of Fluid Mechanics, Vol 50, Davis S.H. and Moin P., Editors. pp. 407-433, 2018.
[4] A. Rosato, K. J. Strandburg, F. Prinz, and R. H. Swendsen, "Why the Brazil nuts are on top: Size segregation of particulate matter by shaking". Physical Review Letters, Vol. 58(10): pp. 1038-1040, 1987.
[5] S. Matsumura, D. C. Richardson, P. Michel, S. R. Schwartz, and R. L. Ballouz, "The Brazil nut effect and its application to asteroids". Monthly Notices of the Royal Astronomical Society, Vol. 443(4): pp. 3368-3380, 2014.
[6] V. Perera, A. P. Jackson, E. Asphaug, and R. L. Ballouz, "The spherical Brazil Nut Effect and its significance to asteroids". Icarus, Vol. 278: pp. 194-203, 2016.
[7] B. Ferdowsi, C. P. Ortiz, M. Houssais, and D. J. Jerolmack, "River-bed armouring as a granular segregation phenomenon". Nature Communications, Vol. 8: 1363, 2017.
[8] A. Srivastava, K. Kikuchi, and T. Ishikawa, "Microbial Brazil nut effect". Soft Matter, Vol. 17(46): pp. 10428-10436, 2021.
[9] T. Shinbrot and F. J. Muzzio, "Reverse buoyancy in shaken granular beds". Physical Review Letters, Vol. 81(20): pp. 4365-4368, 1998.
[10] H. M. Jaeger and S. R. Nagel, "PHYSICS OF THE GRANULAR STATE". Science, Vol. 255(5051): pp. 1523-1531, 1992.
[11] M. Faraday, "On a peculiar class of acoustical figures; and on certain forms assumed by groups of particles upon vibrating elastic surfaces". Abstracts of the Papers Printed in the Philosophical Transactions of the Royal Society of London, Vol. 3(0): pp. 49-51, 1837.
[12] S. S. Hsiau and C. H. Chen, "Granular convection cells in a vertical shaker". Powder Technology, Vol. 111(3): pp. 210-217, 2000.
[13] F. W. Zhang, L. Wang, C. P. Liu, P. Wu, and S. Zhan, "Patterns of convective flow in a vertically vibrated granular bed". Physics Letters A, Vol. 378(18-19): pp. 1303-1308, 2014.
[14] C. R. Wassgren, C. E. Brennen, and M. L. Hunt, "Vertical vibration of a deep bed of granular material in a container". Journal of Applied Mechanics-Transactions of the Asme, Vol. 63(3): pp. 712-719, 1996.
[15] S. S. Hsiau, M. H. Wu, and C. H. Chen, "Arching phenomena in a vibrated granular bed". Powder Technology, Vol. 99(2): pp. 185-193, 1998.
[16] S. S. Hsiau and H. Y. Yu, "Segregation phenomena in a shaker". Powder Technology, Vol. 93(1): pp. 83-88, 1997.
[17] A. P. J. Breu, H. M. Ensner, C. A. Kruelle, and I. Rehberg, "Reversing the Brazil-nut effect: Competition between percolation and condensation". Physical Review Letters, Vol. 90(1): 014302, 2003.
[18] A. K. Jha and V. M. Puri, "Percolation segregation of multi-size and multi-component particulate materials". Powder Technology, Vol. 197(3): pp. 274-282, 2010.
[19] C. C. Liao, "Multisized immersed granular materials and bumpy base on the Brazil nut effect in a three-dimensional vertically vibrating granular bed". Powder Technology, Vol. 288: pp. 151-156, 2016.
[20] Y. Nahmad-Molinari, G. Canul-Chay, and J. C. Ruiz-Suarez, "Inertia in the Brazil nut problem". Physical Review E, Vol. 68(4): 041301, 2003.
[21] C. C. Liao, S. S. Hsiau, and C. S. Wu, "Experimental study on the effect of surface roughness of the intruder on the Brazil nut problem in a vertically vibrated bed". Physical Review E, Vol. 86(6): 061316, 2012.
[22] D. A. Huerta and J. C. Ruiz-Suarez, "Vibration-induced granular segregation: A phenomenon driven by three mechanisms". Physical Review Letters, Vol. 92(11): 114301, 2004.
[23] T. Firdani, "Investigation of Intruder Local Buoyancy Segregation Mechanism in a Vertically Vibrated Granular Bed". 2021, 國立中央大學能源工程研究所碩士論文.
[24] M. A. Naylor, M. R. Swift, and P. J. King, "Air-driven Brazil nut effect". Physical Review E, Vol. 68(1): 012301, 2003.
[25] M. E. Mobius, X. Cheng, P. Eshuis, G. S. Karczmar, S. R. Nagel, and H. M. Jaeger, "Effect of air on granular size separation in a vibrated granular bed". Physical Review E, Vol. 72(1): 011304, 2005.
[26] C. P. Liu, L. Wang, P. Wu, and M. Jia, "Effects of Gas Flow on Granular Size Separation". Physical Review Letters, Vol. 104(18): 188001, 2010.
[27] M. Klein, L. L. Tsai, M. S. Rosen, T. Pavlin, D. Candela, and R. L. Walsworth, "Interstitial gas and density segregation of vertically vibrated granular media". Physical Review E, Vol. 74(1): 010301, 2006.
[28] C. P. Clement, H. A. Pacheco-Martinez, M. R. Swift, and P. J. King, "The water-enhanced Brazil nut effect". Epl, Vol. 91(5): 54001, 2010.
指導教授 蕭述三(Shu-San Hsiau) 審核日期 2023-8-11
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明